Essential Oils from Native Brazilian Plants of the Genus Eugenia as an Innovative and Sustainable Source of Active Ingredients for Food Systems and Human Health and Well-Being
Abstract
:1. Introduction
2. Search Strategy and Study Selection
3. Chemical Composition of Essential Oils
4. Biological Activities of Essential Oils
4.1. Antimicrobial Activity
4.1.1. Antimicrobial Activity against Bacteria
4.1.2. Antimicrobial Activity against Fungi and Yeast
4.2. Antioxidant Activity
4.3. Anticancer Activity
4.4. Antiparasitic Activity
4.5. Other Biological Activities
5. Limitations, Challenges, and Future Research Directions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Peixoto Araujo, N.M.; Berni, P.; Zandoná, L.R.; de Toledo, N.M.V.; da Silva, P.P.M.; de Toledo, A.A.; Maróstica Junior, M.R. Potential of Brazilian Berries in Developing Innovative, Healthy, and Sustainable Food Products. Sustain. Food Technol. 2024, 2, 506–530. [Google Scholar] [CrossRef]
- Arruda, H.S.; Silva, E.K.; Peixoto Araujo, N.M.; Pereira, G.A.; Pastore, G.M.; Marostica Junior, M.R. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021, 26, 2632. [Google Scholar] [CrossRef] [PubMed]
- United Nations. The 17 Goals—Sustainable Development. Available online: https://sdgs.un.org/goals# (accessed on 19 March 2024).
- Henderson, K.; Loreau, M. A Model of Sustainable Development Goals: Challenges and Opportunities in Promoting Human Well-Being and Environmental Sustainability. Ecol. Model. 2023, 475, 110164. [Google Scholar] [CrossRef]
- Arruda, H.S.; Angolini, C.F.F.; Eberlin, M.N.; Pastore, G.M.; Marostica Junior, M.R. UHPLC-ESI-QTOF-MS/MS Profiling of Phytochemicals from Araticum Fruit (Annona crassiflora Mart.) and Its Antioxidant Activity. Foods 2023, 12, 3456. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, A.P.A.; Conte-Junior, C.A. Health Benefits of Phytochemicals from Brazilian Native Foods and Plants: Antioxidant, Antimicrobial, Anti-Cancer, and Risk Factors of Metabolic/Endocrine Disorders Control. Trends Food Sci. Technol. 2021, 111, 534–548. [Google Scholar] [CrossRef]
- Farias, T.R.B.; Sanches, N.B.; Petrus, R.R. The Amazing Native Brazilian Fruits. Crit. Rev. Food Sci. Nutr. 2023, 1–18. [Google Scholar] [CrossRef] [PubMed]
- REFLORA. Eugenia in Flora e Funga Do Brasil. Available online: https://floradobrasil.jbrj.gov.br/consulta/?grupo=6&familia=171&genero=Eugenia&especie=&autor=&nomeVernaculo=&nomeCompleto=&formaVida=null&substrato=null&ocorreBrasil=QUALQUER&ocorrencia=OCORRE&endemismo=TODOS&origem=TODOS®iao=QUALQUER&ilhaOceanica=32767&estado=QUALQUER&domFitogeografi-cos=QUALQUER&vegetacao=TODOS&mostrarAte=SUBESP_VAR&opcoesBusca=TODOS_OS_NOMES&loginUsuario=Visitante&senhaUsuario=&contexto=consulta-publica&pagina=1# (accessed on 20 March 2024).
