Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions
Abstract
:1. Introduction
2. Materials and Methods
Data Analysis
3. Results and Discussion
3.1. Climatic Conditions
3.2. Phenology
3.3. Phenology in Other Spanish Regions
3.4. Correlation GDDs and Phenology
3.5. Yield
3.6. Titratable Acidity
3.7. General Overview
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Orduña, R.M. Climate change associated effects on grape and wine quality and production. Food Res. Int. 2010, 43, 1844–1855. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. An update on the impact of climate change in viticulture and potential adaptations. Agronomy 2019, 9, 514. [Google Scholar] [CrossRef] [Green Version]
- Bock, A.; Sparks, T.; Estrella, N.; Menzel, A. Changes in the phenology and composition of wine from Franconia, Germany. Clim. Res. 2011, 50, 69–81. [Google Scholar] [CrossRef] [Green Version]
- Droulia, F.; Charalampopoulos, I. Future climate change impacts on European Viticulture: A review on recent scientific advances. Atmosphere 2021, 12, 495. [Google Scholar] [CrossRef]
- Webb, L.B.; Whetton, P.H.; Barlow, E.W.R. Modelled impact of future climate change on the phenology of winegrapes in Australia. Aust. J. Grape Wine Res. 2007, 13, 165–175. [Google Scholar] [CrossRef]
- Greer, D.H.; Weedon, M.M. The impact of high temperatures on Vitis vinifera cv. Semillon grapevine performance and berry ripening. Front. Plant Sci. 2013, 4, 491. [Google Scholar] [CrossRef] [Green Version]
- Sadras, V.O.; Petrie, P.R.; Moran, M.A. Effects of elevated temperature in grapevine. II juice pH, titratable acidity and wine sensory attributes. Aust. J. Grape Wine Res. 2013, 19, 107–115. [Google Scholar] [CrossRef]
- Ramos, M.C.; de Toda, F.M. Variability in the potential effects of climate change on phenology and on grape composition of Tempranillo in three zones of the Rioja DOCa (Spain). Eur. J. Agron. 2020, 115, 126014. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; Burge, D.O.; Walker, M.A.; Nicholas, K.A. Phenological diversity provides opportunities for climate change adaptation in winegrapes. J. Ecol. 2017, 105, 905–912. [Google Scholar] [CrossRef] [Green Version]
- Parker, A.; García de Cortázar-Atauri, I.; Trought, M.C.; Destrac, A.; Agnew, R.; Sturman, A.; Van Leeuwen, C. Adaptation to climate change by determining grapevine cultivar differences using temperature-based phenology models. Oeno One 2020, 4, 955–974. [Google Scholar] [CrossRef]
- Morales-Castilla, I.; García de Cortázar-Atauri, I.; Cook, B.I.; Lacombe, T.; Parker, A.; Van Leeuwen, C.; Nicholas, K.A.; Wolkovich, E.M. Diversity buffers winegrowing regions from climate change losses. Proc. Natl. Acad. Sci. USA 2020, 117, 2864–2869. [Google Scholar] [CrossRef] [PubMed]
- Fraga, H.; García de Cortázar Atauri, I.; Malheiro, A.C.; Santos, J.A. Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob. Chang. Biol. 2016, 22, 3774–3788. [Google Scholar] [CrossRef]
- Neethling, E.; Petitjean, T.; Quénol, H.; Barbeau, G. Assessing local climate vulnerability and winegrowers’ adaptive processes in the context of climate change. Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 777–803. [Google Scholar] [CrossRef]
- Wolkovich, E.M.; García de Cortázar-Atauri, I.; Morales-Castilla, I.; Nicholas, K.A.; Lacombe, T. From Pinot to Xinomavro in the world’s future wine-growing regions. Nat. Clim. Chang. 2018, 8, 29–37. [Google Scholar] [CrossRef]
- Novikova, L.Y.; Naumova, L.G. Structuring ampelographic collections by phenotypic characteristics and comparing the reaction of grape varieties to climate change. Vavilovskii Zhurnal Genetiki i Selektsii= Vavilov. J. Genet. Breed. 2019, 23, 772–779. [Google Scholar]
- Ortiz, J.M.; Pedro Martín, J.; Borrego, J.; Chávez, J.; Rodríguez, I.; Muñoz, G.; Cabello, F. Molecular and morphological characterization of a Vitis gene bank for the establishment of a base collection. Genet. Resour. Crop Evol. 2004, 51, 403–409. [Google Scholar] [CrossRef]
