Influence of Far-Red Intensity during the Seedling Stage on Biomass Production and Photomorphogenic Characteristics in Leafy Greens under Sole-Source Lighting
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Seedling Mass
3.2. Seedling Morphology
3.3. Seedling Coloration
3.4. Mature Plant Mass
3.5. Mature Plant Morphology
3.6. Mature Plant Coloration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gómez, C.; Currey, C.D.; Dickson, R.W.; Kim, H.J.; Hernández, R.; Sabeh, N.C.; Raudales, R.E.; Brumfield, R.G.; Laury-Shaw, A.; Wilke, A.K.; et al. Controlled environment food protection for urban agriculture. HortScience 2019, 54, 1448–1458. [Google Scholar] [CrossRef]
- McAvoy, R.J.; Janes, H.W. Alternative production strategies for greenhouse tomatoes using supplemental lighting. Sci. Hortic. 1988, 35, 161–166. [Google Scholar] [CrossRef]
- Moe, R.; Grimstad, S.O.; Gislerød, H.R. The use of artificial light in year round production of greenhouse crops in Norway. Acta Hortic. 2006, 711, 35–42. [Google Scholar] [CrossRef]
- Pinho, P.; Hytönen, T.; Rantanen, M.; Elomaa, P.; Halonen, L. Dynamic control of supplemental lighting intensity in a greenhouse environment. Light. Res. Technol. 2013, 45, 295–304. [Google Scholar] [CrossRef]
- Harbick, K.; Albright, L.D.; Mattson, N.S. Electrical savings comparison of supplemental lighting control systems in greenhouse environments. In Proceedings of the 2016 ASABE Annual International Meeting, Orlando, FL, USA, 17–20 July 2016. [Google Scholar]
- Lee, K.; Elliott, C.; Pattison, M. Energy Savings Potential of SSL in Agricultural Applications; U.S. Department Energy: Washington, DC, USA, 2020. [Google Scholar]
- Mitchell, C.A.; Dzakovich, M.P.; Gomez, C.; Lopez, R.; Burr, J.F.; Hernandez, R.; Kubota, C.; Currey, C.J.; Meng, Q.; Runkle, E.S.; et al. Light-emitting diodes in horticulture. In Horticultural Reviews; Janick, J., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2015; Volume 43, pp. 1–87. [Google Scholar] [CrossRef]
- Johnson, J.; Bugbee, B. Double-Ended High Pressure Sodium Fixtures Decline Less than 6% over 2 Years and 5000 Hours. Publications 2017, Paper 7. Available online: https://digitalcommons.usu.edu/cpl_pubs/7 (accessed on 9 June 2023).
- Katzin, D.; Marcelis, L.F.M.; van Mourik, S. Energy savings in greenhouses by transition from high-pressure sodium to LED lighting. Appl. Energy 2021, 281, 116019. [Google Scholar] [CrossRef]
- Shelford, T.J.; Both, A.J. On the technical performance characteristics of horticultural lamps. AgriEngineering 2021, 3, 716–727. [Google Scholar] [CrossRef]
- Morrow, R.C. LED lighting in horticulture. HortScience 2008, 43, 1947–1950. [Google Scholar] [CrossRef]
- Stober, K.; Lee, K.; Yamada, M.; Pattison, M. Energy Savings Potential of SSL in Horticultural Applications; U.S. Department Energy: Washington, DC, USA, 2017.
- Pattison, P.M.; Tsao, J.Y.; Brainard, G.C.; Bugbee, B. LEDs for photons, physiology, and food. Nature 2018, 563, 493–500. [Google Scholar] [CrossRef]
- Radetsky, L. LED and HID Horticultural Luminaire Testing Report; Lighting Research Center, Rensselaer Polytechnic Institute: Troy, NY, USA, 2018. [Google Scholar]
- Design Lights Consortium. DLC Qualified Products List: Horticultural Lighting. Available online: https://qpl.designlights.org/horticulture. (accessed on 26 October 2021).
