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Abstract: As a predominant phenolic compound in apple fruits, chlorogenic acid (CGA) benefits
human health due to its various antioxidant properties. However, little has been known regarding
the molecular mechanism underlying the CGA accumulation in apple fruits. In this study, we meas-
ured the CGA content and relative enzymes’ activities during fruit development in two different
flesh-colored cultivars ‘Huashuo’” and ‘Red Love’. The CGA content in both cultivars decreased
sharply from 30 days after full bloom (DAFB) to 60 DAFB. Notably, the CGA content in fruit flesh
was relatively higher than that in the peel. Further, the activities of C3H and HCT enzymes down-
stream of the CGA biosynthesis showed the similar changing trend as CGA content. Based on the
transcriptome data of “‘Huashuo’ fruit at 30 DAFB and 60 DAFB, 23 differentially expressed CGA
synthesis-related genes were screened. Gene expression analyses further showed that
MdAHCT1/2/4/5/6 and MdC3H1/2/3 were positively correlated to the variation of CGA content in two
cultivars. These findings establish a theoretical foundation for further mechanism study on CGA
biosynthesis and provide guidance for nutrient improvement in apple breeding programs.
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1. Introduction

An apple is an economically important fruit with high nutrition that is widely culti-
vated around the world. In addition to a good taste, apple fruit is rich in phenolic com-
pounds beneficial to human health [1]. Chlorogenic acid (CGA) is a predominant phenolic
compound in apple fruits of most cultivars [2,3], and also the main phenolic compound
in many other fruits, such as pears, peaches, strawberries, and blueberries [4-6]. In recent
years, CGA has been shown to exhibit various antioxidant properties, including anti-dia-
betic, anti-microbial, anti-inflammatory, anti-hypertension, anti-obesity, cardioprotective
properties, and neuroprotective effects [1,7-9]. Therefore, CGA is regarded as a health-
promoting compound and has been widely used in different fields of food, medicine, and
cosmetics.

The biosynthesis of CGA follows the phenylpropane metabolic pathway [10]. Phe-
nylalanine is firstly dehydrogenated to form cinnamic acid under the action of phenylal-
anine ammonia-lyase (PAL) [11], and accordingly, there may be three following synthetic
pathways. As shown, pathway 1 is based on the condensation reaction of quinic acid and
caffeoyl-CoA, which is catalyzed by hydroxycinnamoyl-CoA shikimate/quinate hy-
droxycinnamoyl transferase (HCT/HQT). In pathway 2, the quinic acid and coumaroyl-
CoA are catalyzed by Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyl
transferase (HCT/HQT) to generate the p-coumaroyl-quinic acid, which then becomes
CGA by hydroxylation under the presence of p-coumaroyl ester 3"-hydroxylase (C3'H). In
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pathway 3, CGA is produced from caffeoyl D-glucose and quinic acid, as catalyzed by the
hydroxycinnamoyl D-glucose: quinate hydroxycinnamoyl transferase (HCGQT) [6,12].
The other key enzymes that have been involved in the CGA biosynthesis include 4-couma-
rate-CoA ligase (4CL) and cinnamic acid 4-hydroxylase (C4H). Relative studies indicated
that CGA is synthesized mainly through pathway 1 and pathway 2 [6], and HCT/HQT
have been found to be rate-limiting enzymes [13]. Pathway 3 is only found in a few plant
species such as sweet potatoes and tomato leaves [10,14].

The roles of critical genes involved in CGA accumulation have been widely studied
in various plant species. For instance, the overexpression of IbPAL1 in sweet potatoes in-
creased the CGA levels in leaves [15]. In mulberries, the expression level of MaHCT4 was
positively correlated with the CGA abundance in leaves [16]. In pears, when PbHCT4 was
overexpressed in tobacco, the CGA content in transgenic plants was significantly higher
than that in control plants [17]. In tomatoes, the overexpression or suppression of the HQT
gene resulted in the up- or down-regulation of CGA levels accordingly [18]. However,
limited studies on the molecular mechanism associated with CGA biosynthesis in apple
fruits have been reported [1].

In this study, we measured the CGA contents and the enzyme activities related to
CGA biosynthesis during growth of apple fruits in two different cultivars, i.e., a white-
flesh cultivar ‘Huashuo” and a red flesh cultivar ‘Red Love’. Furthermore, the transcrip-
tome sequencing and quantitative real-time PCR (qRT-PCR) were used to screen the dif-
ferentially expressed CGA biosynthesis-related genes. This study is intended to reveal the
molecular mechanism of CGA accumulation in apple fruits, which will be useful in future
apple breeding programs that select cultivars with high CGA values.

