Soil Acidification Alters Phosphorus Fractions and phoD-Harboring Microbial Communities in Tea Plantation Soils, Thus Affecting Tea Yield and Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Tea Plantation and Sample Collection
2.2. Soil Chemical Properties and P Fractions Determination
2.3. Determination of Tea Yield and Quality
2.4. DNA Extraction and Metagenomics Sequencing
2.5. Statistical Analysis
3. Results
3.1. Effect of Soil Acidification on Tea Quality
3.2. Effect of Soil Acidification on Soil Chemical Properties
3.3. Effect of Soil Acidification on Soil P Fractions
3.4. Effect of Soil Acidification on Soil phoD Gene and phoD-Harboring Microbial Community
3.5. Relationships of phoD-Harboring Microorganisms with Soil Properties and Quality of Tea
4. Discussion
4.1. Effect of Soil pH on Yield and Quality of Tea
4.2. Effect of Soil pH on Soil Physicochemical Properties and P Fractions
4.3. Effect of Soil pH on Soil phoD-Harboring Microbial Community Structure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jia, X.L.; Wang, Y.H.; Zhang, Q.; Lin, S.X.; Zhang, Y.; Du, M.R.; Chen, M.H.; Ye, J.H.; Wu, Z.Y.; Wang, H.B. Reasonable deep application of sheep manure fertilizer to alleviate soil acidification to improve tea yield and quality. Front. Plant Sci. 2023, 14, 1179960. [Google Scholar] [CrossRef]
- Yan, P.; Shen, C.; Fan, L.C.; Li, X.; Zhang, L.P.; Han, W.Y. Tea planting affects soil acidification and nitrogen and phosphorus distribution in soil. Agr. Ecosyst. Environ. 2018, 254, 20–25. [Google Scholar] [CrossRef]
- Yan, P.; Wu, L.Q.; Wang, D.H.; Fu, J.Y.; Shen, C.; Li, X.; Zhang, L.P.; Fan, L.C.; Han, W.Y. Soil acidification in Chinese tea plantations. Sci. Total Environ. 2020, 715, 136963. [Google Scholar] [CrossRef]
- Yang, X.D.; Ni, K.; Shi, Y.Z.; Yi, X.Y.; Zhang, Q.F.; Fang, L.; Ma, L.F.; Ruan, J.Y. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agr. Ecosyst. Environ. 2018, 252, 74–82. [Google Scholar] [CrossRef]
- Ding, Z.T.; Jia, S.S.; Wang, Y.; Xiao, J.; Zhang, Y.F. Phosphate stresses affect ionome and metabolome in tea plants. Plant Physiol. Bioch. 2017, 120, 30–39. [Google Scholar] [CrossRef]
- Liu, X.; Chen, Y.T.; Zheng, H.J.; Sun, D.L.; Zheng, J.E.; Jia, Q.; Chen, Q. Rice-fish coculture without phosphorus addition improves phosphorus availability in paddy soil by regulating phosphorus fraction partitioning and alkaline phosphomonoesterase-encoding bacterial community. Pedosphere 2025, 35, 715–727. [Google Scholar] [CrossRef]
- Cross, A.F.; Schlesinger, W.H. A literature review and evaluation of the Hedley fractionation: Applications to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma 1995, 64, 197–214. [Google Scholar] [CrossRef]
- Khan, A.; Zhang, G.N.; Li, T.Y.; He, B.H. Fertilization and cultivation management promotes soil phosphorus availability by enhancing soil P-cycling enzymes and the phosphatase encoding genes in bulk and rhizosphere soil of a maize crop in sloping cropland. Ecotox. Environ. Safe. 2023, 264, 115441. [Google Scholar] [CrossRef]
- Hedley, M.J.; Stewart, J.W.B.; Chauhan, B.S. Changes in inorganic and organic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci. Soc. Am. J. 1982, 46, 970–976. [Google Scholar] [CrossRef]
- Cao, N.; Zhi, M.L.; Zhao, W.Q.; Pang, J.Y.; Hu, W.; Zhou, Z.G.; Meng, Y.L. Straw retention combined with phosphorus fertilizer promotes soil phosphorus availability by enhancing soil P-related enzymes and the abundance of phoC and phoD genes. Soil Till. Res. 2022, 220, 105390. [Google Scholar] [CrossRef]