- Kusuma, P.; Pattison, M.P.; Bugbee, B. From physics to food: Current and potential LED efficacy. Hortic. Res. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Gioia, D.M.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity responses to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1972, 9, 191–216. [Google Scholar] [CrossRef]
- Sager, J.C.; Smith, W.O.; Edwards, J.L.; Cyr, K.L. Photosynthetic efficiency and phytochrome equilibria determination using spectral data. Trans. ASAE 1988, 31, 1882–1889. [Google Scholar] [CrossRef]
- Emerson, R.; Lewis, C.M. The dependence of the quantum yield of Chlorella photosynthesis on wavelength of light. Am. J. Bot. 1943, 30, 165–178. [Google Scholar] [CrossRef]
- Emerson, R.; Chalmers, R.; Cederstrand, C. Some factors influencing the long-wave limit of photosynthesis. Proc. Natl. Acad. Sci. USA 1957, 43, 133–143. [Google Scholar] [CrossRef]
- Zhen, S.; Bugbee, B. Far-red photons have equivalent efficiency to traditional photosynthetic photons: Implications for redefining photosynthetically active radiation. Plant Cell Environ. 2020, 43, 1259–1272. [Google Scholar] [CrossRef]
- Zhen, S.; van Iersel, M. Far-red light is needed for efficient photochemistry and photosynthesis. J. Plant Physiol. 2017, 209, 115–122. [Google Scholar] [CrossRef]
- McCree, K.J. Significance of enhancement for calculations based on the action spectrum for photosynthesis. Plant Physiol. 1971, 49, 704–706. [Google Scholar] [CrossRef]
- Sager, J.C.; Edwards, J.L.; Klein, W.H. Light energy utilization efficiency for photosynthesis. Trans. ASAE 1982, 25, 1737–1746. [Google Scholar] [CrossRef]
- Sager, J.C. Spectral effects on the growth of lettuce under controlled environment conditions. Acta Hortic. 1984, 148, 889–896. [Google Scholar] [CrossRef]
- Wada, M. Chloroplast movement. Plant Sci. 2013, 210, 177–182. [Google Scholar] [CrossRef]
- Pocock, T. Light-emitting diodes and the modulation of specialty crops: Light sensing and signaling networks in plants. HortScience 2015, 50, 1281–1284. [Google Scholar] [CrossRef]
- Sakamoto, K.; Nagatani, A. Nuclear localization activity of phytochrome B. Plant J. 1996, 10, 859–868. [Google Scholar] [CrossRef]
- Fankhauser, C. The phytochromes, a family of red/far-red absorbing photoreceptors. J. Biol. Chem. 2001, 276, 11453–11456. [Google Scholar] [CrossRef]
- Smith, H. Phytochrome and Photomorphogenesis; McGraw Hill: London, UK, 1975. [Google Scholar]
- Reed, J.W.; Nagpal, P.; Poole, D.S.; Furuya, M.; Chory, J. Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 1993, 5, 147–157. [Google Scholar] [CrossRef] [PubMed]
- Jiao, Y.; Lau, O.S.; Deng, X.W. Light-regulated transcriptional networks in higher plants. Nature Rev. Genetics 2007, 8, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Lorrain, S.; Allen, T.; Duek, P.D.; Whitelam, G.C.; Fankhauser, C. Phytochrome-mediated inhibition of shade avoidance involves degradation of growth-promoting bHLH transcription factors. Plant J. 2008, 53, 312–323. [Google Scholar] [CrossRef]
- Huq, E.; Quail, P.H. PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J. 2002, 21, 2441–2450. [Google Scholar] [CrossRef]
- Grime, J.P. Shade tolerance in flowering plants. Nature 1965, 208, 161–163. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Peron, T.; Corot, A.; Bertheloot, J.; Le Gourrierec, J.; Pelleshi-Travier, S.; Crespel, L.; Morel, P.; Huche-Thelier, L.; Boumaza, R.; et al. Plant responses to red and far-red lights, applications in horticulture. Environ. Exp. Bot. 2016, 121, 4–21. [Google Scholar] [CrossRef]
- Djakovic-Petrovic, T.; de Wit, M.; Voesenek, L.; Pierik, R. DELLA protein function in growth responses to canopy signals. Plant J. 2007, 51, 117–126. [Google Scholar] [CrossRef]
- Finlayson, S.A.; Krishnareddy, S.R.; Kebrom, T.H.; Casal, J.J. Phytochrome regulation of branching in Arabidopsis. Plant Physiol. 2010, 152, 1914–1927. [Google Scholar] [CrossRef]
- Sasidharan, R.; Chinnappa, C.C.; Staal, M.; Elzenga, J.T.M.; Yokoyama, R.; Nishitani, K.; Voesenek, L.; Pierik, R. Light quality-mediated petiole elongation in Arabidopsis during shade avoidance involves cell wall modification by Xyloglucan endotransglucosylase/hydrolases. Plant Physiol. 2010, 154, 978–990. [Google Scholar] [CrossRef] [PubMed]
- Dale, J.E. The control of leaf expansion. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39, 267–295. [Google Scholar] [CrossRef]
- Shibuya, T.; Komuro, J.; Hirai, N.; Sakamoto, Y.; Endo, R.; Kitaya, Y. Preference of sweetpotato whitefly adults to cucumber seedlings grown under two different light sources. HortTechnology 2010, 20, 873–876. [Google Scholar] [CrossRef]
- Skinner, R.H.; Simmons, S.R. Modulation of leaf elongation, tiller appearance and tiller senescence in spring barley by far-red light. Plant Cell Environ. 1993, 16, 555–562. [Google Scholar] [CrossRef]
- Kalaitzoglou, P.; van Ieperen, W.; Harbinson, J.; van der Meer, M.; Martinakos, S.; Weerheim, K.; Nicole, C.C.S.; Marcelis, L.F.M. Effects of continuous or end-of-day far-red light on tomato plant growth, morphology, light absorption, and fruit production. Front. Plant Sci. 2019, 10, 322. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture. Potatoes and Tomatoes Are the Most Commonly Consumed Vegetables; Economics Research Service, U.S. Department of Agriculture: Washington, DC, USA, 2020.
