QTL Analysis of Morpho-Agronomic Traits in Garden Asparagus (Asparagus officinalis L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Assessment of Morpho-Agronomic Traits
- Branching height, evaluated in the autumn of 2016 and 2017 as follows:
- -
- Mean branching height (BH), obtained as the mean height of the first branching of the fern stalks;
- -
- Maximum branching height (MBH), measured on the fern stalk with the greatest distance from ground level to the first branch.
- Earliness in yield was evaluated in the spring as follows:
- -
- Phenological stage reached by the spears of each plant (PS) evaluated in a single day, i.e., 8 March 2017 and 28 March 2018, and scored on a 0 to 4 numeric rating scale (0 = no spear; 1 = spear under 20 cm high; 2 = spear higher than 20 cm; 3 = spear with primary branches; 4 = spear with secondary branches);
- -
- Spear area under the curve of progress of the number of spears (SPA) recorded along different dates, namely 1, 8, and 15 April in 2016, and 27 February and 7 and 28 March in 2018.
- Number of stalks per plant (NS) and stalk thickness (ST) (mm), measured on the stalk with the largest diameter of the plant at 10 cm from soil level by digital caliper, were evaluated in the autumn of 2016 and 2017.
2.3. QTL Analysis
2.4. Selection of Candidate Genes
3. Results and Discussion
3.1. Assessment of Morpho-Agronomic Traits
3.2. QTL Mapping
3.3. Candidate Genes
4. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Plant List. Available online: http://www.theplantlist.org/ (accessed on 9 March 2022).
- Harkess, A.; Zhou, J.; Xu, C.; Bowers, J.E.; Van Der Hulst, R.; Ayyampalayam, S.; Mercati, F.; Riccardi, P.; McKain, M.R.; Kakrana, A.; et al. The asparagus genome sheds light on the origin and evolution of a young y chromosome. Nat. Commun. 2017, 8, 1279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FAO FAOSTAT. Available online: http://www.fao.org/statistics/en/ (accessed on 10 February 2022).
- Jaramillo, S.; Muriana, F.J.G.; Guillen, R.; Jimenez-Araujo, A.; Rodriguez-Arcos, R.; Lopez, S. Saponins from edible spears of wild asparagus inhibit AKT, p70S6K, and ERK signalling, and induce apoptosis through G0/G1 cell cycle arrest in human colon cancer HCT-116 cells. J. Funct. Foods 2016, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Bibi, Y.; Iqbal Raja, N.; Ejaz, M.; Hussain, M.; Yasmeen, F.; Saira, H.; Imran, M. Review on therapeutic and pharmaceutically important medicinal plant Asparagus officinalis L. J. Plant Biochem. Physiol. 2017, 5, 2. [Google Scholar] [CrossRef]
- Guo, Q.; Wang, N.; Liu, H.; Li, Z.; Lu, L.; Wang, C. The bioactive compounds and biological functions of Asparagus officinalis L.—A review. J. Funct. Foods 2020, 65, 103727. [Google Scholar] [CrossRef]
- Ellison, J.H.; Schermerhorn, L.G. Selecting superior asparagus plants on basis of earliness. Proc. Amer. Soc. Hort. Sci. 1958, 72, 353–359. [Google Scholar]
- Rick, C.; Hanna, G. Determination of sex in Asparagus officinalis L. Am. J. Bot. 1943, 30, 711–714. [Google Scholar] [CrossRef]
- Murase, K.; Shigenobu, S.; Fujii, S.; Ueda, K.; Murata, T.; Sakamoto, A.; Wada, Y.; Yamaguchi, K.; Osakabe, Y.; Osakabe, K.; et al. MYB transcription factor gene involved in sex determination in Asparagus officinalis. Genes to Cells 2017, 22, 115–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tsugama, D.; Matsuyama, K.; Ide, M.; Hayashi, M.; Fujino, K.; Masuda, K. A putative MYB35 ortholog is a candidate for the sex-determining genes in Asparagus officinalis. Sci. Rep. 2017, 7, 41497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Currence, T.M.; Richardson, A.L. Asparagus breeding studies. Pro. Amer. Soc. Hort. Sci. 1937, 35, 554–557. [Google Scholar]
- Ellison, J.H. Asparagus breeding. In Breeding Vegetables Crops; Bassett, M., Ed.; AVI Publishing Company: Westport, CT, USA, 1986; pp. 521–569. [Google Scholar]
