Autochthonous Cherry Rootstock Germplasm in the Context of Sustainable Sweet Cherry Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Site Conditions and Plant Material
2.2. Qualitive Traits’ Assessment
2.3. Vegetative Growth Parameters’ Measurement
2.4. Evaluation of Yielding Potential, Achieved Yield and Fruit Quality
2.5. Statistical Analysis
3. Results
3.1. Qualitative Evaluation and Vegetative Growth of Grafted Sweet Cherry Trees
3.2. Bud Number and Distribution (Yielding Potential), Achieved Yielding and Fruit Characteristics of ‘Summit’ Cultivar
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UN General Assembly, Transforming our world: The 2030 Agenda for Sustainable Development, 21 October 2015. Available online: https://sdgs.un.org/2030agenda (accessed on 26 December 2022).
- Karampatzakis, I. Precision Agriculture in a Sweet Cherry Orchard. Ph.D Thesis, International Hellenic University, Thessaloniki, Greece, 2020. [Google Scholar]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food security: The challenge of feeding 9 billion people. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jemrić, T.; Vuković, M.; Milošević, T. How can fruit production be made more sustainable? CABI Rev. 2017, 1–14. [Google Scholar] [CrossRef]
- Roussos, P.A. Climate change impacts on fruit trees and mitigation strategies of adverse effects. AgroLife Sci. J. 2020, 9, 269–276. [Google Scholar]
- Musacchi, S.; Iglesias, I.; Neri, D. Training systems and sustainable orchard management for European pear (Pyrus communis L.) in the Mediterranean area: A Review. Agronomy 2021, 11, 1765. [Google Scholar] [CrossRef]
- Sahmat, S.S.; Rafii, M.Y.; Oladosu, Y.; Jusoh, M.; Hakiman, M.; Mohidin, H. A systematic review of the potential of a dynamic hydrogel as a substrate for sustainable agriculture. Horticulturae 2022, 8, 1026. [Google Scholar] [CrossRef]
- El-Beltagi, H.S.; Basit, A.; Mohamed, H.I.; Ali, I.; Ullah, S.; Kamel, E.A.R.; Shalaby, T.A.; Ramadan, K.M.A.; Alkhateeb, A.A.; Ghazzawy, H.S. Mulching as a sustainable water and soil saving practice in agriculture: A review. Agronomy 2022, 12, 1881. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing sustainable irrigation in water-scarce regions under the impact of climate change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Lang, G.A. Critical concepts for sweet cherry training systems. Compact Fruit Tree 2001, 34, 70–75. [Google Scholar]
- Gregory, P.J.; Atkinson, C.J.; Bengough, A.G.; Else, M.A.; Fernández-Fernández, F.; Harrison, R.J.; Schmidt, S. Contributions of roots and rootstocks to sustainable, intensified crop production. J. Exp. Bot. 2013, 64, 1209–1222. [Google Scholar] [CrossRef] [Green Version]
- Hrotkó, K. Development in fruit trees production systems. AgroLife Sci. J. 2013, 2, 28–35. [Google Scholar]
- Flachowsky, H.; Hanke, M.V. The Network of the “German National Fruit Genebank”, a New Concept for Sustainable Preservation of Fruit Genetic Resources. 2010. Available online: http://www.ecpgr.cgiar.org/fileadmin/www.ecpgr.cgiar.org/NW_and_WG_UPLOADS/Prunus/German%20National%20Fruit%20Genebank.pdf (accessed on 1 December 2022).
