Best Nitrogen Management Practices Using Sensor-Based Smart Agriculture in Nursery Production of Cacao
Abstract
:1. Introduction
2. Materials and Methods
2.1. Number of Leaves, and Plant Height
2.2. Chlorophyll Content (Represented by SPAD Unit and atLEAF Unit), and Normalized Difference Vegetation Index (NDVI)
2.3. Leachate Samples
2.4. Nitrogen and Carbon Content of Substrate and Leaf Samples
2.5. Statistical Analysis
3. Results
3.1. Chlorophyll Content (Represented by SPAD Unit, and atLEAF Unit), Normalized Difference Vegetation Index (NDVI), Number of Leaves (NL), and Plant Height
3.2. Total Carbon (TC) and Total Nitrogen (TN) of Substrate and Leaf Samples
3.3. Electric Conductivity (EC), Salt, and Total Nitrogen (TN) of Leachate Samples
3.4. Correlation between Chlorophyll Content (Indicated by SPAD and atLEAF), Normalized Difference Vegetation Index (NDVI), Number of Leaves (NL), and Total Nitrogen (TN) and Total Carbon (TC) of Leaf Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crane, J.H.; Balerdi, C.F.; Joyner, E.A. Cocoa (Chocolate Bean) Growing in the Florida Home Landscape; Horticultural Sciences Department document HS1057; Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, Miami-Dade County, University of Florida: Gainesville, FL, USA, 2020. [Google Scholar]
- Basyouni, R.; Dunn, B. Use of Optical Sensors to Monitor Plant Nitrogen Status in Horticultural Plants (HLA-6719-4); Oklahoma Cooperative Extension Service, Stillwater: Payne County, OK, USA, 2013. [Google Scholar]
- Thompson, R.B.; Tremblay, N.; Fink, M.; Gallardo, M.; Padilla, F.M. Tools and strategies for sustainable nitrogen fertilization of vegetable crops. In Advances in Research on Fertilization Management in Vegetable Crops, 1st ed.; Tei, F., Nicola, S., Benincasa, P., Eds.; Springer: Cham, Switzerland, 2017; pp. 11–63. [Google Scholar]
- Usha, K.; Singh, B. Potential applications of remote sensing in horticulture—A review. Sci. Hortic. 2013, 153, 71–83. [Google Scholar] [CrossRef]
- Fox, R.H.; Walthall, C.L. Crop monitoring technologies to assess nitrogen status. In Nitrogen in Agricultural Systems, 1st ed.; Schepers, J.S., Raun, W.R., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2008; Volume 49, pp. 647–674. [Google Scholar]
- Samborski, S.M.; Tremblay, N.; Fallon, E. Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agron. J. 2009, 101, 800–816. [Google Scholar] [CrossRef]
- Tremblay, N.; Wang, Z.; Cerovic, Z.G. Sensing crop nitrogen status with fluorescence indicators. A review. Agron. Sustain. 2012, 32, 451–464. [Google Scholar] [CrossRef] [Green Version]
- McMurtrey, J.E.; Chappelle, E.W.; Kim, M.S.; Meisinger, J.J.; Corp, L.A. Distinguishing nitrogen fertilization levels in field corn (Zea mays L.) with actively induced fluorescence and passive reflectance measurements. Remote Sens. Environ. 1994, 47, 36–44. [Google Scholar] [CrossRef]