- Peixoto Araujo, N.M.; Arruda, H.S.; de Paulo Farias, D.; Molina, G.; Pereira, G.A.; Pastore, G.M. Plants from the Genus Eugenia as Promising Therapeutic Agents for the Management of Diabetes Mellitus: A Review. Food Res. Int. 2021, 142, 110182. [Google Scholar] [CrossRef]
- de Araújo, F.F.; Neri-Numa, I.A.; de Paulo Farias, D.; da Cunha, G.R.M.C.; Pastore, G.M. Wild Brazilian Species of Eugenia Genera (Myrtaceae) as an Innovation Hotspot for Food and Pharmacological Purposes. Food Res. Int. 2019, 121, 57–72. [Google Scholar] [CrossRef] [PubMed]
- de Souza, A.; de Oliveira, C.; de Oliveira, V.; Betim, F.; Miguel, O.; Miguel, M. Traditional Uses, Phytochemistry, and Antimicrobial Activities of Eugenia Species—A Review. Planta Med. 2018, 84, 1232–1248. [Google Scholar] [CrossRef]
- da Costa, J.S.; da Cruz, E.D.N.S.; Setzer, W.N.; da Silva, J.K.D.R.; Maia, J.G.S.; Figueiredo, P.L.B. Essentials Oils from Brazilian Eugenia and Syzygium Species and Their Biological Activities. Biomolecules 2020, 10, 1155. [Google Scholar] [CrossRef]
- da Silva, L.A.; da Silva, R.S.; de Oliveira, M.R.; Guimarães, A.C.; Takeara, R. Chemical Composition and Biological Activities of Essential Oils from Myrtaceae Species Growing in Amazon: An Updated Review. J. Essent. Oil Res. 2023, 35, 103–116. [Google Scholar] [CrossRef]
- MAPA/MMA. Espécies Nativas da Sociobiodiversidade Brasileira de Valor Alimentício—Portaria Interministerial dos Ministérios da Agricultura, Pecuária e Abastecimento e do Meio Ambiente (MAPA/MMA) No 10 de 21 de Julho de 2021. Available online: https://in.gov.br/en/web/dou/-/portaria-interministerial-mapa/mma-n-10-de-21-de-julho-de-2021-333502918 (accessed on 18 March 2024).
- Maurya, A.; Prasad, J.; Das, S.; Dwivedy, A.K. Essential Oils and Their Application in Food Safety. Front. Sustain. Food Syst. 2021, 5, 653420. [Google Scholar] [CrossRef]
- Silvestre, W.P.; Livinalli, N.F.; Baldasso, C.; Tessaro, I.C. Pervaporation in the Separation of Essential Oil Components: A Review. Trends Food Sci. Technol. 2019, 93, 42–52. [Google Scholar] [CrossRef]
- Divekar, P.A.; Narayana, S.; Divekar, B.A.; Kumar, R.; Gadratagi, B.G.; Ray, A.; Singh, A.K.; Rani, V.; Singh, V.; Singh, A.K.; et al. Plant Secondary Metabolites as Defense Tools against Herbivores for Sustainable Crop Protection. Int. J. Mol. Sci. 2022, 23, 2690. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; El Basuini, M.F.; Zaineldin, A.I.; Yilmaz, S.; Hasan, M.T.; Ahmadifar, E.; El Asely, A.M.; Abdel-Latif, H.M.R.; Alagawany, M.; Abu-Elala, N.M.; et al. Antiparasitic and Antibacterial Functionality of Essential Oils: An Alternative Approach for Sustainable Aquaculture. Pathogens 2021, 10, 185. [Google Scholar] [CrossRef]
- Sharma, M.; Grewal, K.; Jandrotia, R.; Batish, D.R.; Singh, H.P.; Kohli, R.K. Essential Oils as Anticancer Agents: Potential Role in Malignancies, Drug Delivery Mechanisms, and Immune System Enhancement. Biomed. Pharmacother. 2022, 146, 112514. [Google Scholar] [CrossRef]