- Ognjanov, V.; Ljubojević, M.; Bošnjaković, D.; Barać, G. New approach to cherry rootstock selection in Serbia: A review. Acta Hortic 2017, 1161, 239–244. [Google Scholar] [CrossRef]
- Rakonjac, V.; Fotirić Akšić, M.; Nikolić, D.; Milatović, D.; Čolić, S. Morphological characterization of ‘Oblačinska’ sour cherry by multivariate analysis. Sci. Hortic. 2010, 125, 679–684. [Google Scholar] [CrossRef]
- Barać, G.; Ognjanov, V.; Vidaković, D.O.; Dorić, D.; Ljubojević, M.; Dulić, J.; Miodragović, M.; Gašić, K. Genetic diversity and population structure of European ground cherry (Prunus fruticosa Pall.) using SSR markers. Sci. Hortic. 2017, 224, 374–383. [Google Scholar] [CrossRef]
- Milatović, D.; Nikolić, D.; Miletić, N. Sweet and Sour Cherry (In Serbian: Трешња и вишња), 2nd ed.; Scientific pomological Society of Serbia: Čačak, Serbia, 2015. [Google Scholar]
- Ljubojević, M.; Ognjanov, V.; Sentić, I.; Dulić, J. Fruit Species in Landscape Design (In Serbian: Voćne Vrste u Pejzažnom Projektovanju); University of Novi Sad; Faculty of Agriculture: Novi Sad, Serbia, 2018. [Google Scholar]
- Radičević, S.; Cerović, R.; Lukić, M.; Paunović, S.A.; Jevremović, D.; Milenković, S.; Mitrović, M. Selection of autochthonous sour cherry (Prunus cerasus L.) genotypes in Feketić region. Genetika 2012, 44, 285–297. [Google Scholar] [CrossRef]
- Ognjanov, V.; Ljubojević, M.; Ninić-Todorović, J.; Bošnjaković, D.; Barać, G.; Čukanović, J.; Mladenović, E. Morphometric diversity in dwarf sour cherry germplasm in Serbia. J. Hortic. Sci. Biotechnol. 2012, 87, 117–122. [Google Scholar] [CrossRef]
- Hrotkó, K.; Magyar, L.; Gyeviki, M. Evaluation of native hybrids of Prunus fruticosa Pall. as cherry interstocks. Acta Agric. Serb. 2008, 13, 41–45. [Google Scholar]
- Ljubojević, M.; Zorić, L.; Maksimović, I.; Dulić, J.; Miodragović, M.; Barać, G.; Ognjanov, V. Anatomically assisted cherry rootstock selection. Sci. Hortic. 2017, 217, 197–208. [Google Scholar] [CrossRef]
- Hrotkó, K.; Feng, Y.; Halász, J. Spontaneous hybrids of Prunus fruticosa Pall. in Hungary. Genet Resour. Crop. Ev. 2020, 67, 489–502. [Google Scholar] [CrossRef] [Green Version]
- Narandžić, T.; Ljubojević, M.; Ostojić, J.; Barać, G.; Ognjanov, V. Investigation of stem anatomy in relation to hydraulic conductance, vegetative growth and yielding potential of ‘Summit’ cherry trees grafted on different rootstock candidates. Folia Hortic. 2021, 33, 248–264. [Google Scholar] [CrossRef]
- Narandžić, T.; Ljubojević, M. Breeding size-controlling cherry rootstocks for changing environmental conditions. Hortic. Environ. Biote. 2022, 63, 719–733. [Google Scholar] [CrossRef]
- Narandžić, T.; Ljubojević, M. Size-controlling cherry rootstock selection based on root anatomical characteristics. Horticulturae 2022, 8, 615. [Google Scholar] [CrossRef]
- Bujdosó, G.; Magyar, L.; Hrotkó, K. Long term evaluation of growth and cropping of sweet cherry (Prunus avium L.) varieties on different rootstocks under Hungarian soil and climatic conditions. Sci. Hortic. 2019, 256, 108613. [Google Scholar] [CrossRef]
- Morandi, B.; Manfrini, L.; Lugli, S.; Tugnoli, A.; Boini, A.; Perulli, G.D.; Bresilla, K.; Venturi, M.; Grappadelli, L.C. Sweet cherry water relations and fruit production efficiency are affected by rootstock vigor. J. Plant Physiol. 2019, 237, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Martins, V.; Silva, V.; Pereira, S.; Afonso, S.; Oliveira, I.; Santos, M.; Ribeiro, C.; Vilela, A.; Bacelar, E.; Silva, A.P.; et al. Rootstock Affects the Fruit Quality of ‘Early Bigi’Sweet Cherries. Foods 2021, 10, 2317. [Google Scholar] [CrossRef] [PubMed]