- Lorenz, D.H.; Eichhorn, K.W.; Bleiholder, H.; Klose, R.; Meier, U.; Weber, E. Growth Stages of the Grapevine: Phenological growth stages of the grapevine (Vitis vinifera L. ssp. vinifera)—Codes and descriptions according to the extended BBCH scale. Aust. J. Grape Wine Res. 1995, 1, 100–103. [Google Scholar] [CrossRef]
- Duchêne, E.; Huard, F.; Dumas, V.; Schneider, C.; Merdinoglu, D. The challenge of adapting grapevine varieties to climate change. Clim. Res. 2010, 41, 193–204. [Google Scholar] [CrossRef] [Green Version]
- OIV. OIV Descriptor List for Grape Varieties and Vitis Species, 2nd ed.; Organisation International Vigne Vine: Paris, France, 2009. [Google Scholar]
- Iland, P.; Ewart, A.; Sitters, J. Techniques for Chemical Analysis and Stability Tests of Grape Juice and Wine; Patrick Iland Wine Promotions: Athelstone, Australia, 1993. [Google Scholar]
- Santoso, S. Panduan Lengkap SPSS Versi 23; Elex Media Komputindo: Jakarta, Indonesia, 2016. [Google Scholar]
- Tomasi, D.; Jones, G.V.; Giust, M.; Lovat, L.; Gaiotti, F. Grapevine phenology and climate change: Relationships and trends in the Veneto region of Italy for 1964–2009. Am. J. Enol. Vitic. 2011, 62, 329–339. [Google Scholar] [CrossRef]
- Koufos, G.C.; Mavromatis, T.; Koundouras, S.; Jones, G.V. Adaptive capacity of winegrape varieties cultivated in Greece to climate change: Current trends and future projections. Oeno One 2020, 54, 1201–1219. [Google Scholar]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar]
- Schultz, H.R. Global climate change, sustainability, and some challenges for grape and wine production. J. Wine Econ. 2016, 11, 181–200. [Google Scholar] [CrossRef]
- Vršič, S.; Vodovnik, T. Reactions of grape varieties to climate changes in North East Slovenia. Plant Soil Environ. 2012, 58, 34–41. [Google Scholar] [CrossRef]
- Tarara, J.M.; Lee, J.; Spayd, S.E.; Scagel, C.F. Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am. J. Enol. Vitic. 2008, 59, 235–247. [Google Scholar]
- Huglin, P.; Schneider, C. Biologie et Ecologie de la Vigne; TecDoc.: Paris, France, 1998; p. 370. [Google Scholar]
Variety | Berry Color | Locations of Study | Prospection Regions |
---|---|---|---|
Albana | white | Madrid (El Encín) | Catalonia, Navarre |
Albarín tinto | red | Galicia | Galicia |
Albariño tinto | red | Galicia | Galicia |
Albilla do avia | white | Galicia | Galicia |
Albillo del pozo | white | Madrid (El Encín) | Castile-La Mancha |
Arcos | red | Madrid (El Encín) | Valencia |
Aúrea | white | Madrid (El Encín) | Catalonia |
Bastardo blanco | white | Madrid (El Encín) | Extremadura |
Beba | white | Madrid (El Encín) | Extremadura |
Benedicto | red | Madrid (El Encín) | Navarre |
Cariñena roja | red | Madrid (El Encín) | Catalonia |
Castellana blanca | white | Madrid (El Encín) | Navarre |
Cenicienta | red | Madrid (El Encín) | Castile-Leon |
Corchera | red | Madrid (El Encín) | Andalusia |
Cornifesto | red | Madrid (El Encín) | Castile-Leon |
Diega 2 | white | Madrid (El Encín) | Navarre |
Estaladiña | red | Madrid (El Encín) | Castile-Leon |
Folgasao | white | Madrid (El Encín) | Extremadura, Navarre |
Forcallat tinta | red | Madrid (El Encín) | Valencia |
Garró | red | Madrid (El Encín) | Navarre |
Giró negre | red | Madrid (El Encín) | Balearic Islands |
Gonfaus | red | Madrid (El Encín) | Catalonia |
Gorgollasa | red | Madrid (El Encín) | Balearic Islands |
Hebén | white | Madrid (El Encín) | Extremadura, Navarre |
Indiana | white | Andalusia | Andalusia |
Jarrosuelto | white | Madrid (El Encín) | Castile-La Mancha |
Mandregue | red | Madrid (El Encín) | Aragon |
Montonera | white | Madrid (El Encín) | Castile-La Mancha |
Morate | red | Madrid (El Encín) | Navarre, Madrid |
Moscatel de G Menudo | white | Madrid (El Encín) | Several |