- Burns, I.G.; Rahn, C.R.; Parkinson, R.; Fuller, M.P. Nitrate pollution from horticultural production systems—Tools for policy and advice from field to catchment scales. Acta Hortic. 2010, 852, 27–38. [Google Scholar] [CrossRef] [Green Version]
- Olfs, H.W.; Blankenau, K.; Brentrup, F.; Jasper, J.; Link, A.; Lammel, J. Soil- and plant-based nitrogen-fertilizer recommendations in arable farming. J. Plant Nutr. Soil Sci. 2005, 168, 414–431. [Google Scholar] [CrossRef]
- Gianquinto, G.; Orsini, F.; Sambo, P.; D’Urzo, M.P. The use of diagnostic optical tools to assess nitrogen status and to guide fertilization of vegetables. Horttechnology 2011, 21, 287–292. [Google Scholar] [CrossRef] [Green Version]
- Meisinger, J.J.; Schepers, J.S.; Raun, W.R. Crop nitrogen requirement and fertilization. In Nitrogen in Agricultural Systems, 1st ed.; Schepers, J.S., Raun, W.R., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2008; Volume 49, pp. 563–612. [Google Scholar]
- Goffart, J.; Olivier, M.; Frankinet, M. Potato crop nitrogen status assessment to improve N fertilization management and efficiency: Past–Present–Future. Potato Res. 2008, 51, 355–383. [Google Scholar] [CrossRef]
- Ferreira, D.F. Sisvar: A computer statistical analysis system. Cienc. Agrotec. 2011, 35, 1039–1042. [Google Scholar] [CrossRef] [Green Version]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates: Sunderland, MA, USA, 2015; p. 761. [Google Scholar]
- Dogbatse, J.A.; Arthur, A.; Awudzi, G.K.; Quaye, A.K.; Konlan, S.; Amaning, A.A. Effects of organic and inorganic fertilizers on growth and nutrient uptake by Young Cacao (Theobroma cacao L.). Int. J. Agron. 2021, 2021, 5516928. [Google Scholar] [CrossRef]
- Kandpal, G. Review on impact of chemical fertilizers on environment. Int. J. Mod. Agric. 2021, 10, 758–763. [Google Scholar]
- Monostori, I.; Árendás, T.; Hoffman, B.; Galiba, G.; Gierczik, K.; Szira, F.; Vágújfalvi, A. Relationship between SPAD value and grain yield can be affected by cultivar, environment and soil nitrogen content in wheat. Euphytica 2016, 211, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Gianquinto, G.; Goffart, J.P.; Olivier, M.; Guarda, G.; Colauzzi, M.; Dalla Costa, L.; DelleVedove, G.; Vos, J.; Mackerron, D.K.L. The use of hand-held chlorophyll meters as a tool to assess the nitrogen status and to guide nitrogen fertilization of potato crop. Potato Res. 2004, 47, 35–80. [Google Scholar] [CrossRef]
- Padilla, F.M.; Peña-Fleitas, M.T.; Gallardo, M.; Thompson, R.B. Threshold values of canopy reflectance indices and chlorophyll meter readings for optimal nitrogen nutrition of tomato. Ann. Appl. Biol. 2015, 166, 271–285. [Google Scholar] [CrossRef]
- Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; De Souza, R.; Thompson, R.B. Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensors 2018, 18, 2083. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.W.; Dunn, B.L.; Arnall, D.B.; Mao, P.S. Use of an active canopy sensor and SPAD chlorophyll meter to quantify geranium nitrogen status. HortScience 2012, 47, 45–50. [Google Scholar] [CrossRef] [Green Version]
