Vegetative Characteristics of Three Apricot Cultivars Grafted on Six Different Rootstocks
Abstract
:1. Introduction
2. Materials and Methods
3. Statistical Analysis
4. Results
5. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Janick, J. The origins of fruits, fruit growing, and fruit breeding. Plant Breed. Rev. 2005, 25, 255–320. [Google Scholar]
- Bourguiba, H.; Audergon, J.M.; Krichen, L.; Trifi-Farah, N.; Mamouni, A.; Trabelsi, S.; D’Onofrio, C.; Asma, B.M.; Santoni, S.; Khadari, B. Loss of genetic diversity as a signature of apricot domestication and diffusion into the Mediterranean Basin. BMC Plant Biol. 2012, 12, 49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Herrera, S.; Hormaza, J.I.; Lora, J.; Ylla, G.; Rodrigo, J. Molecular characterization of genetic diversity in apricot cultivars: Current situation and future perspectives. J. Agron. 2021, 11, 1714. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: http://www.fao.org/faostat/en/ (accessed on 18 September 2022).
- Ercisli, S. Apricot culture in Turkey. J. Sci. Res. Essay 2009, 4, 715–719. [Google Scholar]
- Miodragović, M.; Magazin, N.; Keserović, Z.; Milić, B.; Popović, B.; Blagojević, B.; Kalajdžić, J. The early performance and fruit properties of apricot cultivars grafted on Prunus spinosa L. interstock. Sci. Hortic. 2019, 250, 199–206. [Google Scholar] [CrossRef]
- Hungarian Statistics Office. Available online: https://www.ksh.hu/docs/hun/xstadat/xstadat_eves/i_omn006h.html (accessed on 18 September 2022).
- CPVO. Community Plant Variety Office. Available online: https://cpvo.europa.eu/en (accessed on 18 September 2022).
- Herrera, S.; Lora, J.; Hormaza, J.I.; Herrero, M.; Rodrigo, J. Optimizing production in the new generation of apricot cultivars: Self-incompatibility, S-RNase allele identification, and incompatibility group assignment. Front. Plant Sci. 2018, 9, 527. [Google Scholar] [CrossRef] [Green Version]
- Krška, B. Genetic Apricot Resources and Their Utilization in Breeding. In Breeding and Health Benefits of Fruit and Nut Crops; Soneji, J.R., Nageswara-Rao, M., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Zhebentyayeva, T.; Ledbetter, C.; Burgos, L.; Lláce, G. Apricot. In Fruit Breeding; Badenes, M.L., Byrne, D.H., Eds.; Springer: Boston, MA, USA, 2012. [Google Scholar]
- Giovannini, D.; Neri, D.; Di Vaio, C.; Sansavini, S.; Del Vecchio, G.; Guarino, F.; Mennone, C.; Abeti, D.; Colombo, R. Efficienza gestionale degli impianti di pesco in un confronto Nord-Sud. Riv. Fruttic. Ortofloric. 2010, 7–8, 16–26. (In Italian) [Google Scholar]
- Dorigoni, A.; Lezzer, P.; Dallabetta, N.; Serra, S.; Musacchi, S. Bi-axis: An alternative to slender spindle for apple orchards. Acta Hortic. 2011, 903, 581–588. [Google Scholar] [CrossRef]
- Meland, M. Early performance of European plum high density production systems. Acta Hortic. 2001, 557, 265–273. [Google Scholar] [CrossRef]
- Musacchi, S. Bibaum®: A new training system for pear orchards. Acta Hortic. 2008, 800, 763–768. [Google Scholar] [CrossRef]
- Robinson, T.L.; Hoying, S.A.; Reginato, G.H. The tall spindle planting system: Principles and performance. Acta Hortic. 2011, 903, 571–579. [Google Scholar] [CrossRef]
- Stănică, F. New tendencies in fruit trees training and orchard planting systems. Sci. Pap. 2019, 2, 25–34. [Google Scholar]