- Ellison, J.H.; Scheer, D.F.; Wagner, J.J. Asparagus yield as related to plant vigor, earliness and sex. Proc. Am. Soc. Hortic. Sci. 1960, 75, 411–415. [Google Scholar]
- Gatti, I.; López Anido, F.; Cravero, V.; Asprelli, P.; Cointry, E. Heritability and expected selection response for yield traits in blanched asparagus. Genet. Mol. Res. 2005, 4, 67–73. [Google Scholar] [PubMed]
- Rameau, C. Fifteen years of experiments on asparagus F1 hybrids: Synthesis, evaluation of homozygous parents and application to the French breeding programme. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS): Leuven, Belgium, 1990; pp. 47–54. [Google Scholar]
- Anido, F.L.; Cointry, E. Asparagus. In Vegetables II: Fabaceae, Liliaceae, Solanaceae, and Umbelliferae; Prohens, J., Nuez, F., Eds.; Springer: New York, NY, USA, 2008; pp. 87–119. ISBN 978-0-387-74110-9. [Google Scholar]
- Moreno, R.; Castro, P.; Die, J.V.; Gil, J. Asparagus (Asparagus officinalis L.) Breeding. In Advances in Plant Breeding Strategies: Vegetable Crops; Springer: Berlin/Heidelberg, Germany, 2021; pp. 425–469. ISBN 978-3-030-66961-4_12. [Google Scholar]
- Moreno, R.; Castro, P.; Vrána, J.; Kubaláková, M.; Cápal, P.; García, V.; Gil, J.; Millán, T.; Doležel, J. Integration of genetic and cytogenetic maps and identification of sex chromosome in garden asparagus (Asparagus officinalis L.). Front. Plant Sci. 2018, 9, 1068. [Google Scholar] [CrossRef] [PubMed]
- Roose, M.L.; Mu, L.; Stone, N.K. Mapping genes for spear quality in asparagus. In Proceedings of the Eleventh International Asparagus Symposium, Horst/Venlo, The Netherlands, 19 June 2005. [Google Scholar]
- Van Ooijen, J.W. MapQTL 5, Software for Mapping of Quantitative Trait Loci in Experimental Populations; Kyazma B.V.: Wageningen, The Netherlands, 2004. [Google Scholar]
- Grattapaglia, D.; Sederoff, R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: Mapping strategy and RAPD markers. Genetics 1994, 137, 1121–1137. [Google Scholar] [CrossRef] [PubMed]
- Voorrips, R.E. Mapchart: Software for the graphical presentation of linkage maps and QTLs. J. Hered. 2002, 93, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Schwartz, S.; Wagner, L.; Miller, W. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 2000, 7, 203–214. [Google Scholar] [CrossRef] [PubMed]
- Rangwala, S.H.; Kuznetsov, A.; Ananiev, V.; Asztalos, A.; Borodin, E.; Evgeniev, V.; Joukov, V.; Lotov, V.; Pannu, R.; Rudnev, D.; et al. Accessing NCBI data using the NCBI sequence viewer and genome data viewer (GDV). Genome Res. 2021, 31, 159–169. [Google Scholar] [CrossRef]
- Götz, S.; García-Gómez, J.M.; Terol, J.; Williams, T.D.; Nagaraj, S.H.; Nueda, M.J.; Robles, M.; Talón, M.; Dopazo, J.; Conesa, A. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 2008, 36, 3420–3435. [Google Scholar] [CrossRef]
- Anido, F.L.; Cointry, E.; Picardi, L.; Camadro, E. Genetic variability of productive and vegetative characters in Asparagus officinalis L. Estimates of heritability and genetic correlations. Brazilian J. Genet. 1997, 20, 275–281. [Google Scholar]
- Ellison, J.H.; Scheer, D. Yield related to brush vigor in asparagus. Proc. Am. Soc. Hortic. Sci. 1959, 73, 339–344. [Google Scholar]
- Wolyn, D.J. Estimates of marketable yield in asparagus using fern vigor index and a minimum number of daily harvest records. J. Am. Soc. Hortic. Sci. 1993, 118, 558–561. [Google Scholar] [CrossRef]
- Thévenin, L. Les Problèmes Damélioration chez Asparagus Officinalis L. I Biologie et Amélioration; Annals de l’Amf!lioration des Plantes: Paris, France, 1967; Volume 17. [Google Scholar]
- United Nations Economic Commission for Europe (UNEC). Unece Standard FFV-04 2017 Edition; 2017; Available online: https://unece.org/ (accessed on 22 February 2022).