- Sotirov, D.; Dimitrova, S. Influence of some rootstocks and interstocks on the growth and fruiting of cherry cultivar Summit. Bulg. J. Agric. Sci. 2022, 28, 413–416. [Google Scholar]
- Ljubojević, M.; Narandžić, T. Roots before branches: Evidence of the Prunus root cambial responses to the environmental stimuli. J. Plant. Growth. Regul. 2022. [Google Scholar] [CrossRef]
- López-Ortega, G.; García-Montiel, F.; Bayo-Canha, A.; Frutos-Ruiz, C.; Frutos-Tomás, D. Rootstock effects on the growth, yield and fruit quality of sweet cherry cv. ‘Newstar’ in the growing conditions of the Region of Murcia. Sci. Hortic. 2016, 198, 326–335. [Google Scholar] [CrossRef]
- Lang, G. (Ed.) Achieving Sustainable Cultivation of Temperate Zone Tree Fruits and Berries, Volume 2 Case Studies, 1st ed.; Burleigh Dodds Science Publishing: London, UK, 2019; Volume 2. [Google Scholar]
- Ljubojević, M. Horticulturalization of the 21st century cities. Sci. Hortic. 2021, 288, 110350. [Google Scholar] [CrossRef]
- Quero-Garcia, J.; Iezzoni, A.; Lopez-Ortega, G.; Peace, C.; Fouche, M.; Dirlewanger, E.; Schuster, M. Advances and challenges in cherry breeding. In Achieving Sustainable Cultivation of Temperate Zone Tree Fruits and Berries, Volume 2 Case Studies, 1st ed.; Lang, G., Ed.; Burleigh Dodds Science Publishing: London, UK, 2019; pp. 55–88. [Google Scholar]
- Tudela, V.; Sarricolea, P.; Serrano-Notivoli, R.; Meseguer-Ruiz, O. A pilot study for climate risk assessment in agriculture: A climate-based index for cherry trees. Nat. Hazards 2022. [Google Scholar] [CrossRef]
- Ljubojević, M.; Maksimović, I.; Lalić, B.; Dekić, L.; Narandžić, T.; Magazin, N.; Dulić, J.; Miodragović, M.; Barać, G.; Ognjanov, V. Environmentally-related cherry root cambial plasticity. Atmosphere 2018, 9, 358. [Google Scholar] [CrossRef] [Green Version]
- Vignati, E.; Lipska, M.; Dunwell, J.M.; Caccamo, M.; Simkin, A.J. Fruit development in sweet cherry. Plants 2022, 11, 1531. [Google Scholar] [CrossRef] [PubMed]
- Keserović, Z.; Nikolić, M.; Ognjanov, V.; Milić, B. Genetic resources of autochthonous fruit species and varieties (In Serbian: Genetički resursi autohtonih vrsta i sorti voća). Sel. I Semen. 2017, 23, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Ogašanović, D.; Mitrović, M.; Nikolić, M.; Plazinić, R.; Papić, V. The possibility of using ‘oblacinska’ sour cherry as a rootstock or interstock in high-density sweet cherry plantings. Acta Hortic. 1996, 410, 537–542. [Google Scholar] [CrossRef]
- Fogle, H.W. Sweet Cherries: Production, Marketing, and Processing; Agricultural Research Service; US Department of Agriculture: Washington, DC., USA, 1973. [Google Scholar]
- Franken-Bembenek, S.; Gruppe, W. Genetic differences in suckering of cherry hybrids. Acta Hortic. 1985, 169, 263–267. [Google Scholar] [CrossRef]
- Nikolić, D.; Milatović, D.; Radović, A.; Trajković, J. Variability and heritability of tree and shoot characteristics in ‘Oblačinska’ sour cherry clones. Acta Hortic. 2020, 1289, 135–140. [Google Scholar] [CrossRef]
- Ingels, C.; Arceo, R. Cherry Rootstocks for Sacramento County. UC Cooperative Extension Flyer, 2010. Available online: https://ccag-eh.ucanr.edu/files/241389.pdf (accessed on 26 December 2022).