2. Materials and Methods
2.1. Plant Materials

The apple fruits (Malus domestica) of two cultivars grown in the Science and Educa-
tion Park of Henan Agricultural University were selected, including a white-flesh cultivar
‘Huashuo’ and a red-flesh cultivar ‘Red Love’. ‘Huashuo’ fruits were collected at 30, 60,
90, 105, and 120 days after full bloom (DAFB), and ‘Red Love’ fruits were collected at 30,
60, 90, 105, 120, 135, and 150DAFB, respectively. At least 15 fruits were collected at each
sampling time-point, and all samples were collected at a height of 1.7-1.9 m from the pe-
riphery of the canopy. The harvested fruits were brought back to the laboratory immedi-
ately. Then, the peels and fleshes were, separately, cut into small pieces, quickly frozen in
liquid nitrogen, and then stored at -80 °C for further use. Each sample had three biological
replicates.

2.2. Measurement of Chlorogenic Acid Content

The content of chlorogenic acid (CGA) was measured with a high-performance liquid
chromatograph (HPLC) following the previously described method [19]. An amount of
0.25 g of frozen apple fruit tissues was crushed and the ground powder was homogenized
with 5 mL methanol (containing 1% formic acid) through a 30 min ultrasonic treatment
(60 kHz, 30 W). The homogenate was centrifuged at 6000 rpm for 5 min, and the superna-
tants were mixed again with methanol. This extraction process was repeated two times
and the supernatants were combined. Subsequently, 1.5 mL of supernatant from the peel
extract or 2.25 mL of supernatant from the flesh were evaporated on a rotary evaporator
until there was no methanol phase, followed by dissolving in 150 uL methanol (containing
1% formic acid) and being filtered through a membrane. The resulting filtrate was sub-
jected to HPLC analysis.

The CGA content was determined using a Waters 2695 HPLC System (Waters, Amer-
ica), equipped with a 2996 DAD detector, an ODS-C18 column (SunFire 5 um, 250 mm x
4.6 mm). The HPLC analysis was performed in a mobile phase of 0.1% formic acid (solvent
A) and 0.1% formic acid: acetonitrile (50:50, v/v, solvent B) using the following gradient



Horticulturae 2023, 9, 217

3 of 12

system: 0—45 min, 23-50% B; 45-65 min, 50-80% B; 65-68 min, 80-100% B; 68—73 min, 100%
B; 73-76 min, 100-23% B; 76-80 min, 23% B. The flow rate was 1 mL/min at 25 °C, and a
volume of 10 puL samples was injected for HPLC analysis.

2.3. Determination of HCT and C3H Enzymatic Activities

HCT and C3H enzymes were assayed according to the previous methods [20]. An
amount of 0.2 g of frozen apple peel or flesh tissues was crushed and homogenized with
phosphate buffer saline (containing 0.05 mol/L Tris-HCl, pH 7.4; weight (g): volume (mL)
=1:4) in a 2 mL centrifuge tube. The homogenate was fully vortexed for 1 min, centrifuged
at 4000 rpm for 10 min at 4 °C. The supernatant was used for the measurement of enzyme
activities, using an HCT Elisa detection system kit and a C3H Elisa detection system kit of
Kejing Biological Technology Co., Ltd. (Yancheng, China).

2.4. Transcriptome Sequencing

Transcriptomic sequencing was used to screen the differentially expressed genes re-
lated to CGA biosynthesis. Based on the changes of CGA content in the different stages of
the two apple cultivars, the fruit flesh of "Huashuo” apples at 30 and 60 DAFB with three
biological replicates were used for transcriptome sequencing. Total RNA extraction, li-
brary construction, as well as RNA-seq were completed by Biomarker (Beijing, China).
The libraries were sequenced on the Illumina NovaSeq 6000 platform.

2.5. RNA Extraction and cDNA Synthesis

Total RNA extraction from frozen fruit peel and flesh was performed according to
the method described earlier [21]. The extracted total RNA was treated with HiScript® III
1st Strand ¢cDNA Synthesis Kit (+gDNA wiper) (Vazyme) to remove contaminating
gDNA. Subsequently, 1.0 pg RNA was used as template for cDNA synthesis with a Re-
verse Transcription System (Vazyme). At each sampling time-point, three biological rep-
licates were used for RNA extraction.