- Sun, Z.; Wang, Z.; Tu, J.; Zhang, J.; Yu, F.; McVetty, P.B.E.; Li, G. An ultradense genetic recombination map for Brassica napus, consisting of 13551 SRAP markers. Theor. Appl. Genet. 2007, 114, 1305–1317. [Google Scholar] [CrossRef] [PubMed]
- Bayer, P.E.; Ruperao, P.; Mason, A.S.; Stiller, J.; Chan, C.K.K.; Hayashi, S.; Long, Y.; Meng, J.; Sutton, T.; Visendi, P.; et al. High-resolution skim genotyping by sequencing reveals the distribution of crossovers and gene conversions in Cicer arietinum and Brassica napus. Theor. Appl. Genet. 2015, 128, 1039–1047. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackett, C.A.; Broadfoot, L.B. Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 2003, 90, 33–38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semagn, K.; Bjørnstad, A.; Ndjiondjop, M.N. Principles, requirements and prospects of genetic mapping in plants. African J. Biotechnol. 2006, 5, 2569–2587. [Google Scholar] [CrossRef]
- Coyne, D.P. Correlation studies in asparagus in relation to cumulative season yield. Hort Res 1967, 7, 105–112. [Google Scholar]
- Moon, D.M. Yield potential of Asparagus officinalis L. New Zeal. J. Exp. Agric. 1976, 4, 435–438. [Google Scholar] [CrossRef]
- Nikoloff, A.; Falloon, P.G. Breeding all-male hybrids of asparagus: A review of the DSIR, New Zealand programme. New Zeal. J. Crop Hortic. Sci. 1990, 18, 167–172. [Google Scholar] [CrossRef]
- McSteen, P. Hormonal regulation of branching in grasses. Plant Physiol. 2009, 149, 46–55. [Google Scholar] [CrossRef] [Green Version]
- Kisaka, H.; Sano, H.; Kameya, T. Characterization of transgenic rice plants that express rgp1, the gene for a small GTP-binding protein from rice. Theor. Appl. Genet. 1998, 97, 810–815. [Google Scholar] [CrossRef]
- Sano, H.; Seo, S.; Orudgev, E.; Youssefian, S.; Ishizuka, K.; Ohashi, Y. Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc. Natl. Acad. Sci. USA 1994, 91, 10556–10560. [Google Scholar] [CrossRef] [Green Version]
- Koramutla, M.K.; Tuan, P.A.; Ayele, B.T. Salicylic acid enhances adventitious root and aerenchyma formation in wheat under waterlogged Conditions. Int. J. Mol. Sci. 2022, 23, 1246. [Google Scholar] [CrossRef] [PubMed]
- Godana, E.A.; Zhang, X.; Hu, W.; Zhao, L.; Gu, X.; Zhang, H. Transcriptome analysis of asparagus in response to postharvest treatment with Yarrowia lipolytica. Biol. Control 2022, 169, 104906. [Google Scholar] [CrossRef]
- Ellison, J.H.; Kinelski, J.J. Greenwich, a male asparagus hybrid. HortScience 1986, 21, 1249. [Google Scholar] [CrossRef]