- Ramsey, J.T.; Shropshire, B.C.; Nagy, T.R.; Chambers, K.D.; Li, Y.; Korach, K.S. Essential Oils and Health. Yale J. Biol. Med. 2020, 93, 291–305. [Google Scholar]
- Rivera, N.; Uría, L.; Ronquillo, C.; Galarza, C.; Martínez, I. Antioxidant Potential of Five Essential Oils from Kutukú Biological Station. Pharmacologyonline 2018, 3, 161–169. [Google Scholar]
- dos Santos, C.R.B.; Sampaio, M.G.V.; Vandesmet, L.C.S.; dos Santos, B.S.; de Menezes, S.A.; Portela, B.Y.M.; Gomes, D.W.R.; Correia, M.T.S.; Gomez, M.C.V.; de Alencar Menezes, I.R.; et al. Chemical Composition and Biological Activities of the Essential Oil from Eugenia stipitata McVaugh Leaves. Nat. Prod. Res. 2023, 37, 3844–3850. [Google Scholar] [CrossRef]
- Jerônimo, L.B.; da Costa, J.S.; Pinto, L.C.; Montenegro, R.C.; Setzer, W.N.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Antioxidant and Cytotoxic Activities of Myrtaceae Essential Oils Rich in Terpenoids from Brazil. Nat. Prod. Commun. 2021, 16, 1–13. [Google Scholar] [CrossRef]
- Costa, W.K.; de Oliveira, J.R.S.; de Oliveira, A.M.; da Silva Santos, I.B.; da Cunha, R.X.; de Freitas, A.F.S.; da Silva, J.W.L.M.; Silva, V.B.G.; de Aguiar, J.C.R.d.O.F.; da Silva, A.G.; et al. Essential Oil from Eugenia stipitata McVaugh Leaves Has Antinociceptive, Anti-Inflammatory and Antipyretic Activities without Showing Toxicity in Mice. Ind. Crops Prod. 2020, 144, 112059. [Google Scholar] [CrossRef]
- Galheigo, M.R.U.; Prado, L.C.D.S.; Mundin, A.M.M.; Gomes, D.O.; Chang, R.; Lima, A.M.C.; Canabrava, H.A.N.; Bispo-da-Silva, L.B. Antidiarrhoeic Effect of Eugenia dysenterica DC (Myrtaceae) Leaf Essential Oil. Nat. Prod. Res. 2016, 30, 1182–1185. [Google Scholar] [CrossRef]
- da Silva, S.M.; Costa, C.R.; Gelfuso, G.M.; Guerra, E.S.; Nóbrega, Y.D.M.; Gomes, S.; Pic-Taylor, A.; Fonseca-Bazzo, Y.; Silveira, D.; Magalhães, P. Wound Healing Effect of Essential Oil Extracted from Eugenia dysenterica DC (Myrtaceae) Leaves. Molecules 2018, 24, 2. [Google Scholar] [CrossRef]
- Oliveira, D.C.S.; Kaneko, T.M.; Young, M.C.M.; Murakami, C.; Cordeiro, I.; Moreno, P.R.H. Chemical Composition, Antimicrobial and Antioxidant Activities of Eugenia dysenterica DC Essential Oil. Emerg. Sci. J. 2018, 2, 410. [Google Scholar] [CrossRef]
- Santos, L.S.; Alves, C.C.F.; Estevam, E.B.B.; Martins, C.H.G.; Silva, T.D.S.; Esperandim, V.R.; Miranda, M.L.D. Chemical Composition, in vitro Trypanocidal and Antibacterial Activities of the Essential Oil from the Dried Leaves of Eugenia dysenterica DC from Brazil. J. Essent. Oil Bear. Plants 2019, 22, 347–355. [Google Scholar] [CrossRef]
- D’Almeida, W.; Monteiro, L.M.; Raman, V.; Rehman, J.U.; Paludo, K.S.; de Noronha Sales Maia, B.H.L.; Casapula, I.; Khan, I.A.; Farago, P.V.; Budel, J.M. Microscopy of Eugenia involucrata, Chemical Composition and Biological Activities of the Volatile Oil. Rev. Bras. Farmacogn. 2021, 31, 239–243. [Google Scholar] [CrossRef]