- Végvári, G.Y.; Hrotkó, K.; Magyar, L.; Hajagos, A.; Csigai, K. Histological investigation of cherry rootstocks. Acta Hortic. 2008, 795, 339–344. [Google Scholar] [CrossRef]
- Stott, L.V.; Black, B.; Bugbee, B. Differences in drought tolerance among Gisela® cherry rootstocks determined using automated weighing lysimeters. HortScience 2019, 54, 1847–1852. [Google Scholar] [CrossRef] [Green Version]
- Ljubojević, M.; Narandžić, T.; Ognjanov, V. Morpho-histological characterization of graft union of sweet cherry trees. J. Pomol. 2021, 55, 15–23. [Google Scholar]
- Schweingruber, F.H.; Börner, A.; Schulze, E.D. Atlas of Woody Plant Stems: Evolution, Structure and Environmental Modifications; Springer: Berlin, Germany, 2008. [Google Scholar]
- Stehr, R. First results with dwarfing rootstocks in northern Germany as part of a national German rootstock trial. Acta Hortic. 1998, 468, 297–306. [Google Scholar] [CrossRef]
- Sønsteby, A.; Heide, O.M. Temperature effects on growth and floral initiation in sweet cherry (Prunus avium L.). Sci. Hortic. 2019, 257, 108762. [Google Scholar] [CrossRef]
- Blanco, V.; Blaya-Ros, P.J.; Torres-Sánchez, R.; Domingo, R. Influence of regulated deficit irrigation and environmental conditions on reproductive response of sweet cherry trees. Plants 2020, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, B.; Xie, Z.; Zhang, A.; Xu, W.; Zhang, C.; Liu, Q.; Liu, C.; Wang, S. Tree growth characteristics and flower bud differentiation of sweet cherry (Prunus avium L.) under different climate conditions in China. Hortic. Sci. 2010, 37, 6–13. [Google Scholar] [CrossRef] [Green Version]
- Lang, G. New Sweet Cherry Training Systems, Part 1; Michigan State University: East Lansing, MI, USA, 2013. [Google Scholar]
- Lang, G.A.; Musacchi, S.; Whiting, M.D. Cherry Training Systems; PNW 667; Pacific Northwest Extension Publications: Corvallis, OR, USA, 2015. [Google Scholar]
- Pal, M.D.; Mitre, I.; Asănică, A.C.; Sestraș, A.F.; Peticilă, A.G.; Mitre, V. The influence of rootstock on the growth and fructification of cherry cultivars in a high density cultivation system. Not. Bot. Horti. Agrobo. 2017, 45, 451–457. [Google Scholar] [CrossRef] [Green Version]
- Zec, G.; Milatović, D.; Boškov, Đ.; Čolić, S.; Đorđević, B.; Đurović, D. Influence of pruning on biological properties of sweet cherry cultivars grafted on ‘Oblačinska’ sour cherry. Acta Hortic. 2020, 1289, 105–110. [Google Scholar] [CrossRef]
- Dziedzic, E.; Bieniasz, M.; Kowalczyk, B. Morphological and physiological features of sweet cherry floral organ affecting the potential fruit crop in relation to the root-stock. Sci. Hortic. 2019, 251, 127–135. [Google Scholar] [CrossRef]
- Saraginovski, N.; Kiprijanovski, M. ‘Kordia’ and ‘Regina’ sweet cherry: Bearing potential and fruiting shoots distribution as affected by rootstock genotype. Acta Hortic. 2021, 1327, 103–110. [Google Scholar] [CrossRef]