- Legendre, R.; Iersel, M.W. Supplemental far-red light stimulates lettuce growth: Disentangling morphological and physiological effects. Plants 2021, 10, 166. [Google Scholar] [CrossRef] [PubMed]
- Spalholz, H. Development of Novel Lighting Strategies for Optimal Lettuce Growth and Quality. Ph.D. Thesis, N.C. State University, Raleigh, NC, USA, 2019. [Google Scholar]
- Chen, Z.; Han, Y.; Ning, K.; Ding, Y.; Zhao, W.; Yan, S.; Luo, C.; Jiang, X.; Ge, D.; Liu, R.; et al. Inflorescence development and the roles of LsFT in regulating bolting in lettuce (Lactuca sativa L.). Front. Plant Sci. 2018, 8, 2248. [Google Scholar] [CrossRef]
- Albright, L.D.; Both, A.J.; Chiu, A.J. Controlling greenhouse light to a consistent daily integral. Trans. ASAE 2000, 43, 421–431. [Google Scholar] [CrossRef]
- Marcelis, L.F.M.; Broekhuijsen, A.G.M. Quantification of the growth response to light quantity of greenhouse grown crops. Acta Hortic. 2006, 711, 97–103. [Google Scholar] [CrossRef]
- Bugbee, B. Toward an optimal spectral quality for plant growth and development: The importance of radiation capture. Acta Hortic. 2016, 1134, 1–12. [Google Scholar] [CrossRef]
- Beall, F.D.; Yeung, E.C.; Pharis, R.P. Far-red light stimulates internode elongation, cell division, cell elongation, and gibberellin levels in bean. Can. J. Bot. 1996, 74, 743–752. [Google Scholar] [CrossRef]
- Dougher, T.; Bugbee, B. Long-term blue light effects on the histology of lettuce and soybean leaves and stems. J. Am. Soc. Hortic. Sci. 2004, 129, 467–472. [Google Scholar] [CrossRef]
- Meng, Q.; Kelly, N.; Runkle, E.S. Substituting green or far-red radiation for blue radiation induces shade avoidance and promotes growth in lettuce and kale. Environ. Exp. Bot. 2019, 162, 383–391. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S. Resource capture and use in intercropping: Solar radiation. Field Crops Res. 1993, 34, 273–301. [Google Scholar] [CrossRef]
- Green, P. Mechanisms of cellular morphogenesis. Science 1962, 138, 1404–1405. [Google Scholar] [CrossRef]
- Chan, Y.M.; Marshall, W.F. Scaling properties of cell and organelle size. Organogenesis 2010, 6, 88–96. [Google Scholar] [CrossRef]
- Kurosaki, M. Optimizing sole-source and supplemental lighting and carbon dioxide enrichment for controlled environment production of lettuce (Lactuca sativa L.) and tomato (Solanum esculentum L.). Master’s Thesis, Cornell University, Ithaca, NY, USA, 2022. [Google Scholar]
- Lui, J.; van Iersel, M.W. Photosynthetic physiology of blue, green, and red light: Light intensity and underlying mechanisms. Front. Plant Sci. 2022, 12, 619987. [Google Scholar] [CrossRef]
- Folta, K.M. Green light stimulates early stem elongation anagonizing light-mediated growth inhibition. Plant Physiol. 2004, 135, 1407–1416. [Google Scholar] [CrossRef]
- Zhang, T.; Maruhnich, S.A.; Folta, K.M. Green light induces shade avoidance symptoms. Plant Physiol. 2011, 157, 1528–1536. [Google Scholar] [CrossRef]
- Wang, S.; Luo, C.; Sun, L.; Ning, K.; Chen, Z.; Yang, J.; Wang, Y.; Wang, Q. LsRGL1 controls the bolting and flowering times of lettuce by modulating the gibberellin pathway. Plant Sci. 2022, 316, 111175. [Google Scholar] [CrossRef] [PubMed]