- Toledo, A.G.; de Souza, J.G.D.L.; da SIilva, J.P.B.; Favreto, W.A.J.; da Costa, W.F.; Pinto, F.G.D.S. Chemical Composition, Antimicrobial and Antioxidant Activity of the Essential Oil of Leaves of Eugenia involucrata DC. Biosci. J. 2020, 36, 568–577. [Google Scholar] [CrossRef]
- Siebert, D.A.; Tenfen, A.; Yamanaka, C.N.; De Cordova, C.M.M.; Scharf, D.R.; Simionatto, E.L.; Alberton, M.D. Evaluation of Seasonal Chemical Composition, Antibacterial, Antioxidant and Anticholinesterase Activity of Essential Oil from Eugenia brasiliensis Lam. Nat. Prod. Res. 2015, 29, 289–292. [Google Scholar] [CrossRef] [PubMed]
- da Silva, R.O.M.; Castro, J.W.G.; Dantas Junior, O.D.M.; de Araújo, A.C.J.; Leandro, M.K.D.N.S.; Costa, R.J.O.; Pinto, L.L.; Leandro, L.M.G.; da Silva, L.E.; do Amaral, W.; et al. Photoinduced Antibacterial Activity of the Essential Oils from Eugenia brasiliensis Lam and Piper mosenii C. DC. by Blue Led Light. Antibiotics 2019, 8, 242. [Google Scholar] [CrossRef]
- dos Santos, F.R.; Rezende, S.R.D.F.; dos Santos, L.V.; da Silva, E.R.M.N.; Caiado, M.S.; de Souza, M.A.A.; Pontes, E.G.; de Carvalho, M.G.; Braz Filho, R.; Castro, R.N. Larvicidal and Fungicidal Activity of the Leaf Essential Oil of Five Myrtaceae Species. Chem. Biodivers. 2023, 20, e202300823. [Google Scholar] [CrossRef]
- Carneiro, N.S.; Alves, C.C.F.; Alves, J.M.; Egea, M.B.; Martins, C.H.G.; Silva, T.S.; Bretanha, L.C.; Balleste, M.P.; Micke, G.A.; Silveira, E.V.; et al. Chemical Composition, Antioxidant and Antibacterial Activities of Essential Oils from Leaves and Flowers of Eugenia klotzschiana Berg (Myrtaceae). Acad. Bras. Cienc. 2017, 89, 1907–1915. [Google Scholar] [CrossRef]
- Carneiro, N.S.; Alves, J.M.; Alves, C.C.F.; Esperandim, V.R.; Miranda, M.L.D. Essential Oil of Flowers from Eugenia klotzschiana (Myrtaceae): Chemical Composition and In Vitro Trypanocidal and Cytotoxic Activities. Rev. Virtual Química 2017, 9, 1381–1392. [Google Scholar] [CrossRef]
- Franciscato, L.M.S.D.S.; da Silva, M.R.; Andrich, F.; Sakai, O.A.; Doyama, J.T.; Fernandes Júnior, A.; Moritz, C.M.F. Chemical Characterization and Antimicrobial Activity of Essential Oils of Mint (Mentha spicata L.) and Surinam Cherry (Eugenia uniflora L.). Orbital Electron. J. Chem. 2018, 10, 475–481. [Google Scholar] [CrossRef]
- Barbosa, L.N.; Probst, I.D.S.; Andrade, B.F.M.T.; Alves, F.C.B.; Albano, M.; da Cunha, M.; de, L.R.d.S.; Doyama, J.T.; Rall, V.L.M.; Júnior, A.F. In Vitro Antibacterial and Chemical Properties of Essential Oils Including Native Plants from Brazil against Pathogenic and Resistant Bacteria. J. Oleo Sci. 2015, 64, 289–298. [Google Scholar] [CrossRef] [PubMed]
- Antonelo, F.A.; Rodrigues, M.S.; Cruz, L.C.; Pagnoncelli, M.G.; da Cunha, M.A.A.; Bonatto, S.J.R.; Busso, C.; Wagner Júnior, A.; Montanher, P.F. Bioactive Compounds Derived from Brazilian Myrtaceae Species: Chemical Composition and Antioxidant, Antimicrobial and Cytotoxic Activities. Biocatal. Agric. Biotechnol. 2023, 48, 102629. [Google Scholar] [CrossRef]