- Blanco, V.; Torres-Sánchez, R.; Blaya-Ros, P.J.; Pérez-Pastor, A.; Domingo, R. Vegetative and reproductive response of ‘Prime Giant’ sweet cherry trees to regulated deficit irrigation. Sci. Hortic. 2019, 249, 478–489. [Google Scholar] [CrossRef]
- Romano, G.S.; Cittadini, E.D.; Pugh, B.; Schouten, R. Sweet cherry quality in the horticultural production chain. Stewart Postharvest Rev. 2006, 6, 1–9. [Google Scholar]
- Bujdosó, G.; Hrotkó, K.; Feldmane, D.; Giovannini, D.; Demirsoy, H.; Tao, R.; Ercisli, S.; Ertek, N.; Malchev, S. What kind of sweet cherries do the final consumers prefer? South-West J. Hortic. Biol. Environ. 2020, 11, 37–48. [Google Scholar]
- Whiting, M.D.; Lang, G.; Ophardt, D. Rootstock and training system affect sweet cherry growth, yield, and fruit quality. HortScience 2005, 40, 582–586. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Yue, C.; Gallardo, K.; McCracken, V.; Luby, J.; McFerson, J. What attributes are consumers looking for in sweet cherries? Evidence from choice experiments. Agric. Resour. Econ. Rev. 2016, 45, 124–142. [Google Scholar] [CrossRef] [Green Version]
- Scalisi, A.; O’Connell, M.G. Relationships between soluble solids and dry matter in the flesh of stone fruit at harvest. Analytica 2021, 2, 14–24. [Google Scholar] [CrossRef]
- Kappel, F.; Fisher-Fleming, B.; Hogue, E. Fruit characteristics and sensory attributes of an ideal sweet cherry. HortScience 1996, 31, 443–446. [Google Scholar] [CrossRef] [Green Version]
- Crisosto, C.H.; Crisosto, G.M.; Metheney, P. Consumer acceptance of ‘Brooks’ and ‘Bing’cherries is mainly dependent on fruit SSC and visual skin color. Postharvest Biol. Tec. 2003, 28, 159–167. [Google Scholar] [CrossRef]
- Ingram, D.L.; Fernandez, R. Life Cycle Assessment: A tool for determining the environmental impact of horticultural crop production. HortTechnology 2012, 22, 275–279. [Google Scholar] [CrossRef]
- Ognjanov, V.; Ljubojević, M.; Pečurica, A.; Čalić, M.; Mladenović, E.; Čukanović, J. Vegetative and reproductive characteristics of new sweet cherry cultivars. In Proceedings of the 3rd Conference ‘Innovations in Fruit Growing’, Belgrade, Serbia, 10 February 2011; pp. 153–163. [Google Scholar]
- Głowacka, A.; Rozpara, E. Growth, yielding and fruit quality of three sweet cherry cultivars under organic orchard conditions. J. Res. Appl. Agric. Eng. 2015, 60, 73–76. [Google Scholar]
Year | Maximal Average Monthly Air Temperature (°C) | Minimal Average Monthly Air Temperature (°C) | Average Annual Air Temperature(°C) | Annual Precipitation Sum (mm) |
---|---|---|---|---|
2017 | 24.1 | −5.3 | 12.2 | 573 |
2018 | 23.7 | 1.2 | 12.9 | 673 |
2019 | 23.7 | −0.2 | 13.1 | 721 |