- Waycott, W. Photoperiodic responses of genetically diverse lettuce accessions. J. Am. Soc. Hortic. Sci. 1995, 120, 460–467. [Google Scholar] [CrossRef]
- Frantz, J.M.; Ritchie, G.; Cometti, N.N.; Robinson, J.R.; Bugbee, B. Exploring the limits of crop productivity: Beyond the limits of tipburn in lettuce. J. Am. Soc. Hortic. Sci. 2004, 129, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
Seedling Treatment Distribution (µmol·m−2·s−1 FR) | ||||
---|---|---|---|---|
5 | 10 | 20 | 30 | |
Germination (Days: 1–2) | ||||
TPFD 1 (µmol·m−2·s−1) | 100 | 100 | 100 | 100 |
Seedling stage (Days: 3–12) | ||||
R 2/R + FR | 0.92 | 0.87 | 0.77 | 0.68 |
R: FR | 11.4 | 6.8 | 3.3 | 2.1 |
B 3: FR | 7.6 | 3.8 | 1.9 | 1.3 |
TPFD (µmol·m−2·s−1) | 200 | 205 | 215 | 225 |
FR/TPFD (%) | 2.5 | 4.9 | 9.3 | 13.3 |
Finishing stage (Days: 13–35) | ||||
TPFD (µmol·m−2·s−1) | 295 | 295 | 295 | 295 |
Mass Characteristic | |||
---|---|---|---|
TRT (µmol·m−2·s−1 FR) | FW (g) | DW (g) | Moisture Content (%) |
5 | 0.29 a 1 | 0.020 | 93.0 |
10 | 0.34 ab | 0.021 | 93.5 |
20 | 0.37 ab | 0.022 | 93.8 |
30 | 0.39 b | 0.023 | 93.9 |
Morphology Characteristic | ||||||
---|---|---|---|---|---|---|
TRT (µmol·m−2·s−1 FR) | Leaf Area (cm2) | SLA (cm2·g−1 DW) | Leaf Length (mm) | Plant Height (mm) | Hypocotyl Length (mm) | Leaf No. |
5 | 9.09 a 1 | 478 | 44.69 a | 53.65 a | 4.40 a | 2.95 |
10 | 10.62 ab | 505 | 50.52 ab | 59.58 ab | 4.61 a | 3.03 |
20 | 11.69 ab | 523 | 56.49 bc | 65.96 bc | 5.27 ab | 3.04 |
30 | 12.56 b | 552 | 62.22 c | 72.68 c | 5.78 b | 3.15 |
Mass Characteristic | |||
---|---|---|---|
TRT (µmol·m−2·s−1 FR) | FW (g) | DW (g) | Moisture Content (%) |
5 | 64.53 | 3.56 a 1 | 94.4 |
10 | 71.32 | 3.87 ab | 94.5 |
20 | 73.36 | 4.02 b | 94.3 |
30 | 75.05 | 4.06 b | 94.5 |
Morphology Characteristic | ||||||
---|---|---|---|---|---|---|
TRT (µmol·m−2·s−1 FR) | Leaf Area (cm2) | SLA (cm2·g−1 DW) | Plant Height (mm) | Head Diameter (mm) | Stem Length (mm) | Tip Burn (No. Leaves) |
5 | 991.8 | 281 | 105.9 | 197 | 16.76 | 0.43 |
10 | 1043.5 | 287 | 107.2 | 199 | 17.73 | 0.81 |
20 | 1072.3 | 291 | 108.3 | 201 | 18.51 | 0.56 |
30 | 1080.5 | 302 | 109.8 | 203 | 18.72 | 0.74 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eylands, N.J.; Mattson, N.S. Influence of Far-Red Intensity during the Seedling Stage on Biomass Production and Photomorphogenic Characteristics in Leafy Greens under Sole-Source Lighting. Horticulturae 2023, 9, 1100. https://doi.org/10.3390/horticulturae9101100
Eylands NJ, Mattson NS. Influence of Far-Red Intensity during the Seedling Stage on Biomass Production and Photomorphogenic Characteristics in Leafy Greens under Sole-Source Lighting. Horticulturae. 2023; 9(10):1100. https://doi.org/10.3390/horticulturae9101100
Chicago/Turabian StyleEylands, Nathan J., and Neil S. Mattson. 2023. "Influence of Far-Red Intensity during the Seedling Stage on Biomass Production and Photomorphogenic Characteristics in Leafy Greens under Sole-Source Lighting" Horticulturae 9, no. 10: 1100. https://doi.org/10.3390/horticulturae9101100
APA StyleEylands, N. J., & Mattson, N. S. (2023). Influence of Far-Red Intensity during the Seedling Stage on Biomass Production and Photomorphogenic Characteristics in Leafy Greens under Sole-Source Lighting. Horticulturae, 9(10), 1100. https://doi.org/10.3390/horticulturae9101100