- Stănică, F.; Butcaru, A.C.; Mihai, C.A.; Florea, I.M.; Şerban, D. Preliminary results regarding the behavior of some new apricot cultivars in Bucureşti area. Rom. J. Hortic. 2020, 1, 59–66. [Google Scholar] [CrossRef]
- Montanaro, G.; Dichio, B.; Xiloyannis, C. Pesco: Sfruttare bene la luce per migliorare qualità e rese. Inf. Agrar. 2011, 26, 48–51. (In Italian) [Google Scholar]
- Taaren, M.J.; Abbasi, A.N.; Rahman, H. Tree vigor, nutrients uptake efficiency and yield of ‘Flordaking’ peach cultivar as affected by different rootstocks. In Proceedings of the Pakistan Society for Horticultural Science, Faisalabad, Pakistan, 18–20 February 2016; pp. 134–143. [Google Scholar]
- Beckman, T.G.; Okie, W.R.; Meyers, S.C. Rootstocks affect bloom date and fruit maturation of ‘Redhaven’ peach. J. Am. Soc. Hortic. Sci. 1992, 117, 377–379. [Google Scholar] [CrossRef]
- Boyhan, G.E.; Norton, J.D.; Pitts, J.A. Establishment, growth, and foliar nutrient content of plum trees on various rootstocks. J. Am. Soc. Hortic. Sci. 1995, 30, 219–221. [Google Scholar] [CrossRef] [Green Version]
- Duval, H.; Masse, M.; Jay, M.; Loquet, B. Results of French apricot rootstock trials. Acta Hortic. 2012, 966, 37–41. [Google Scholar] [CrossRef]
- Layne, R.E.C. Prunus rootstocks affect long-term orchard performance of ‘Redhaaven’ peach on Brookston clay loam. J. Am. Soc. Hortic. Sci. 1994, 29, 167–171. [Google Scholar]
- Mendelné Pászti, E.; Mendel, Á. Frost tolerance of flower buds of Hungarian apricot cultivars. In Őshonos—és Tájfajták—Ökotermékek—Egészséges Táplálkozás—Vidékfejlesztés; Tóth, C., Ed.; University of Nyíregyháza: Nyíregyháza, Hungary, 2021; pp. 37–43. [Google Scholar]
- Pászti, E.; Mendel, Á. Életképességi vizsgálatok összehasonlítása csonthájas alanyok magvain. Kertgazdaság 2018, 50, 15–21. (In Hungarian) [Google Scholar]
- Hrotkó, K. Alanyhasználat a Kajszitermesztésben. In Gyümölcsfaiskola; Hrotkó, K., Ed.; Mezőgazda Kiadó: Budapest, Hungary, 1999. (In Hungarian) [Google Scholar]
- Hrotkó, K.; Nagy, Á.; Csigai, K. A gyümölcsfajták és alanyok szaporítása a magyar faiskolákban. III. Őszibarack, kajszi, dió és mandala. Kertgazdaság 2006, 38, 29–38. (In Hungarian) [Google Scholar]
- Hernández, F.; Pinochet, J.; Moreno, M.A.; Martínez, J.J.; Legua, P. Performance of Prunus rootstocks for apricot in Mediterranean conditions. Sci. Hortic. 2010, 124, 354–359. [Google Scholar] [CrossRef] [Green Version]
- Bujdosó, G.; Magyar, L.; Hrotkó, K. Long term evaluation of growth and cropping of sweet cherry varieties on different rootstocks under Hungarian soil and climatic conditions. Sci. Hortic. 2019, 256, 108613. [Google Scholar] [CrossRef]
- Southwick, S.M.; Weis, K.G. Selecting and propagating rootstocks to produce apricots. HortTechnology 1998, 8, 164–170. [Google Scholar] [CrossRef] [Green Version]
- Crossa-Raynaud, P.; Audergon, J.M. Apricot Rootstocks; Rootstocks for Fruit Crops: New York, NY, USA, 1987; pp. 295–520. [Google Scholar]
- Darikova, J.A.; Savva, Y.V.; Eugene, A.; Vaganov, E.A.; Grachev, A.M.; Kuznetsova, G.V. Grafts of woody plants and the problem of incompatibility between scion and rootstock (a review). J. Sib. Fed. Univ. Biol. 2011, 4, 54–63. [Google Scholar]