- Pan, C.; Mu, W.J.; Yu, W.R.N.; Sun, C.C.; Guo, J.H.; Chen, L.X.; Yu, Y.C.; Li, X.G. Microbial mechanisms of mixed planting in regulating soil phosphorus availability across different stand ages in Chinese fir plantations. J. Environ. Manag. 2025, 376, 124314. [Google Scholar] [CrossRef]
- Turner, B.L.; Driessen, J.P.; Haygarth, P.M.; Mckelvie, L.D. Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soil. Soil Biol. Biochem. 2003, 35, 187–189. [Google Scholar] [CrossRef]
- Krey, T.; Vassilev, N.; Baum, C.; Eichler-Löbermann, B. Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur. J. Soil Biol. 2013, 55, 124–130. [Google Scholar] [CrossRef]
- He, R.Y.; Luo, Z.Z.; Li, L.L.; Niu, Y.N.; Zhang, Y.Q.; Li, L.L.; Liu, J.H.; Chen, Z.M. Long-Term phosphate addition changes soil P accumulation via phoD-harbouring bacterial community in loess plateau. Eur. J. Soil Sci. 2025, 76, e70067. [Google Scholar] [CrossRef]
- Hu, Y.J.; Xia, Y.H.; Sun, Q.; Liu, K.P.; Chen, X.B.; Ge, T.D.; Zhu, B.L.; Zhang, Z.H.; Su, Y.R. Effects of long-term fertlization on phoD-harboring bacterial commurity in Karst soils. Sci. Total Environ. 2018, 628, 53–63. [Google Scholar] [CrossRef]
- Gou, X.M.; Cai, Y.; Wang, C.Q.; Li, B.; Zhang, R.P.; Zhang, Y.; Tang, X.Y.; Chen, Q.; Shen, J.; Deng, J.R.; et al. Effects of different long-term cropping systems on phoD-harboring bacterial community in red soils. J. Soil Sediment. 2021, 21, 376–387. [Google Scholar] [CrossRef]
- Bi, Q.F.; Li, K.J.; Zhang, B.X.; Liu, X.P.; Li, H.Z.; Jin, B.Z.; Ding, K.; Yang, X.R.; Lin, X.Y.; Zhu, Y.G. Partial replacement of inorganic phosphorus (P) by organic manure reshapes phosphate mobilizing bacterial community and promotes P bioavailability in a paddy soil. Sci. Total Environ. 2020, 703, 134977. [Google Scholar] [CrossRef]
- Tian, J.H.; Kuang, X.Z.; Tang, M.T.; Chen, X.D.; Huang, F.; Cai, X.Y.; Cai, K. Biochar application under low phosphorus input promotes soil organic phosphorus mineralization by shifting bacterial phoD gene community composition. Sci. Total Environ. 2021, 779, 146556. [Google Scholar] [CrossRef]
- Wang, Y.H.; Zhang, Q.; Li, J.J.; Lin, S.X.; Jia, X.L.; Zhang, Q.X.; Ye, J.H.; Wang, H.B.; Wu, Z.Y. Study on the effect of pH on rhizosphere soil fertility and the aroma quality of tea trees and their interactions. Agriculture 2023, 13, 1739. [Google Scholar] [CrossRef]
- Khan, A.; Yang, X.Y.; Sun, B.H.; Zhang, S.L.; He, B.H. Responses of crop and soil phosphorus fractions to long-term fertilization regimes in a loess soil in northwest China. Agronomy 2023, 13, 3072. [Google Scholar] [CrossRef]
- Bao, S. Soil Agricultural Chemistry Analysis (Third Version); China Agriculture Press: Beijing, China, 2000; pp. 14–107. [Google Scholar]
- Lu, R. Methods for Agricultural Chemical Analysis of Soil; China Agricultural Science and Technology Press: Beijing, China, 1999; pp. 139–162. [Google Scholar]
- Wang, H.B.; Lin, L.W.; Wang, Y.H. Technical Specification for Tea Production, Processing and Safety Inspection; Xiamen University Press: Xiamen, China, 2020. [Google Scholar]
- Karlsson, F.H.; Tremaroli, V.; Nookaew, I.; Bergström, G.; Behre, C.J.; Fagerberg, B.; Nielsen, J.; Bäckhed, F. Gut metagenome in european women with normal, impaired and diabetic glucose control. Nature 2013, 498, 99–103. [Google Scholar] [CrossRef]