2.6. Oligonucleotide Primers and Quantitative Real-Time PCR Analysis

Oligonucleotide primers were designed using Primer3 (version 0.4.0, https://bio-
info.ut.ee/primer3-0.4.0/ (accessed on 20 March 2021)). The gene specificity of primers was
checked by a melting curve and the resequencing of the PCR product. The primer se-
quences are listed in Supplementary Table S1. To monitor mRNA abundance, we have
chosen the apple Actin gene as a housekeeping gene [22]. Real-time PCR analysis was
performed on the C1000 Touch Thermal Cycler instrument (Bio-Rad). The PCR reaction
mixtures and the following program were based on our previous reports, with SYBRTM
Select PCR Master Mix (Applied Biosystems) [23].

2.7. Statistical Analysis

Statistical significance of differences was analyzed using Microsoft Office Excel 2019.
Figures were drawn with GraphPad Prism 8. The heatmap was constructed with TBtools.
[24].

3. Results
3.1. Changes of Chlorogenic Acid Content during Fruit Development

The CGA content in apple fruits of the two cultivars, "Huashuo” and ‘Red Love’,
showed a similar decreasing trend during fruit development stages (Figure 1). Notably,
the CGA content in the flesh at 30 DAFB was significantly higher than that of the peel for
both cultivars. The content of CGA in the peel and flesh of ‘Huashuo’ apples reached the
peak at 30 DAFB with a value of 16.66 ug/g and 271.93 pg/g, respectively. Similarly, the
CGA contents in the peel and flesh of ‘Red Love’ apples also reached the peak at 30 DAFB
with a value of 34.80 ug/g and 237.34 ug/g, respectively. Subsequently, the CGA content
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until the fruits” mature stage. The appearance of the apple fruits of the two cultivars dif-
fers: the color of ‘Huashuo’ fruit peel is yellow and the color of ‘Red Love’ fruit peel is red.
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Figure 1. Changes of the CGA content during apple fruit development in the cultivars ‘Huashuo’
(a) and ‘Red Love’ (b). Apple fruit appearance for the cultivars ‘Huashuo’ and ‘Red Love’ at differ-
ent stages are shown at the top of the figure (Scale bars =4 cm). Error bars represent standard errors
from three biological replicates. (* p < 0.05, *** p <0.001).

3.2. Changes of HCT and C3H Enzymatic Activities during Apple Fruit Development

HCT activity in fruit flesh of ‘"Huashuo’ cultivar decreased sharply from 30 DAFB to
60 DAFB, and then remained almost unchanged until the fruit became mature (Figure 2a).
The levels of HCT activity in fruit flesh at 30 DAFB were significantly higher than those
in the fruit peel. Furthermore, the changes in HCT activity during fruit development in
‘Red Love’ cultivar was similar to that in ‘Huashuo’, whereas the levels of HCT enzyme
activity in ‘Red Love’ fruit were relatively lower than those in ‘Huashuo’ (Figure 2a).

The C3H activity, another chlorogenic acid biosynthetic pathway-related enzyme,
exhibited similar patterns in both cultivars. However, the difference of C3H enzyme ac-
tivity at DAFB 30 between the fruit flesh and peel was narrowed (Figure 2b).
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Figure 2. Changes in HCT (a) and C3H (b) enzyme activities during apple fruit development in
cultivars ‘Huashuo” and ‘Red Love’. The black and gray circles represent the enzyme activity in the
apple flesh and peel, respectively. Error bars represent standard errors from three replicates. (* p <
0.05, ** p <0.01, ** p <0.001).
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3.3. Transcriptomic Analysis of Differentially Expressed Genes

To obtain the key genes contributing to chlorogenic acid metabolism, six samples of
fruit flesh from the ‘Huashuo’ cultivar at 30 and 60 DAFB were sent for RNA sequencing
with three biological replicates, designated as HS-30d-A-C and HS-60d-A-C, respec-
tively. The correlation analysis showed that three independent biological replicates were
highly correlated (Figure 3a, r > 0.89). The differentially expressed genes (DEGs) were
screened based on standard thresholds of the fold change > 2.0 and false discovery rate
(FDR) < 0.01. In total, 8589 DEGs were detected between HS-30d and HS-60d with 3250
up-regulated and 5339 down-regulated (Figure 3b,c). Based on the COG database, the
DEGs were divided into 25 orthologous groups (Figure 3d), among which “general func-
tion prediction only” accounted for the largest (418; 11.33%), followed by “signal trans-
duction mechanism” (403; 10.92%) and “transcription” (370; 10.02%). KEGG enrichment
analysis showed that the DEGs between HS-30d and HS-60d were mainly enriched in
‘plant hormone signal transduction’, ‘plant-pathogen interaction’, and ‘glycolysis/Gluco-
neogenesis’ (Figure 3e).