- Hardin, J.A.; Smith, M.W.; Weckler, P.R.; Cheary, B.S. In-situ measurement of pecan leaf nitrogen concentration using a chlorophyll meter and vis-near infrared multispectral camera. HortScience 2012, 47, 955–960. [Google Scholar] [CrossRef] [Green Version]
- Dunn, B.L.; Goad, C. Effect of foliar nitrogen and optical sensor sampling method and location for determining ornamental cabbage fertility status. HortScience 2015, 50, 74–77. [Google Scholar] [CrossRef] [Green Version]
- Khoddamzadeh, A.A.; Dunn, B.L. Application of optical sensors for nitrogen management in Chrysanthemum. HortScience 2016, 51, 915–920. [Google Scholar] [CrossRef] [Green Version]
- Van Vliet, J.A.; Giller, K.E. Mineral nutrition of cocoa: A review. Adv. Agron. 2017, 141, 185–270. [Google Scholar]
- Muñoz-Huerta, R.F.; Guevara-Gonzalez, R.G.; Contreras-Medina, L.M.; Torres-Pacheco, I.; Prado-Olivarez, J.; Ocampo-Velazquez, R.V. A review of methods for sensing the nitrogen status in plants: Advantages, disadvantages and recent advances. Sensors 2013, 13, 10823–10843. [Google Scholar] [CrossRef]
- Freidenreich, A.; Barraza, G.; Jayachandran, K.; Khoddamzadeh, A.A. Precision agriculture application for sustainable nitrogen management of Justicia brandegeana using optical sensor technology. Agriculture 2019, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Costa, B.N.S.; Tucker, D.A.; Khoddamzadeh, A.A. Precision Horticulture: Application of Optical Sensor Technology for Nitrogen Monitoring Status in Cocoplum, a Native Landscaping Plant. Plants 2023, 12, 760. [Google Scholar] [CrossRef]
Treatments | Fertilizer | Supplemented Fertilizer | Number and Month of Application |
---|---|---|---|
Control | 15 g | 0 | ---- |
T1 | 15 g | 15 g | 2 times in November and March |
T2 | 15 g | 15 g | 1 time in November |
T3 | 30 g | 15 g | 2 times in November and March |
T4 | 30 g | 15 g | 1 time on November |
T5 | 45 g | 15 g | 2 times in November and March |
Treatments | SPAD | atLEAF | NDVI | NL | Plant Height (cm) |
---|---|---|---|---|---|
Control | 44.3 a | 50.1 ab | 0.800 a | 30.8 a | 109 ab |
T1 | 44.4 a | 49.1 ab | 0.810 a | 30.8 a | 105 ab |
T2 | 41.5 a | 47.9 ab | 0.800 a | 28.4 a | 97.5 b |
T3 | 44.3 a | 51.1 a | 0.810 a | 27.1 a | 105 ab |
T4 | 40.3 a | 46.8 b | 0.800 a | 33.0 a | 95.7 b |
T5 | 43.8 a | 49.5 ab | 0.830 a | 30.0 a | 114 a |
DAF | SPAD | atLEAF | NDVI | NL | Plant Height (cm) |
---|---|---|---|---|---|
0 | 35.3 c | 42.3 c | 0.770 a | 17.3 d | 62.6 e |
30 | 40.6 b | 46.2 b | 0.820 a | 23.8 c | 76.0 d |
60 | 44.7 a | 49.7 a | 0.830 a | 25.9 c | 89.3 c |
90 | 45.3 a | 50.9 a | 0.820 a | 32.4 b | 109 b |
120 | 44.4 a | 50.6 a | 0.800 a | 31.3 b | 118 b |
150 | 44.9 a | 50.7 a | 0.820 a | 40.1 a | 136 a |
180 | 46.4 a | 53.0 a | 0.820 a | 39.5 a | 139 a |
Treatments | Days after Fertilization (DAF) | ||||||