- Xie, Y.; Liu, Y.; Ma, M.; Zhou, Q.; Zhao, Y.; Zhao, B.; Wang, B.; Wei, H.; Wang, H. Arabidopsis FHY3 and FAR1 integrate light and strigolactone signaling to regulate branching. Nat. Commun. 2020, 11, 1955. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wenig, U.; Meyer, S.; Stadler, R.; Fischer, S.; Werner, D.; Lauter, A.; Melzer, M.; Hoth, S.; Weingartner, M.; Sauer, N. Identification of MAIN, a factor involved in genome stability in the meristems of Arabidopsis thaliana. Plant J. 2013, 75, 469–483. [Google Scholar] [CrossRef] [PubMed]
- Uhlken, C.; Horvath, B.; Stadler, R.; Sauer, N.; Weingartner, M. MAIN-LIKE1 is a crucial factor for correct cell division and differentiation in Arabidopsis thaliana. Plant J. 2014, 78, 107–120. [Google Scholar] [CrossRef]
- Doebley, J.; Stec, A.; Gustus, C. Teosinte branched1 and the origin of maize: Evidence for epistasis and the evolution of dominance. Genetics 1995, 141, 333–346. [Google Scholar] [CrossRef]
- Zhou, Y.; Xun, Q.; Zhang, D.; Lv, M.; Ou, Y.; Li, J. TCP Transcription Factors Associate with PHYTOCHROME INTERACTING FACTOR 4 and CRYPTOCHROME 1 to regulate thermomorphogenesis in Arabidopsis thaliana. iScience 2019, 15, 600–610. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Sun, N.; Yang, J.; Deng, Z.; Lan, J.; Qin, G.; He, H.; Deng, X.W.; Irish, V.F.; Chen, H.; et al. The transcription factors TCP4 and PIF3 antagonistically regulate organ-specific light induction of saur genes to modulate cotyledon opening during de-etiolation in arabidopsis. Plant Cell 2019, 31, 1155–1170. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Broholm, S.K.; Wang, F.; Rijpkema, A.S.; Lan, T.; Albert, V.A.; Teeri, T.H.; Elomaa, P. TCP and MADS-box transcription factor networks regulate heteromorphic flower type identity in gerbera hybrida. Plant Physiol. 2020, 184, 1455–1468. [Google Scholar] [CrossRef]
- Saini, K.; Dwivedi, A.; Ranjan, A. High temperature restricts cell division and leaf size by coordination of PIF4 and TCP4 transcription factors. Plant Physiol. 2022, 190, 2380–2397. [Google Scholar] [CrossRef] [PubMed]
Characteristics a | Kolmogorov–Smirnov Test b | ||||||
---|---|---|---|---|---|---|---|
Years | N | Mean ± SE | Minimum | Maximum | Test Statistic | P (2-Tailed) | |
BH (cm) | 2016 | 163 | 45.08 ± 0.682 | 20 | 67.50 | 0.056 | 0.200 |
2017 | 155 | 43.00 ± 0.696 | 12 | 62 | 0.113 | 0.000 | |
MBH (cm) | 2016 | 163 | 55.57 ± 0.807 | 22 | 81 | 0.07 | 0.048 |
2017 | 157 | 51.54 ± 0.923 | 17 | 81 | 0.098 | 0.001 | |
NS | 2016 | 163 | 10.96 ± 0.492 | 1 | 32 | 0.126 | 0.000 |
2017 | 157 | 14.09 ± 0.726 | 1 | 52 | 0.101 | 0.001 | |
PS | 2017 | 166 | 1.12 ± 0.090 | 0 | 4 | 0.232 | 0.000 |
2018 | 130 | 3.23 ± 0.095 | 0 | 4 | 0.292 | 0.000 | |
SPA | 2016 | 164 | 55.89 ± 3.622 | 0 | 252 | 0.114 | 0.000 |
2018 | 134 | 142.84 ± 11.891 | 0 | 658 | 0.175 | 0.000 | |
ST (mm) | 2016 | 163 | 10.41 ± 0.182 | 4.30 | 18.50 | 0.061 | 0.200 |