2020 | 23.2 | 0.01 | 12.5 | 614 |
2021 | 24.7 | 2.7 | 12.1 | 627 |
Rootstock Candidate | Anchorage | Suckering | Vitality |
---|---|---|---|
PC_02_01/4 | Very good | Low | Good |
PC_05_04 | Very good | Absent | Good |
PF_01_01 | Very good | High | Good |
PF_02_16 | Good | High | Good |
PF_04_09 | Very good | Absent | Good |
PM_09_01 | Excellent | Absent | Good |
‘Gisela 5’ | Excellent | Absent | Poor |
Rootstock Candidate | TCSA of the Rootstock (cm2) | TCSA of the Graft Union (cm2) | TCSA of the Scion (cm2) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2017 | 2018 | 2019 | 2020 | 2017 | 2018 | 2019 | 2020 | |
PC_02_01/4 | 9.8 a * | 17.4 ab | 29.2 ab | 32.8 ab | 14.4 b | 31.3 ab | 50.7 a | 67.4 a | 9.5 a | 22.4 a | 35.4 a | 47.2 a |
PC_05_04 | 11.7 a | 15.8 ab | 23.0 ab | 27.7 ab | 13.3 b | 29.2 ab | 43.8 a | 54.3 b | 8.3 a | 20.5 a | 31.5 ab | 35.8 abc |
PF_01_01 | 4.5 b | 9.8 bc | 11.4 c | 19.1 b | 7.5 c | 14.0 c | 17.2 b | 27.4 d | 3.5 b | 7.3 b | 13.9 c | 21.4 d |
PF_02_16 | 4.6 b | 10.4 bc | 19.6 bc | 31.6 ab | 7.1 c | 14.8 c | 24.3 b | 42.2 bc | 3.1 b | 9.6 b | 15.2 c | 16.7 d |
PF_04_09 | 3.5 b | 6.9 c | 10.2 c | 18.9 b | 5.5 c | 16.0 c | 25.3 b | 40.4 c | 3.1 b | 7.4 b | 14.2 c | 22.6 cd |
PM_09_01 | 10.3 a | 18.8 a | 31.0 a | 39.4 a | 10.7 bc | 25.3 b | 43.0 a | 52.3 bc | 5.2 b | 12.1 b | 22.5 bc | 28.1 bcd |
‘Gisela 5’ | 11.2 a | 21.7 a | 32.5 a | 39.4 a | 21.9 a | 35.4 a | 51.7 a | 66.6 a | 9.5 a | 18.3 a | 28.1 ab | 38.1 ab |
Rootstock Candidate | Tree Height (cm) | Crown Width (cm) | Crown Depth (cm) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2019 | 2020 | 2017 | 2018 | 2019 | 2020 | 2017 | 2018 | 2019 | 2020 | |
PC_02_01/4 | 196 a * | 235 a | 273 a | 293 a | 101 a | 136 a | 145 a | 150 a | 95 a | 140 a | 164 a | 175 a |
PC_05_04 | 184 ab | 230 ab | 269 a | 293 a | 85 ab | 128 a | 130 ab | 138 ab | 84 ab | 125 ab | 140 a | 153 abc |
PF_01_01 | 160 bc | 200 bc | 265 a | 290 a | 60 cd | 100 bc | 110 bc | 115 bc | 60 cd | 110 b | 140 a | 155 abc |
PF_02_16 | 140 c | 155 d | 175 b | 220 c | 50 d | 70 d | 95 c | 105 c | 50 d | 75 c | 110 b | 130 bcd |
PF_04_09 | 135 c | 170 cd | 210 b | 255 b | 50 d | 90 cd | 110 bc | 125 abc | 55 d | 80 c | 100 b | 115 d |
PM_09_01 | 137 c | 162 d | 212 b | 243 bc | 64 cd | 86 cd | 103 c | 116 bc | 62 cd | 83 c | 108 b | 123 cd |
‘Gisela 5’ | 216 a | 248 a | 269 a | 293 a | 79 bc | 117 ab | 132 a | 140 ab | 76 bc | 131 a | 139 a | 157 ab |
Rootstock Candidate | Fruit Abundance per m3 * | Taste | ||
---|---|---|---|---|
2020 | 2021 | Acidity | Sweetness | |
PC_02_01/4 | 4 | 4 | medium | medium |
PC_05_04 | 2.5 | 1 | medium | medium |
PF_01_01 | 2 | 2.5 | low | medium |
PF_02_16 | 0.5 | 3.5 | low | low |
PF_04_09 | 2 | 4 | low | medium |
PM_09_01 | 0.5 | 1 | low | medium |
‘Gisela 5’ | 2 | 3 | medium | low |