3.4. Analysis of Differentially Expressed Genes Associated with CGA Biosynthesis during Apple
Fruit Development

Based on the obtained DEGs from RN A-seq, 23 differentially expressed CGA biosyn-
thesis-associated genes were screened, including four PAL genes, four C4H genes, six 4CL
genes, six HCT genes, and three C3H genes (Figure 4). The transcript abundances of these
CGA biosynthesis-associated genes were estimated by FPKM (fragments per kilobase of
transcript per million fragments mapped) from RNA-seq data. Heatmaps were con-
structed using FPKM values to estimate the expression levels of these selected genes (Fig-
ure 4). Among the 23 differentially expressed CGA biosynthesis-associated genes, three
PAL genes (MDO01G1106900, MD04G1096200, MD12G1116700), three C4H genes
(MD00G1221400, MD03G1050900, MD03G1051000), four 4CL genes (MD00G1033000,
MD00G1033100, MD01G1236300, MD17G1229400), five HCT genes (MD09G1226600,
MD16G1110600, MD16G1110700, MD17G1224900, MD17G1225100), and three C3H genes
(MD08G1242900, MD08G1243000, MD15G1436600) were highly expressed in fruits at 30
DAFB (with high CGA contents), which showed a significant positive correlation with
CGA Dbiosynthesis. Conversely, the other six genes, including one PAL gene
(MD07G1172700), one C4H gene (MD11G1052900), two 4CL genes (MDO07G1309000,
MD11G1145900), and one HCT gene (MD14G1155800), showed a significant negative cor-
relation with CGA biosynthesis.
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3.5. Validation of the Differentially Expressed CGA Biosynthesis-Associated Genes by gRT-PCR
Analysis

In order to validate the accuracy of RNA-seq data, nine DEGs encoding the key en-
zymes associated with CGA biosynthesis were selected and analyzed by qRT-PCR in these
two apple cultivars. In ‘Huashuo’ fruits, with the exception of MdHCT3, the expression
levels of five other HCT genes (MdHCT1/2/4/5/6) and three C3H genes (MdC3H1/2/3) in
both peel and flesh decreased during the fruit development, which showed a positive cor-
relation with the CGA accumulation (Figure 5). Furthermore, the mRNA abundance of
these genes in fruit flesh was significantly higher than that in the peel, which was con-
sistent with the higher CGA content in the flesh than in the peel (Figures 1 and 5). Con-
versely, the expression level of MdHCT3 increased gradually during fruit development,
which was negatively correlated with the CGA accumulation. Generally, the expression
patterns of these selected DEGs were similar to the RNA-seq data. Moreover, similar ex-
pression patterns of these selected nine DEGs were also verified during the fruit develop-
ment of ‘Red Love’ apples (Figure 6), which further indicated that these genes may be key
candidate genes involved in CGA biosynthesis.
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Figure 5. Quantitative expression analysis of candidate genes related to chlorogenic acid biosynthe-
sis during fruit development in ‘Huashuo’ apples. Dark green columns and light green columns
represent the expression levels of the genes in the flesh and the peel of the fruit, respectively. Error
bars indicate standard errors from three biological replicates. (* p < 0.05, ** p < 0.01, ** p <0.001).
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Figure 6. The relative expression levels of genes related to chlorogenic acid biosynthesis during fruit
development in ‘Red Love” apples. Dark orange columns and light orange columns represent the
expression levels of the genes in the flesh and the peel of the fruit, respectively. Error bars represent
standard errors from three biological replicates. (* p <0.05, ** p < 0.01, *** p < 0.001).