- Pereira, N.L.F.; Aquino, P.E.A.; Júnior, J.G.A.S.; Cristo, J.S.; Vieira Filho, M.A.; Moura, F.F.; Ferreira, N.M.N.; Silva, M.K.N.; Nascimento, E.M.; Correia, F.M.A.; et al. In Vitro Evaluation of the Antibacterial Potential and Modification of Antibiotic Activity of the Eugenia uniflora L. Essential Oil in Association with Led Lights. Microb. Pathog. 2017, 110, 512–518. [Google Scholar] [CrossRef]
- dos Santos, J.F.S.; Rocha, J.E.; Bezerra, C.F.; Silva, M.K.D.N.; de Matos, Y.M.L.S.; de Freitas, T.S.; dos Santos, A.T.L.; da Cruz, R.P.; Machado, A.J.T.; Rodrigues, T.H.S.; et al. Chemical Composition, Antifungal Activity and Potential Anti-Virulence Evaluation of the Eugenia uniflora Essential Oil against Candida spp. Food Chem. 2018, 261, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Santos, F.R.; Braz-Filho, R.; Castro, R.N. Influence of Age of the Leaves of Eugenia uniflora L. on Chemical Composition of Essential Oil. Quim. Nova 2015, 38, 762–768. [Google Scholar] [CrossRef]
- Ascari, J.; Pereira, M.F.M.; Schaffka, V.M.; Nunes, D.S.; Magalhães, C.G.; Santos, J.S.; Granato, D.; do Carmo, M.A.V.; Azevedo, L.; Archilha, M.V.L.R.; et al. Selina-1,3,7(11)-Trien-8-one and Oxidoselina-1,3,7(11)-Trien-8-one from Eugenia uniflora Leaf Essential Oil and Their Cytotoxic Effects on Human Cell Lines. Molecules 2021, 26, 740. [Google Scholar] [CrossRef] [PubMed]
- De Jesus, E.N.S.; Tavares, M.S.; Barros, P.A.C.; Miller, D.C.; da Silva, P.I.C.; Freitas, J.J.S.; de Lima, A.B.; Setzer, W.N.; da Silva, J.K.R.; Figueiredo, P.L.B. Chemical Composition, Antinociceptive and Anti-Inflammatory Activities of the Curzerene Type Essential Oil of Eugenia uniflora from Brazil. J. Ethnopharmacol. 2023, 317, 116859. [Google Scholar] [CrossRef]
- Sobeh, M.; Braun, M.S.; Krstin, S.; Youssef, F.S.; Ashour, M.L.; Wink, M. Chemical Profiling of the Essential Oils of Syzygium aqueum, Syzygium samarangense and Eugenia uniflora and Their Discrimination Using Chemometric Analysis. Chem. Biodivers. 2016, 13, 1537–1550. [Google Scholar] [CrossRef] [PubMed]
- Sviech, F.; Pianoski, K.E.; Kruger, R.L.; Kotovicz, V.; Bainy, E.M.B.M.; Sakata, G.S.B.; Bombardelli, M.C.M. Biological Activity of Essential Oil of Pitanga (Eugenia uniflora L.) Leaves. Bol. Cent. Pesqui. Process. Aliment. 2019, 36, 28–38. [Google Scholar] [CrossRef]
- Figueiredo, P.L.B.; Pinto, L.C.; da Costa, J.S.; da Silva, A.R.C.; Mourão, R.H.V.; Montenegro, R.C.; da Silva, J.K.R.; Maia, J.G.S. Composition, Antioxidant Capacity and Cytotoxic Activity of Eugenia uniflora L. Chemotype-Oils from the Amazon. J. Ethnopharmacol. 2019, 232, 30–38. [Google Scholar] [CrossRef]