---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 150 | 180 | |
TN (%) | |||||||
Control | 1.62 aC | 1.60 cD | 1.59 cE | 1.55 dF | 1.74 cA | 1.72 fB | 1.00 eG |
T1 | 1.62 aB | 1.38 fF | 1.48 eD | 1.49 eC | 1.45 fE | 2.01 cA | 0.89 fG |
T2 | 1.62 aD | 1.57 eF | 1.74 bC | 1.77 bB | 1.60 dE | 2.11 bA | 1.05 dG |
T3 | 1.62 aF | 1.74 bD | 1.56 dG | 1.97 aC | 2.20 aB | 2.51 aA | 1.67 aE |
T4 | 1.62 aD | 1.59 dE | 1.59 cE | 1.64 cC | 1.79 bB | 1.95 dA | 1.15 cF |
T5 | 1.62 aD | 1.93 aA | 1.93 aA | 1.77 bC | 1.55 eE | 1.81 eB | 1.47 bF |
0 | 30 | 60 | 90 | 120 | 150 | 180 | |
TC (%) | |||||||
Control | 46.2 aC | 44.6 cD | 38.2 eF | 43.7 fE | 46.5 aA | 46.2 fB | 38.1 bG |
T1 | 46.2 aC | 47.4 aB | 41.6 cF | 44.9 eE | 45.0 dD | 48.2 aA | 35.4 cG |
T2 | 46.2 aB | 44.1 dE | 41.9 bF | 45.7 cC | 44.7 eD | 47.9 bA | 35.3 dG |
T3 | 46.2 aB | 45.9 bD | 34.6 fF | 46.0 bC | 45.4 cE | 46.8 dA | 34.3 eF |
T4 | 46.2 aD | 41.5 fE | 41.5 dF | 47.2 aB | 46.3 bC | 47.5 cA | 38.2 aG |
T5 | 46.2 aB | 42.1 eE | 42.1 aE | 45.5 dC | 44.3 fD | 46.7 eA | 31.5 fF |
Treatments | DAF | ||||||
---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 150 | 180 | |
TC (%) | |||||||
Control | 46.2 aC | 44.6 cD | 38.2 eF | 43.7 fE | 46.5 aA | 46.2 fB | 38.1 bG |
T1 | 46.2 aC | 47.4 aB | 41.6 cF | 44.9 eE | 45.0 dD | 48.2 aA | 35.4 cG |
T2 | 46.2 aB | 44.1 dE | 41.9 bF | 45.7 cC | 44.7 eD | 47.9 bA | 35.3 dG |
T3 | 46.2 aB | 45.9 bD | 34.6 fF | 46.0 bC | 45.4 cE | 46.8 dA | 34.3 eF |
T4 | 46.2 aD | 41.5 fE | 41.5 dF | 47.2 aB | 46.3 bC | 47.5 cA | 38.2 aG |
T5 | 46.2 aB | 42.1 eE | 42.1 aE | 45.5 dC | 44.3 fD | 46.7 eA | 31.5 fF |
0 | 30 | 60 | 90 | 120 | 150 | 180 | |
TN (%) | |||||||
Control | 1.62 aC | 1.60 cD | 1.59 cE | 1.55 dF | 1.74 cA | 1.72 fB | 1.00 eG |
T1 | 1.62 aB | 1.38 fF | 1.48 eD | 1.49 eC | 1.45 fE | 2.01 cA | 0.89 fG |
T2 | 1.62 aD | 1.57 eF | 1.74 bC | 1.77 bB | 1.60 dE | 2.11 bA | 1.05 dG |
T3 | 1.62 aF | 1.74 bD | 1.56 dG | 1.97 aC | 2.20 aB | 2.51 aA | 1.67 aE |
T4 | 1.62 aD | 1.59 dE | 1.59 cE | 1.64 cC | 1.79 bB | 1.95 dA | 1.15 cF |
T5 | 1.62 aD | 1.93 aA | 1.93 aA | 1.77 bC | 1.55 eE | 1.81 eB | 1.47 bF |
Treatments | DAF | ||||||
---|---|---|---|---|---|---|---|
0 | 30 | 60 | 90 | 120 | 150 | 180 | |
EC (µs) | |||||||
Control | 631 a | 3134 d | 2071 c | 1541 c | 663 a | 780 b | 750 c |
T1 | 631 aE | 4032 cdA | 3820 bAB | 2793 bBC | 941 aDE | 2258 aC | 1858 abCD |
T2 | 631 aB | 4632 bcA | 4978 aA | 1105 cB | 1021 aB | 907 bB | 671 cB |
T3 | 631 aD | 5710 bA | 5376 aAB | 4350 aB | 1018 aD | 2456 aC | 2323 aC |
T4 | 638 aC | 5574 bA | 5444 aA | 4004 aB | 1170 aC | 1003 bC | 849 bcC |
T5 | 638 aF | 7156 aA | 5544 aB | 4404 aC | 1534 aEF | 2930 aD | 1941 abDE |
0 | 30 | 60 | 90 | 120 | 150 | 180 | |
Salt (ppm) | |||||||
Control | 303 aC | 1616 dA | 1057 dAB | 761 cBC | 309 aC | 377 bC | 362 bC |
T1 | 303 aD | 2170 cdA | 2020 cAB | 1454 bBC | 453 aD | 1159 aC | 940 abCD |
T2 | 303 aB | 2514 bcA | 2704 bA | 544 cB | 498 aB | 441 bB | 358 bB |