- Siles, J.A.; Starke, R.; Martinovic, T.; Fernandes, M.L.; Orgiazzi, A.; Bastida, F. Distribution of phosphorus cycling genes across land uses and microbial taxonomic groups based on metagenome and genome mining. Soil Biol. Biochem. 2022, 174, 108826. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, H.X.; Yang, C.L.; Wang, Y.D.; Xue, H.; Niu, Y.F. Rates of soil acidification in tea plantations and possible causes. Agr. Ecosyst. Environ. 2016, 233, 60–66. [Google Scholar] [CrossRef]
- Sun, L.L.; Zhang, M.S.; Liu, X.M.; Mao, Q.Z.; Shi, C.; Kochian, L.V.; Liao, H. Aluminium is essential for root growth and development of tea plants (Camellia sinensis). J. Integr. Plant Biol. 2020, 62, 984–997. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Y.H.; Zhang, Q.X.; Lin, S.X.; Zhang, Q.; Chen, Y.L.; Hong, L.; Jia, X.L.; Ye, J.H.; Wang, H.B. Effect of soil pH on the uptake of essential elements by tea plant and subsequent impact on growth and leaf quality. Agronomy 2024, 14, 1338. [Google Scholar] [CrossRef]
- Horanni, R.; Engelhardt, U.H. Determination of amino acids in white, green, black, oolong, pu-erh teas and tea products. J. Food Compos. Anal. 2013, 31, 94–100. [Google Scholar] [CrossRef]
- Chang, Y.N.; Wu, Z.D.; Peñuelas, J.; Sardans, J.; Chen, Y.Z.; Jiang, F.Y.; Wang, F. Organic management improves soil P availability via increasing inorganic P solubilization in tea plantations. Environ. Technol. Inno. 2025, 39, 104223. [Google Scholar] [CrossRef]
- Rose, T.J.; Hardiputra, B.; Rengel, Z. Wheat, canola and grain legume access to soil phosphorus fractions differs in soils with contrasting phosphorus dynamics. Plant Soil 2010, 326, 159–170. [Google Scholar] [CrossRef]
- Verma, S.; Subehia, S.K.; Sharma, S.P. Phosphorus fractions in an acid soil continuously fertilized with mineral and organic fertilizers. Biol. Fert. Soils. 2005, 41, 295–300. [Google Scholar] [CrossRef]
- Zhang, N.Y.; Qiong, W.; Zhang, X.Y.; Wu, Q.H.; Huang, S.M.; Zhu, P.; Yang, X.Y.; Zhang, S.X. Characteristics of inorganic phosphorus fractions and their correlations with soil properties in three non-acidic soils. J. Integr. Agr. 2022, 21, 3626–3636. [Google Scholar] [CrossRef]
- Li, J.B.; Xie, T.; Zhu, H.; Zhou, J.; Li, C.N.; Xiong, W.J.; Xu, L.; Wu, Y.H.; He, Z.; Li, X.Z. Alkaline phosphatase activity mediates soil organic phosphorus mineralization in a subalpine forest ecosystem. Geoderma 2021, 404, 115376. [Google Scholar] [CrossRef]
- Liu, Z.G.; Li, Y.C.; Zhang, S.A.; Fu, Y.Q.; Fan, X.H.; Patel, J.S.; Zhang, M. Characterization of phosphate-solubilizing bacteria isolated from calcareous soils. Appl. Soil Ecol. 2015, 96, 217–224. [Google Scholar] [CrossRef]
- Bender, S.F.; Wagg, C.; van der Heijden, M.G.A. An underground revolution: Biodiversity and soil ecological engineering for agricultural sustainability. Trends Ecol. Evol. 2016, 31, 440–452. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.M.; Wu, Y.C.; Zhao, J.Y.; Liu, Y.; Chen, Z.; Tang, Z.Y.; Tian, W.; Xi, Y.G.; Zhang, J.B. Long-term fertilization lowers the alkaline phosphatase activity by impacting the phoD-harboring bacterial community in rice-winter wheat rotation system. Sci. Total Environ. 2022, 821, 153406. [Google Scholar] [CrossRef]
- Ragot, S.A.; Huguenin-Elie, O.; Kertesz, M.A.; Frossard, E.; Bünemannet, E.K. Total and active microbial communities and phoD as affected by phosphate depletion and pH in soil. Plant Soil 2016, 408, 15–30. [Google Scholar] [CrossRef]