- da Costa, J.S.; Barroso, A.S.; Mourão, R.H.V.; da Silva, J.K.R.; Maia, J.G.S.; Figueiredo, P.L.B. Seasonal and Antioxidant Evaluation of Essential Oil from Eugenia uniflora L., Curzerene-Rich, Thermally Produced in Situ. Biomolecules 2020, 10, 328. [Google Scholar] [CrossRef] [PubMed]
- da Silva, V.P.; Alves, C.C.F.; Miranda, M.L.D.; Bretanha, L.C.; Balleste, M.P.; Micke, G.A.; Silveira, E.V.; Martins, C.H.G.; Ambrosio, M.A.L.V.; de Souza Silva, T.; et al. Chemical Composition and in vitro Leishmanicidal, Antibacterial and Cytotoxic Activities of Essential Oils of the Myrtaceae Family Occurring in the Cerrado Biome. Ind. Crops Prod. 2018, 123, 638–645. [Google Scholar] [CrossRef]
- Luz, T.R.S.A.; Leite, J.A.C.; de Mesquita, L.S.S.; Bezerra, S.A.; Gomes Ribeiro, E.C.; Silveira, D.P.B.; de Mesquita, J.W.C.; do Amaral, F.M.M.; Coutinho, D.F. Seasonal Variation in the Chemical Composition and Larvicidal Activity against Aedes aegypti L. of Essential Oils from Brazilian Amazon. Exp. Parasitol. 2022, 243, 108405. [Google Scholar] [CrossRef] [PubMed]
- Cipriano, R.R.; Duarte, M.C.T.; Maciel Tomazzoli, M.; de Sales Maia, B.H.N.; Deschamps, C. Yield, Composition and Biological Activities of Eugenia uniflora L. Essential Oil According to Seasonality. J. Essent. Oil Res. 2023, 35, 406–413. [Google Scholar] [CrossRef]
- De Assis, A.L.A.; Cipriano, R.R.; Cuquel, F.L.; Deschamps, C. Effect of Drying Method and Storage Conditions on the Essential Oil Yield and Composition in Eugenia uniflora L. Leaves. Rev. Colomb. Cienc. Hortícolas 2020, 14, 275–282. [Google Scholar] [CrossRef]
- Cipriano, R.R.; Maia, B.H.L.N.S.; Deschamps, C. Chemical Variability of Essential Oils of Eugenia uniflora L. Genotypes and Their Antioxidant Activity. Acad. Bras. Cienc. 2021, 93, e20181299. [Google Scholar] [CrossRef]
- Ramalho, R.R.F.; Barbosa, J.M.G.; Ferri, P.H.; Santos, S.d.C. Variability of Polyphenols and Volatiles during Fruit Development of Three Pitanga (Eugenia uniflora L.) Biotypes. Food Res. Int. 2019, 119, 850–858. [Google Scholar] [CrossRef]
- Durazzini, A.M.S.; Machado, C.H.M.; Fernandes, C.C.; Miranda, M.L.D. Chemical Composition and Effect of Hydrodistillation Times on the Yield of Essential Oil from Eugenia pyriformis Leaves. Orbital Electron. J. Chem. 2019, 11, 334–338. [Google Scholar] [CrossRef]
- Armstrong, L.; Merino, F.J.Z.; Miguel, M.D.; Lordello, A.L.L.; Migue, O.G. Chemical Profile of Essential Oil, Extracts and Fractions of Eugenia pyriformis Cambess. and Its Antioxidant, Cytotoxic and Allelopathic Activities. Braz. Arch. Biol. Technol. 2023, 66, e23220352. [Google Scholar] [CrossRef]
- de Souza, A.M.; de Oliveira, V.B.; de Oliveira, C.F.; Betim, F.C.M.; Pacheco, S.D.G.; Cogo, L.L.; Miguel, O.G.; Miguel, M.D. Chemical Composition and In Vitro Antimicrobial Activity of the Essential Oil Obtained from Eugenia pyriformis Cambess. (Myrtaceae). Braz. Arch. Biol. Technol. 2021, 64, e21200663. [Google Scholar] [CrossRef]