2017 | 157 | 10.66 ± 0.218 | 3.80 | 18 | 0.048 | 0.200 |
Traits | Year | BH | MBH | NS | PS | SPA |
---|---|---|---|---|---|---|
MBH | 2016 | 0.74 ** | ||||
2017 | 0.82 ** | |||||
2018 | nd | |||||
NS | 2016 | −0.11 | 0.14 | |||
2017 | 0.17 * | 0.23 ** | ||||
2018 | nd | nd | ||||
PS | 2016 | nd | nd | nd | ||
2017 | 0.22 ** | 0.25 ** | 0.52 ** | |||
2018 | nd | nd | nd | |||
SPA | 2016 | 0.23 ** | 0.36 ** | 0.68 ** | nd | |
2017 | nd | nd | nd | nd | ||
2018 | nd | nd | nd | 0.75 ** | ||
ST | 2016 | 0.52 ** | 0.60 ** | 0.25 ** | nd | 0.41 ** |
2017 | 0.59 ** | 0.52 ** | 0.25 ** | 0.21 ** | nd | |
2018 | nd | nd | nd | nd | nd |
Branching Height | Stalk Number | Earliness | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BH16 | NS16 | NS17 | PS17 | SPA16 | SPA18 | ||||||||
Bin | Length (Mb) | LOD a | R2 (%) | LOD a | R2 (%) | LOD a | R2 (%) | LOD a | R2 (%) | LOD a | R2 (%) | LOD a | R2 (%) |
a | 0.43 | 1.17 | 2.16 | 2.14 | 4.58 | 2.15 | 4.79 | 2.22 | 4.71 | 0.86 | 1.42 | 2.88 | 7.90 |
b | 0.84 | 2.69 | 5.87 | 9.35 | 21.89 | 11.72 | 27.90 | 2.47 | 5.20 | 4.53 | 10.43 | 5.30 | 14.98 |
c | 1.37 | 4.27 | 9.84 | 9.04 | 21.20 | 12.23 | 28.99 | 2.43 | 5.10 | 4.31 | 9.88 | 5.48 | 15.49 |
d | 3.25 | 4.09 | 9.39 | 9.60 | 22.44 | 14.06 | 32.77 | 2.91 | 6.29 | 4.54 | 10.44 | 6.22 | 17.63 |
e | 3.31 | 1.49 | 2.86 | 5.12 | 11.96 | 7.27 | 17.73 | 2.17 | 4.46 | 2.29 | 4.82 | 4.82 | 13.55 |
f | 2.50 | 1.22 | 2.22 | 4.58 | 10.62 | 5.33 | 12.92 | 1.98 | 4.01 | 1.84 | 3.70 | 4.14 | 11.54 |
g | 4.33 | 0.98 | 1.66 | 3.23 | 7.23 | 2.92 | 6.68 | 2.33 | 4.86 | 1.47 | 2.80 | 3.53 | 9.71 |
h | 3.82 | 0.88 | 1.42 | 2.16 | 4.54 | 1.72 | 3.55 | 2.04 | 4.14 | 1.14 | 2.01 | 3.46 | 9.47 |
i | 5.09 | 0.39 | 0.43 | 1.15 | 2.06 | 0.65 | 0.97 | 1.08 | 1.85 | 1.23 | 2.24 | 2.12 | 5.41 |
j | 6.08 | 0.15 | 0.09 | 0.40 | 0.46 | 0.14 | 0.08 | 0.60 | 0.81 | 0.81 | 1.27 | 1.16 | 2.55 |
k | 1.87 | 0.17 | 0.11 | 0.01 | 0.00 | 0.25 | 0.23 | 0.24 | 0.20 | 0.03 | 0.00 | 0.73 | 1.37 |
l | 6.60 | 0.10 | 0.04 | 0.30 | 0.29 | 0.77 | 1.24 | 0.07 | 0.02 | 0.03 | 0.01 | 0.69 | 1.25 |
m | 27.94 | 0.15 | 0.09 | 0.36 | 0.38 | 0.87 | 1.47 | 0.06 | 0.02 | 0.04 | 0.01 | 0.61 | 1.05 |
n | 22.81 | 0.10 | 0.04 | 0.45 | 0.55 | 0.89 | 1.51 | 0.04 | 0.01 | 0.10 | 0.05 | 0.61 | 1.05 |
ñ | 23.81 | 0.35 | 0.36 | 0.36 | 0.38 | 0.76 | 1.22 | 0.15 | 0.09 | 0.29 | 0.26 | 0.37 | 0.50 |
o | 9.61 | 0.38 | 0.42 | 0.61 | 0.85 | 0.85 | 1.41 | 0.10 | 0.04 | 0.06 | 0.02 | 0.07 | 0.03 |
p | 8.73 | 0.08 | 0.03 | 1.16 | 2.09 | 1.16 | 2.17 | 0.21 | 0.16 | 0.23 | 0.19 | 0.37 | 0.49 |
Branching Height | Earliness | Stalk Thickness | |||||||
---|---|---|---|---|---|---|---|---|---|
BH16 | MHB16 | SPA16 | ST16 | ||||||