- Kuramae, E.E.; Yergeau, E.; Wong, L.C.; Pijl, A.S.; van Veen, J.A.; Kowalchuk, G.A. Soil characteristics more strongly influence soil bacterial communities than land use type. FEMS Microbiol. Ecol. 2012, 79, 12–24. [Google Scholar] [CrossRef]
- Liu, L.; Gao, Z.Y.; Yang, Y.; Gao, Y.; Mahmood, M.; Jiao, H.J.; Wang, Z.H.; Liu, J.S. Long-term high-P fertilizer input shifts soil P cycle genes and microorganism communities in dryland wheat production systems. Agric. Ecosyst. Environ. 2023, 342, 108226. [Google Scholar] [CrossRef]
- Lin, S.X.; Liu, Z.J.; Wang, Y.C.; Li, J.Y.; Wang, G.G.; Ye, J.H.; Wang, H.B.; He, H.B. Soil metagenomic analysis on changes of functional genes and microorganisms involved in nitrogen-cycle processes of acidified tea soils. Front. Plant Sci. 2022, 13, 998178. [Google Scholar] [CrossRef]
- Zhao, F.; Zhao, M.Z.; Wang, Y.; Guan, L.; Pang, F.H. Microbial community structures and diversities in strawberry rhizosphere soils based on high-throughput sequencing. Soils 2019, 51, 51–60. [Google Scholar]
- Li, C.Y.; He, Z.Y.; Hu, H.W.; He, J.Z. Niche specialization of comammox Nitrospira in terrestrial ecosystems: Oligotrophic or copiotrophic? Crit. Rev. Environ. Sci. Technol. 2023, 53, 161–176. [Google Scholar] [CrossRef]
- Choi, I.; Srinivasan, S.; Kim, M.K. Sphingomonas Immobilis sp. nov., and Sphingomonas natans sp. nov. bacteria isolated from soil. Arch. Microbiol. 2024, 206, 278. [Google Scholar] [CrossRef] [PubMed]
Physicochemical Property | pH Value | TN | TP | TK | OM |
---|---|---|---|---|---|
(g/kg) | (g/kg) | (g/kg) | (mg/kg) | ||
AT | 3.75 ± 0.02 b | 1.38 ± 0.01 b | 0.99 ± 0.01 b | 1.73 ± 0.09 a | 36.28 ± 0.18 a |
MT | 4.74 ± 0.03 a | 1.74 ± 0.11 a | 1.21 ± 0.01 a | 1.77 ± 0.12 a | 31.34 ± 0.59 b |
Phosphorus Fractions | AT | MT |
---|---|---|
Resin-Pi | 15.25 ± 0.29 b | 36.13 ± 0.01 a |
NaHCO3-Pi | 148.25 ± 0.07 b | 200.77 ± 0.14 a |
NaHCO3-Po | 156.17 ± 0.66 c | 209.75 ± 0.56 a |
NaOH-Pi | 156.58 ± 0.8 b | 199.51 ± 0.43 a |
NaOH-Po | 174.04 ± 2.29 b | 221.47 ± 0.56 a |
Dil.HCl-Pi | 41.94 ± 0.57 b | 58.04 ± 0.31 a |
Conc.HCl-Pi | 100.94 ± 0.2 a | 96.24 ± 0.03 b |
Conc.HCl-Po | 107.54 ± 0.05 a | 102.41 ± 1.2 b |
Residual-P | 92.87 ± 1.91 a | 85.63 ± 0.77 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Wang, T.; Zheng, J.; Lin, W.; Jia, X.; Zhang, Q.; Wang, Y.; Ye, J.; Wang, H. Soil Acidification Alters Phosphorus Fractions and phoD-Harboring Microbial Communities in Tea Plantation Soils, Thus Affecting Tea Yield and Quality. Horticulturae 2025, 11, 1191. https://doi.org/10.3390/horticulturae11101191
Lin S, Wang T, Zheng J, Lin W, Jia X, Zhang Q, Wang Y, Ye J, Wang H. Soil Acidification Alters Phosphorus Fractions and phoD-Harboring Microbial Communities in Tea Plantation Soils, Thus Affecting Tea Yield and Quality. Horticulturae. 2025; 11(10):1191. https://doi.org/10.3390/horticulturae11101191
Chicago/Turabian StyleLin, Shunxian, Tingting Wang, Junfeng Zheng, Weiwei Lin, Xiaoli Jia, Qi Zhang, Yulin Wang, Jianghua Ye, and Haibin Wang. 2025. "Soil Acidification Alters Phosphorus Fractions and phoD-Harboring Microbial Communities in Tea Plantation Soils, Thus Affecting Tea Yield and Quality" Horticulturae 11, no. 10: 1191. https://doi.org/10.3390/horticulturae11101191
APA StyleLin, S., Wang, T., Zheng, J., Lin, W., Jia, X., Zhang, Q., Wang, Y., Ye, J., & Wang, H. (2025). Soil Acidification Alters Phosphorus Fractions and phoD-Harboring Microbial Communities in Tea Plantation Soils, Thus Affecting Tea Yield and Quality. Horticulturae, 11(10), 1191. https://doi.org/10.3390/horticulturae11101191