- Durazzini, A.M.S.; Machado, C.H.M.; Fernandes, C.C.; Willrich, G.B.; Crotti, A.E.M.; Candido, A.C.B.B.; Magalhães, L.G.; Squarisi, I.S.; Ribeiro, A.B.; Tavares, D.C.; et al. Eugenia pyriformis Cambess: A Species of the Myrtaceae Family with Bioactive Essential Oil. Nat. Prod. Res. 2019, 35, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Nahar, L.; El-Seedi, H.R.; Khalifa, S.A.M.; Mohammadhosseini, M.; Sarker, S.D. Ruta Essential Oils: Composition and Bioactivities. Molecules 2021, 26, 4766. [Google Scholar] [CrossRef] [PubMed]
- Mohammadhosseini, M.; Sarker, S.D.; Akbarzadeh, A. Chemical Composition of the Essential Oils and Extracts of Achillea Species and Their Biological Activities: A Review. J. Ethnopharmacol. 2017, 199, 257–315. [Google Scholar] [CrossRef] [PubMed]
- Gonelimali, F.D.; Lin, J.; Miao, W.; Xuan, J.; Charles, F.; Chen, M.; Hatab, S.R. Antimicrobial Properties and Mechanism of Action of Some Plant Extracts against Food Pathogens and Spoilage Microorganisms. Front. Microbiol. 2018, 9, 389103. [Google Scholar]
- Costa, W.K.; de Oliveira, A.M.; Santos, I.B.D.S.; Silva, V.B.G.; da Silva, E.K.C.; Alves, J.V.D.O.; da Silva, A.P.S.A.; de Menezes Lima, V.L.; dos Santos Correia, M.T.; da Silva, M.V. Antibacterial Mechanism of Eugenia stipitata McVaugh Essential Oil and Synergistic Effect against Staphylococcus aureus. S. Afr. J. Bot. 2022, 147, 724–730. [Google Scholar] [CrossRef]
- de Souza, J.M.; Rodrigues, M.V.P.; Cirqueira, R.T.; Alves, M.J.Q.D.F.; Lordelo, E.P.; de Oliveira, C.F.; Pietro, R.C.L.R. Evaluation of Antimicrobial, Hypotensive and Diuretic Effect of Eugenia uniflora Extracts. Mundo Saude 2018, 42, 269–282. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. The Inhibitory Effect of Plant Essential Oils on Foodborne Pathogenic Bacteria in Food. Crit. Rev. Food Sci. Nutr. 2019, 59, 3281–3292. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Sureda, A.; Tenore, G.; Daglia, M.; Sharifi-Rad, M.; Valussi, M.; Tundis, R.; Sharifi-Rad, M.; Loizzo, M.; Ademiluyi, A.; et al. Biological Activities of Essential Oils: From Plant Chemoecology to Traditional Healing Systems. Molecules 2017, 22, 70. [Google Scholar] [CrossRef] [PubMed]
- Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances. Nat. Protoc. 2008, 3, 163–175. [Google Scholar] [CrossRef]
- Pandey, A.K.; Kumar, P.; Singh, P.; Tripathi, N.N.; Bajpai, V.K. Essential Oils: Sources of Antimicrobials and Food Preservatives. Front. Microbiol. 2017, 7, 2161. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Khan, H. Advances in Antioxidant Potential of Natural Alkaloids. Curr. Bioact. Compd. 2017, 13, 101–108. [Google Scholar] [CrossRef]
- Ilmi, Z.N.; Wulandari, P.A.C.; Husen, S.A.; Winarni, D.; Alamsjah, M.A.; Awang, K.; Vastano, M.; Pellis, A.; Macquarrie, D.; Pudjiastuti, P. Characterization of Alginate from Sargassum duplicatum and the Antioxidant Effect of Alginate–Okra Fruit Extracts Combination for Wound Healing on Diabetic Mice. Appl. Sci. 2020, 10, 6082. [Google Scholar] [CrossRef]