Negreda | red | Madrid (El Encín) | Castile-Leon |
Ondarrabi beltza | red | Madrid (El Encín) | Basque Country |
Onsella | rose | Navarre | Navarre |
Planta mula | red | Madrid (El Encín) | Valencia |
Planta nova | white | Madrid (El Encín) | Valencia |
Puesto mayor | red | Madrid (El Encín) | Castile-Leon |
Ratiño | white | Madrid (El Encín) | Galicia |
Rayada melonera | red | Madrid (El Encín) | Andalusia |
Riera 2 | red | Catalonia | Catalonia |
Riera 43 | red | Catalonia | Catalonia |
Riera 46 | white | Catalonia | Catalonia |
Rufete serrano | white | Madrid (El Encín) | Extremadura, Castile-Leon |
Sanguina | red | Madrid (El Encín) | Catalonia |
Santa fe | red | Madrid (El Encín) | Navarra |
Tazazonal | red | Madrid (El Encín) | Navarra |
Tempranillo | red | Madrid (El Encín) | Several |
Terriza | red | Madrid (El Encín) | Navarre, Castile-La Mancha, Madrid |
Tinto fragoso | red | Madrid (El Encín) | Castile-La Mancha |
Tinto jeromo | red | Madrid (El Encín) | Castile-La Mancha, Castile-Leon |
Tortozón | white | Madrid (El Encín) | Aragon |
Tortozona tinta | red | Madrid (El Encín) | Navarre, Castile-La Mancha |
Trobat | red | Madrid (El Encín) | Catalonia |
Xafardan | red | Galicia | Galicia |
Zamarrica | red | Galicia | Galicia |
Zurieles | white | Madrid (El Encín) | Extremadura |
GDD | Ripeness 2019 | Ripeness 2020 | Ripeness 2021 | |
---|---|---|---|---|
GDD budburst | Pearson correlation | 0.552 | 0.091 | 0.312 |
Sig. (bilateral) | 0.079 | 0.747 | 0.323 | |
N | 11 | 15 | 12 | |
GDD flowering | Pearson correlation | 0.669 * | 0.466 | 0.658 * |
Sig. (bilateral) | 0.025 | 0.069 | 0.20 | |
N | 11 | 16 | 12 | |
GDD veraison | Pearson correlation | 0.808 * | 0.154 | 0.817 ** |
Sig. (bilateral) | 0.003 | 0.570 | 0.001 | |
N | 11 | 16 | 12 | |
GDD ripeness | Pearson correlation | 0.997 * | 0.987 ** | 0.990 ** |
Sig. (bilateral) | 0.000 | 0.000 | 0.000 | |
N | 11 | 16 | 12 |
GDD | Ripeness 2019 | Ripeness 2020 | Ripeness 2021 | |
---|---|---|---|---|
GDD budburst | Pearson correlation | 0.176 | 0.205 | 0.244 |
Sig. (bilateral) | 0.434 | 0.348 | 0.251 | |
N | 22 | 23 | 24 | |
GDD flowering | Pearson correlation | −0.182 | 0.296 | 0.367 |
Sig. (bilateral) | 0.416 | 0.151 | 0.077 | |
N | 22 | 25 | 24 | |
GDD veraison | Pearson correlation | 0.366 | 0.716 * | 0.478 * |
Sig. (bilateral) | 0.094 | 0.000 | 0.018 | |
N | 22 | 25 | 24 | |
GDD ripeness | Pearson correlation | 0.997 * | 0.998 ** | 0.990 ** |
Sig. (bilateral) | 0.000 | 0.000 | 0.000 | |
N | 22 | 25 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Organero, G.; Espinosa, F.E.; Cabello, F.; Zamorano, J.P.; Urbanos, M.A.; Puertas, B.; Lara, M.; Domingo, C.; Puig-Pujol, A.; Valdés, M.E.; et al. Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae 2022, 8, 984. https://doi.org/10.3390/horticulturae8110984
Muñoz-Organero G, Espinosa FE, Cabello F, Zamorano JP, Urbanos MA, Puertas B, Lara M, Domingo C, Puig-Pujol A, Valdés ME, et al. Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae. 2022; 8(11):984. https://doi.org/10.3390/horticulturae8110984
Chicago/Turabian StyleMuñoz-Organero, Gregorio, Francisco E. Espinosa, Félix Cabello, José Pablo Zamorano, Miguel A. Urbanos, Belén Puertas, Miguel Lara, Carme Domingo, Anna Puig-Pujol, M. Esperanza Valdés, and et al. 2022. "Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions" Horticulturae 8, no. 11: 984. https://doi.org/10.3390/horticulturae8110984
APA StyleMuñoz-Organero, G., Espinosa, F. E., Cabello, F., Zamorano, J. P., Urbanos, M. A., Puertas, B., Lara, M., Domingo, C., Puig-Pujol, A., Valdés, M. E., Moreno, D., Diaz-Losada, E., Martínez, M. C., Santiago, J. L., Cibriain, J. F., Raboso, E., & Fernández-Pastor, M. (2022). Phenological Study of 53 Spanish Minority Grape Varieties to Search for Adaptation of Vitiviniculture to Climate Change Conditions. Horticulturae, 8(11), 984. https://doi.org/10.3390/horticulturae8110984