Rootstock Candidate | Fruit Mass (g) | Fruit Height (mm) | Fruit Width (mm) | Fruit Thickness (mm) | Mesocarp Ratio (%) | Soluble Solids Content (%) | Petiole Length (mm) |
---|---|---|---|---|---|---|---|
2020 | |||||||
PC_02_01/4 | 8.0 ± 0.8 bc * | 24.7 ± 1.1 bcd | 26.1 ± 0.8 bc | 21.2 ± 0.6 bc | 94.9 ± 0.5 a | 15.5 ± 1.2 b | 33.1 ± 2.4 b |
PC_05_04 | 7.5 ± 0.8 c | 24.4 ± 0.9 cd | 25.2 ± 1.1 cd | 20.7 ± 0.7 cd | 95.0 ± 0.9 a | 16.4 ± 1.4 ab | 32.5 ± 3.2 bc |
PF_01_01 | 7.9 ± 0.6 bc | 25.4 ± 0.7 abc | 25.9 ± 0.8 bc | 21.3 ± 1.2 abc | 95.4 ± 0.5 a | 15.7 ± 0.9 b | 29.5 ± 1.6 c |
PF_02_16 | 9.1 ± 1.3 a | 26.2 ± 1.6 a | 27.5 ± 1.5 a | 22.2 ± 0.8 a | 94.1 ± 0.7 bc | 14.0 ± 0.5 c | 34.5 ± 5.3 ab |
PF_04_09 | 9.2 ± 0.6 a | 25.9 ± 0.8 ab | 27.4 ± 0.8 a | 22.1 ± 0.5 ab | 94.8 ± 0.4 ab | 15.2 ± 0.8 b | 31.1 ± 1.7 bc |
PM_09_01 | 7.2 ± 0.9 c | 24.0 ± 1.9 d | 24.5 ± 0.9 d | 19.9 ± 0.5 d | 94.8 ± 0.0 ab | 17.4 ± 1.2 a | 29.5 ± 7.8 c |
‘Gisela 5’ | 8.8 ± 1.1 ab | 25.0 ± 1.4 a-d | 26.8 ± 1.3 ab | 21.7 ± 1.0 abc | 93.9 ± 0.6 c | 15.3 ± 0.7 b | 36.8 ± 3.1 a |
2021 | |||||||
PC_02_01/4 | 7.7 ± 1.0 a | 23.7 ± 1.0 ab | 25.3 ± 1.3 ab | 20.8 ± 1.0 ab | 95.9 ± 0.3 a | 18.3 ± 0.8 b | 34.3 ± 2.3 b |
PC_05_04 | 7.7 ± 0.6 a | 23.7 ± 0.7 ab | 25.4 ± 0.9 ab | 21.4 ± 0.6 ab | 94.5 ± 1.0 c | 19.0 ± 0.9 a | 39.3 ± 3.7 a |
PF_01_01 | 7.9 ± 0.7 a | 24.0 ± 0.8 ab | 25.8 ± 0.9 a | 21.4 ± 1.8 a | 95.4 ± 0.6 ab | 15.8 ± 1.0 cd | 35.7 ± 3.4 b |
PF_02_16 | 7.5 ± 0.7 ab | 24.2 ± 0.7 a | 25.6 ± 1.0 ab | 20.7 ± 0.6 abc | 94.5 ± 0.6 c | 15.2 ± 0.9 de | 37.3 ± 3.5 ab |
PF_04_09 | 7.1 ± 0.7 bc | 23.3 ± 0.6 b | 24.8 ± 1.0 bc | 20.0 ± 0.7 cd | 94.9 ± 0.6 bc | 16.0 ± 1.1 c | 34.9 ± 3.4 b |
PM_09_01 | 6.9 ± 0.6 c | 23.5 ± 0.8 ab | 24.4 ± 0.7 c | 19.7 ± 0.7 d | 95.1 ± 0.7 b | 16.3 ± 0.7 c | 37.3 ± 2.9 ab |
‘Gisela 5’ | 7.7 ± 1.0 a | 23.7 ± 1.3 ab | 25.4 ± 1.4 ab | 20.6 ± 0.8 bc | 95.2 ± 0.6 b | 15.0 ± 1.2 e | 35.9 ± 6.2 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Narandžić, T.; Ljubojević, M. Autochthonous Cherry Rootstock Germplasm in the Context of Sustainable Sweet Cherry Production. Horticulturae 2023, 9, 37. https://doi.org/10.3390/horticulturae9010037
Narandžić T, Ljubojević M. Autochthonous Cherry Rootstock Germplasm in the Context of Sustainable Sweet Cherry Production. Horticulturae. 2023; 9(1):37. https://doi.org/10.3390/horticulturae9010037
Chicago/Turabian StyleNarandžić, Tijana, and Mirjana Ljubojević. 2023. "Autochthonous Cherry Rootstock Germplasm in the Context of Sustainable Sweet Cherry Production" Horticulturae 9, no. 1: 37. https://doi.org/10.3390/horticulturae9010037
APA StyleNarandžić, T., & Ljubojević, M. (2023). Autochthonous Cherry Rootstock Germplasm in the Context of Sustainable Sweet Cherry Production. Horticulturae, 9(1), 37. https://doi.org/10.3390/horticulturae9010037