Bin | Length (Mb) | LOD a | R2 (%) | LOD a | R2 (%) | LOD a | R2 (%) | LOD a | R2 (%) |
a | 12.70 | 0.24 | 0.20 | 0.85 | 1.33 | 4.13 | 9.26 | 1.40 | 2.59 |
b | 5.02 | 1.28 | 2.32 | 2.91 | 6.30 | 3.39 | 7.45 | 1.89 | 3.79 |
c | 31.24 | 1.83 | 3.64 | 3.31 | 7.28 | 3.60 | 7.95 | 2.30 | 4.80 |
d | 1.53 | 2.03 | 4.13 | 3.50 | 7.77 | 4.22 | 9.48 | 2.90 | 6.28 |
e | 6.24 | 1.96 | 3.96 | 3.51 | 7.79 | 4.80 | 10.90 | 2.91 | 6.31 |
f | 1.98 | 2.32 | 4.84 | 3.63 | 8.09 | 4.70 | 10.66 | 3.00 | 6.47 |
g | 2.33 | 2.45 | 5.16 | 3.84 | 8.62 | 4.72 | 10.71 | 2.62 | 5.59 |
h | 5.14 | 3.25 | 7.18 | 4.57 | 10.47 | 6.20 | 14.31 | 2.88 | 6.27 |
i | 3.34 | 3.25 | 7.18 | 4.57 | 10.47 | 6.20 | 14.31 | 2.88 | 6.27 |
j | 2.75 | 3.42 | 7.57 | 4.47 | 10.15 | 6.78 | 15.60 | 2.79 | 6.00 |
k | 3.59 | 3.41 | 7.53 | 4.47 | 10.15 | 6.68 | 15.37 | 2.58 | 5.49 |
l | 4.96 | 3.44 | 7.62 | 4.72 | 10.78 | 7.25 | 16.69 | 2.88 | 6.23 |
m | 1.63 | 3.47 | 7.69 | 3.49 | 7.74 | 4.49 | 10.13 | 1.39 | 2.59 |
n | 3.75 | 2.46 | 5.19 | 2.51 | 5.31 | 3.67 | 8.15 | 0.94 | 1.53 |
o | 3.72 | 2.27 | 4.74 | 1.68 | 3.30 | 3.99 | 8.98 | 0.91 | 1.48 |
p | 2.79 | 1.95 | 3.92 | 1.35 | 2.47 | 3.30 | 7.22 | 0.76 | 1.15 |
q | 2.46 | 0.90 | 1.45 | 0.66 | 0.93 | 2.92 | 6.28 | 0.20 | 0.15 |
r | 2.44 | 0.34 | 0.35 | 0.51 | 0.64 | 2.66 | 5.65 | 0.11 | 0.05 |
s | 16.25 | 0.23 | 0.19 | 0.18 | 0.13 | 2.96 | 6.37 | 0.16 | 0.10 |
t | 14.76 | 0.19 | 0.15 | 0.44 | 0.55 | 1.71 | 3.55 | 0.24 | 0.21 |
u | 0.20 | 0.03 | 0.00 | 0.15 | 0.08 | 1.94 | 3.88 | 0.26 | 0.22 |
v | 0.15 | 0.02 | 0.00 | 0.16 | 0.10 | 1.93 | 3.85 | 0.20 | 0.15 |
x | 0.29 | 0.11 | 0.05 | 0.22 | 0.16 | 1.81 | 3.57 | 0.14 | 0.08 |
w | 2.65 | 0.02 | 0.00 | 0.14 | 0.08 | 2.19 | 4.49 | 0.02 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, V.; Castro, P.; Die, J.V.; Millán, T.; Gil, J.; Moreno, R. QTL Analysis of Morpho-Agronomic Traits in Garden Asparagus (Asparagus officinalis L.). Horticulturae 2023, 9, 41. https://doi.org/10.3390/horticulturae9010041
García V, Castro P, Die JV, Millán T, Gil J, Moreno R. QTL Analysis of Morpho-Agronomic Traits in Garden Asparagus (Asparagus officinalis L.). Horticulturae. 2023; 9(1):41. https://doi.org/10.3390/horticulturae9010041
Chicago/Turabian StyleGarcía, Verónica, Patricia Castro, Jose V. Die, Teresa Millán, Juan Gil, and Roberto Moreno. 2023. "QTL Analysis of Morpho-Agronomic Traits in Garden Asparagus (Asparagus officinalis L.)" Horticulturae 9, no. 1: 41. https://doi.org/10.3390/horticulturae9010041
APA StyleGarcía, V., Castro, P., Die, J. V., Millán, T., Gil, J., & Moreno, R. (2023). QTL Analysis of Morpho-Agronomic Traits in Garden Asparagus (Asparagus officinalis L.). Horticulturae, 9(1), 41. https://doi.org/10.3390/horticulturae9010041