- Milatovic, D.; Keserovic, Z.; Milosevic, T. Savremeni Sortiment i Tehnologija Gajenja Kajsije. In Proceedings of the 50th Conference “Savramena Proizvodnja Voća”, Banja Koviljača, Serbia, 9 December 2017; pp. 23–26. (In Serbian). [Google Scholar]
- Yilmaz, C.H.; Remzi, U.Ğ.U.R.; Sünbül, M.R.; Özelçi, D. Performance of some Prunus rootstocks to transmit micronutrients to leaves. Int. J. Agric. Environ. Food Sci. 2021, 5, 656–665. [Google Scholar] [CrossRef]
- Oprita, V.A.; Gavat, C. Behavior of some apricot cultivars grafted on new vegetative rootstocks. Sci. Pap. 2018, 62, 115–117. [Google Scholar]
- Dobos, E.; Bialko, T.; Micheli, E.; Kobza, J. Legacy Soil Data Harmonization and Database Development. In Digital Soil Mapping. Progress in Soil Science; Boettinger, J.L., Howell, D.W., Moore, A.C., Hartemink, A.E., Kienast-Brown, S., Eds.; Springer: Dordrecht, The Netherlands, 2010; Volume 2, pp. 309–323. [Google Scholar]
- Mendelné Pászti, E.; Mendel, Á. Vegetative growth of apricot (P. armeniaca L.) cultivars and rootstocks. Columella 2021, 8, 5–12. [Google Scholar] [CrossRef]
- Nagy, P.; Lantos, A. Breeding stone fruit rootstocks in Hungary. Acta Hortic. 1996, 484, 199–202. [Google Scholar] [CrossRef]
- Nyujtó, F. Apricot rootstock research in Cegléd. Acta Hortic. 1973, 85, 97–103. [Google Scholar] [CrossRef]
- Nagy, P. Szilva Klónalanyok Kajszi Számára. In A Csonthéjas Gyümölcsűek Termelésének Fejlesztése (Újabb Kutatási Eredmények a Gyümölcstermesztésben); GYDKI: Érd, Hungary, 1979; Volume 7, pp. 37–45. (In Hungarian) [Google Scholar]
- Sitarek, M.; Bartosiewicz, B. Influence of a few seedling rootstocks on the growth, yield and fruit quality of apricot trees. J. Fruit Ornam. Plant Res. 2011, 19, 81–86. [Google Scholar]
- Foschi, S.; Bassi, D.; Lama, M.; Buscaroli, C.; Rizzo, M. Nuovi portinnesti dell’albicocco: Meno polloni e buona affinità. Inf. Agrar. 2012, 21, 56–59. (In Italian) [Google Scholar]
- Stefanova, B.; Dragoyski, K.; Dinkova, H. Reaction of some rootstocks for plums to soil and climatic conditions of Troyan. Acta Hortic. 2009, 825, 435–440. [Google Scholar]
- Murri, G.; Massetani, F.; Giusti, S.; Funari, A.; Neri, D. Yield and fruit quality of ‘Fortune’ plum grafted on 17 rootstocks in replant soil conditions of Central Italy. Acta Hortic. 2013, 985, 121–126. [Google Scholar] [CrossRef]
- Bassi, D.; Foschi, S. Trends in Apricot and Peach Industries in Italy. In Proceedings of the 4th Conference “Innovations in Fruit Growing-Improving Peach and Apricot Production”, Belgrade, Serbia, 11 February 2013; pp. 49–73. [Google Scholar]
- Agromillora Group. Available online: https://www.agromillora.com/wp-content/uploads/2020/05/Agromillora_Rootpac_English.pdf (accessed on 18 September 2022).
- Bujdosó, G.; Ercisli, S.; Ratiu, A.; Cseke, K. Walnut ‘Esterhazy kesei’ for small-scale cultivation. HortScience 2022, 57, 523–524. [Google Scholar] [CrossRef]
- Mendelné Pászti, E.; Mendel, Á. Ceglédi bájos: A new apricot cultivar of Hungary. J. Am. Soc. Hortic. Sci. 2021, 56, 10. [Google Scholar]
- Bujdosó, G.; Fodor, A.; Végh, A. BD6 walnut. HortScience 2020, 55, 1393–1394. [Google Scholar]
- Games, P.A.; Howell, J.F. Pairwise multiple comparison procedures with unequal n’s and/or variances: A Monte Carlo study. J. Educ. Stat. 1976, 1, 113–125. [Google Scholar]
- IBM Corporation. IBM SPSS Statistics for Windows, Version 27.0; IBM Corporation: New York, NY, USA, 2020.