T3 | 303 aD | 3080 bA | 2934 abAB | 2338 aB | 506 aD | 1302 aC | 1191 aC |
T4 | 303 aC | 3044 bA | 2968 abA | 2138 aB | 512 aC | 489 bC | 415 bC |
T5 | 321 aD | 3938 aA | 3412 aA | 2376 aB | 763 aD | 1638 aC | 973 abD |
0 | 30 | 60 | 90 | 120 | 150 | 180 | |
TN (ppm) | |||||||
Control | 12.4 aB | 125 fA | 125 fA | 3.17 fF | 11.3 f | 5.57 eE | 5.71 eD |
T1 | 12.4 aD | 175 eA | 175 eA | 12.3 eE | 21.7 eC | 11.4 cF | 83.0 bB |
T2 | 12.4 aE | 196 dA | 196 dA | 16.3 dD | 26.1 bB | 17.3 bC | 8.11 dF |
T3 | 12.4 aE | 292 bA | 292 bA | 19.0 cD | 23.8 cC | 9.50 dF | 85.2 aB |
T4 | 12.4 aE | 275 cA | 275 cA | 19.7 bD | 22.8 dC | 83.0 aB | 5.40 fF |
T5 | 12.4 aE | 377 aA | 337 aA | 19.8 aD | 40.3 aB | 2.41 fF | 37.8 cC |
atLEAF | NDVI | TN (%) | TC (%) | NL | |
---|---|---|---|---|---|
30 DAF | |||||
SPAD | 0.861 * | 0.777 | −0.205 | 0.382 | 0.121 |
atLEAF | 0.418 | −0.023 | 0.343 | 0.419 | |
NDVI | −0.536 | 0.441 | −0.446 | ||
TN (%) | −0.909 ** | 0.217 | |||
TC (%) | 0.160 | ||||
60 DAF | |||||
SPAD | 0.683 | 0.440 | −0.254 | −0.321 | 0.018 |
atLEAF | 0.528 | −0.201 | −0.132 | −0.152 | |
NDVI | 0.387 | 0.118 | 0.186 | ||
TN (%) | 0.915 ** | 0.272 | |||
TC (%) | 0.147 | ||||
90 DAF | |||||
SPAD | 0.496 | −0.146 | −0.635 | −0.359 | −0.477 |
atLEAF | 0.233 | −0.229 | −0.532 | −0.018 | |
NDVI | −0.294 | −0.384 | 0.926 ** | ||
TN (%) | 0.795 | −0.064 | |||
TC (%) | −0.183 | ||||
120 DAF | |||||
SPAD | 0.591 | −0.307 | 0.655 | 0.636 | −0.364 |
atLEAF | −0.446 | −0.048 | 0.142 | −0.886 * | |
NDVI | −0.032 | −0.064 | 0.321 | ||
TN (%) | 0.711 | 0.407 | |||
TC (%) | 0.226 | ||||
150 DAF | |||||
SPAD | 0.870 * | −0.190 | −0.206 | 0.132 | −0.750 |
atLEAF | −0.258 | −0.345 | −0.106 | −0.854 * | |
NDVI | 0.474 | −0.667 | 0.316 | ||
TN (%) | −0.468 | −0.030 | |||
TC (%) | 0.243 | ||||
180 DAF | |||||
SPAD | 0.869 * | 0.342 | 0.174 | 0.630 | −0.349 |
atLEAF | 0.218 | 0.092 | 0.381 | −0.095 | |
NDVI | 0.725 | −0.042 | 0.554 | ||
TN (%) | 0.291 | 0.620 | |||
TC (%) | −0.492 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khoddamzadeh, A.A.; Souza Costa, B.N. Best Nitrogen Management Practices Using Sensor-Based Smart Agriculture in Nursery Production of Cacao. Horticulturae 2023, 9, 454. https://doi.org/10.3390/horticulturae9040454
Khoddamzadeh AA, Souza Costa BN. Best Nitrogen Management Practices Using Sensor-Based Smart Agriculture in Nursery Production of Cacao. Horticulturae. 2023; 9(4):454. https://doi.org/10.3390/horticulturae9040454
Chicago/Turabian StyleKhoddamzadeh, Amir Ali, and Bárbara Nogueira Souza Costa. 2023. "Best Nitrogen Management Practices Using Sensor-Based Smart Agriculture in Nursery Production of Cacao" Horticulturae 9, no. 4: 454. https://doi.org/10.3390/horticulturae9040454
APA StyleKhoddamzadeh, A. A., & Souza Costa, B. N. (2023). Best Nitrogen Management Practices Using Sensor-Based Smart Agriculture in Nursery Production of Cacao. Horticulturae, 9(4), 454. https://doi.org/10.3390/horticulturae9040454