4. Discussion

As one of the main phenolic compounds, CGA is abundant in various fruits, includ-
ing apples, pears, peaches, and strawberries [1,4,6,25]. In this study, we found that the
CGA content in both apple cultivars decreased gradually during the development, which
was consistent with the previous report on apple fruits [1]. The decrease of CGA content
during fruit development is probably caused by the enlargement of fruit volume, the hy-
drolysis of polyphenolic compound, or the decrease in the synthesis ability [26,27]. In ad-
dition, the CGA content in fruit flesh at the early stage of ‘Huashuo” and ‘Red Love’ culti-
vars, and at the mature stage of the ‘Red Love’ cultivar, was significantly higher than that
in the peel (Figure 1). Overall, our results were consistent with the previous studies (Ha-
gen et al., 2007), and confirmed that the accumulation of CGAs was tissue-specific. Corre-
spondingly, the activities of HCT and C3H enzymes downstream of the CGA biosynthesis
in fruit flesh were also significantly higher than those in the peel (Figure 2), which indi-
cated that HCT and C3H enzymes are closely associated with CGA biosynthesis.

Few studies on the molecular mechanism of CGA biosynthesis have been reported
in apple fruits. Using RNA-seq, we identified 23 DEGs encoding five kinds of enzymes
involved in the first and second pathways of CGA biosynthesis, including four PAL genes,
four C4H genes, six 4CL genes, six HCT genes, and three C3H genes. Similar to the case in
many other plant species [28], no UGCT or HCGQT homolog was identified, indicating
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that the third pathway for CGA biosynthesis may not exist in apple fruit. PAL, C4H, and
4CL are key enzymes upstream of the phenylpropane metabolic pathway. They not only
participate in the CGA biosynthesis, but also get involved in the synthesis of other sec-
ondary metabolites [29,30]. In sweet potato, overexpression of IbPALI promoted CGA ac-
cumulation in leaves [15]. LmMYB15 can bind and activate the 4CL promoter to promote
CGA biosynthesis in Lonicera macranthoides [31]. In this study, the expression levels of
three PAL DEGs (MD01G1106900, MD04G1096200, MD12G1116700), three C4H DEGs
(MD03G1051000, MD03G1050900, MD00G1221400), and four 4CL DEGs (MD00G1033000,
MD00G1033100, MD17G1229400, MD01G1236300) positively corresponded with the CGA
content (Figure 4), suggesting that these genes may play essential roles in CGA biosyn-
thesis in apple fruit.

In addition, HCT/HQT and C3H are key enzymes downstream of the CGA biosyn-
thesis pathway, with the C3H belonging to CYP98A subfamily and HCT belonging to the
BAHD acyltransferase family [32,33]. Relative studies have shown that HCT or C3H genes
are key genes in CGA biosynthesis in fruits. For instance, two PpCYP45098A genes and
four PpHCT genes showed the same expression patterns as the CGA accumulation in
peach fruit [25]. In strawberries, the blue light was able to co-upregulate CGA biosynthe-
sis and FHCT gene expression [4]. In pear fruit, the expression levels of PpC3H and
PpHCT1/3 were consistent with the variation in CGA content [34]. In our study, five HCT
genes (MdHCT1/2/4/5/6) and three C3H genes (MdC3H1/2/3) showed relative higher ex-
pression levels at the early development stage, and in the fruit flesh than in the peel for
both ‘Huashuo” and ‘Red Love’ cultivars (Figures 5 and 6), which showed a positive cor-
relation with the CGA accumulation in apple fruits. Among these genes, except for
MdAHCT1 (previously designated as MdHCT) and MdC3H1/2 [1], the other genes are new
candidate genes associated with CGA biosynthesis in apple fruits.

5. Conclusions

In this study, we systematically evaluated the CGA content and relative enzyme ac-
tivities during the development of ‘"Huashuo” and ‘Red Love’ apple fruits. The CGA con-
tent in both cultivars decreased sharply from 30 DAFB to 60 DAFB, and the CGA content
in fruit flesh was relatively higher than that in peel. Correspondingly, the activities of C3H
and HCT enzyme showed the similar changing trend as CGA content. By comparing the
transcriptome data of DAFB 30 and DAFB 60 in ‘Huashuo’ apple, 23 DEGs associated with
CGA biosynthesis were identified. The results of qRT-PCR showed that the expression
patterns of MdHCT1/2/4/5/6 and MdC3H1/2/3 were positively correlated with the CGA
content during the development of apple fruits in both cultivars, indicating that these
genes may play important roles in the CGA biosynthesis. These findings provide new data
for the molecular mechanisms of CGA biosynthesis and guidance for future breeding of
apple fruits.
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