- Nyujtó, F.; Surányi, D. Kajszibarack; Mezőgazdasági Kiadó: Budapest, Hungary, 1981. (In Hungarian) [Google Scholar]
- Suranyi, D. Wild apricot and myrobalan (generative) rootstocks for apricot cultivars. Acta Hortic. 1999, 488, 445–449. [Google Scholar]
- Pérez-Romero, L.F.; Arroyo, F.T.; Santamaría, C.; Camacho, M.; Daza, A. Comparative fruit quality parameters of ‘Ninfa’ apricot (Prunus armeniaca L.) grafted on two different rootstocks in a newly established organic orchard. Acta Aliment. 2014, 43, 273–279. [Google Scholar] [CrossRef] [Green Version]
- Wurm, L. Efficiency test of new cultivars and rootstocks for apricot. Mitt. Klosterneubg. Rebe Wein Obstbau Fruchteverwert. 2014, 64, 30–38. [Google Scholar]
- Wurm, L.; Staples, M.; Riedle-Bauer, M. Influence of plant protection strategies and variety on tree soundness as well as vegetative and generative development with apricot. Mitt. Klosterneubg. Rebe Wein Obstbau. Fruchteverwert. 2018, 68, 46–66. [Google Scholar]
- Yordanov, I.A.; Tabakov, G.S.; Kaymakanov, V.P. Comparative study of Wavit® rootstock with two plum and two apricot cultivars in nursery. J. Agric. Sci. 2015, 60, 159–168. [Google Scholar] [CrossRef]
- Ondradu, G.; Casula, G.; Scalas, B. The influence of the rootstocks on the behavior of ´San Castrese´ apricot cultivar in south Sardinia. Acta Hortic. 2001, 701, 673–678. [Google Scholar]
- Pennone, F.; Abbate, V. Preliminary observations on the biological and horticultural behavior of different apricot rootstocks. Acta Hortic. 2001, 701, 347–350. [Google Scholar]
- Dhaliwal, G.S.; Dhillon, S.K. Effect of tree size on physico-chemical characteristics of fruits of guava cv. Sardar. Indian J. Hortic. 2003, 60, 312–317. [Google Scholar]
- Kumar, D.; Ahmed, N.; Srivastava, K.K.; Dar, T.A. Effect of trunk cross sectional area of rootstock on growth, yield, quality and leaf nutrient status in apricot (Prunus armeniaca) cv CITH-Apricot-2. Indian J. Agric. Sci. 2014, 84, 236–240. [Google Scholar]
- Westwood, M.N.; Roberts, A.N. The Relationship Between Trunk Cross-sectional Area and Weight of Apple Trees1. J. Am. Soc. Hortic. Sci. 1970, 95, 28–30. [Google Scholar] [CrossRef]
- Hartmann, H.T.; Kester, D.E. Plant Propagation: Principles and Practices; Prentice-Hall Inc.: Hoboken, NJ, USA, 1997. [Google Scholar]
Soil Properties | Value | Limits | Evaluation |
---|---|---|---|
pH (KCl) | 7.24 | 0–14 | Slightly alkaline |
Organic matter (%) | 3.27 | 1–5 | Medium |
Total saline (%) | 0.03 | 0.01–0.50 | Non-saline |
CaCO3 (%) | 7.25 | 1–20 | High |
Available nitrogen (mg × kg−1) | 5.06 | 1–10 | Medium |
Available phosphorous-pentoxide (mg × kg−1) | 197.13 | 0–350 | Excellent |
Available potassium-oxide (mg × kg−1) | 257.87 | 0–350 | Medium |
Available sodium (mg × kg−1) | 70.93 | 0–100 | Medium |
Available magnesium (mg × kg−1) | 246.60 | 40–300 | Good |
Available sulphate sulphur (mg × kg−1) | 15.68 | 4–35 | Medium |
Available manganese (mg × kg−1) | 36.00 | 10–50 | Good |
Available zinc (mg × kg−1) | 1.50 | 0.7–3 | Good |
Available copper (mg × kg−1) | 4.11 | 0–6 | Good |
Arany-type cohension index | 40.27 | 1–100 | Medium |
Parameters | Value |
---|---|
Average yearly temperature | 10.7 °C |
Average yearly temperature during the growing season | 15.7 °C |
(between April and September) | |
Average yearly precipitation | 536 mm |
Annual mean number of shine hours | 2100 |
Mean number of sunshine hours during the growing season | 850 |
Rootstock Cultivar | Species |
---|---|
‘Fehér besztercei’ (Fb) | Prunus domestica L. |
Apricot seedling (As) | Prunus armeniaca L |
‘Myrobalan 29C’ (My) | Prunus cerasifera myrobalana Ehrh. |
‘Wavit’ (Wv) | Prunus domestica L. |
‘Montclar’ (Mc) | Prunus persica L. |
‘Rootpac R’ (RR) | P. cerasifera myr. X P. dulcis Mill. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendelné Pászti, E.; Bujdosó, G.; Mendel, Á. Vegetative Characteristics of Three Apricot Cultivars Grafted on Six Different Rootstocks. Horticulturae 2022, 8, 1004. https://doi.org/10.3390/horticulturae8111004
Mendelné Pászti E, Bujdosó G, Mendel Á. Vegetative Characteristics of Three Apricot Cultivars Grafted on Six Different Rootstocks. Horticulturae. 2022; 8(11):1004. https://doi.org/10.3390/horticulturae8111004
Chicago/Turabian StyleMendelné Pászti, Edina, Géza Bujdosó, and Ákos Mendel. 2022. "Vegetative Characteristics of Three Apricot Cultivars Grafted on Six Different Rootstocks" Horticulturae 8, no. 11: 1004. https://doi.org/10.3390/horticulturae8111004
APA StyleMendelné Pászti, E., Bujdosó, G., & Mendel, Á. (2022). Vegetative Characteristics of Three Apricot Cultivars Grafted on Six Different Rootstocks. Horticulturae, 8(11), 1004. https://doi.org/10.3390/horticulturae8111004