- Munteanu, I.G.; Apetrei, C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int. J. Mol. Sci. 2021, 22, 3380. [Google Scholar] [CrossRef]
- Arruda, H.S.; Borsoi, F.T.; Andrade, A.C.; Pastore, G.M.; Marostica Junior, M.R. Scientific Advances in the Last Decade on the Recovery, Characterization, and Functionality of Bioactive Compounds from the Araticum Fruit (Annona crassiflora Mart.). Plants 2023, 12, 1536. [Google Scholar] [CrossRef]
- Da Silva, E.B.P.; Matsuo, A.L.; Figueiredo, C.R.; Chaves, M.H.; Sartorelli, P.; Lago, J.H.G. Chemical Constituents and Cytotoxic Evaluation of Essential Oils from Leaves of Porcelia macrocarpa (Annonaceae). Nat. Prod. Commun. 2013, 8, 1934578X1300800. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Guo, J.; Wang, Q.; Zhu, S.; Gao, S.; Yang, C.; Wei, M.; Pan, X.; Zhu, W.; et al. Cytotoxic and Antitumor Effects of Curzerene from Curcuma longa. Planta Med. 2017, 83, 23–29. [Google Scholar] [CrossRef]
- Dai, Z.J.; Tang, W.; Lu, W.F.; Gao, J.; Kang, H.F.; Ma, X.B.; Min, W.L.; Wang, X.J.; Wu, W.Y. Antiproliferative and Apoptotic Effects of β-Elemene on Human Hepatoma HepG2 Cells. Cancer Cell Int. 2013, 13, 27. [Google Scholar] [CrossRef]
- Dahham, S.; Tabana, Y.; Iqbal, M.; Ahamed, M.; Ezzat, M.; Majid, A.; Majid, A. The Anticancer, Antioxidant and Antimicrobial Properties of the Sesquiterpene β-Caryophyllene from the Essential Oil of Aquilaria crassna. Molecules 2015, 20, 11808–11829. [Google Scholar] [CrossRef]
- Altamura, F.; Rajesh, R.; Catta-Preta, C.M.C.; Moretti, N.S.; Cestari, I. The Current Drug Discovery Landscape for Trypanosomiasis and Leishmaniasis: Challenges and Strategies to Identify Drug Targets. Drug Dev. Res. 2022, 83, 225–252. [Google Scholar] [CrossRef] [PubMed]
- Kourbeli, V.; Chontzopoulou, E.; Moschovou, K.; Pavlos, D.; Mavromoustakos, T.; Papanastasiou, I.P. An Overview on Target-Based Drug Design against Kinetoplastid Protozoan Infections: Human African Trypanosomiasis, Chagas Disease and Leishmaniases. Molecules 2021, 26, 4629. [Google Scholar] [CrossRef] [PubMed]
- Kauffmann, C.; Ethur, E.M.; Buhl, B.; Scheibel, T.; Machado, G.M.C.; Cavalheiro, M.M.C. Potential Antileishmanial Activity of Essential Oils of Native Species from Southern Brazil. Environ. Nat. Resour. Res. 2016, 6, 18. [Google Scholar] [CrossRef]
- Baldissera, M.D.; Grando, T.H.; Souza, C.F.; Cossetin, L.F.; Sagrillo, M.R.; Nascimento, K.; da Silva, A.P.T.; Dalla Lana, D.F.; Da Silva, A.S.; Stefani, L.M.; et al. Nerolidol Nanospheres Increases Its Trypanocidal Efficacy against Trypanosoma evansi: New Approach against Diminazene Aceturate Resistance and Toxicity. Exp. Parasitol. 2016, 166, 144–149. [Google Scholar] [CrossRef]
- Moemenbellah-Fard, M.D.; Abdollahi, A.; Ghanbariasad, A.; Osanloo, M. Antibacterial and Leishmanicidal Activities of Syzygium aromaticum Essential Oil versus Its Major Ingredient, Eugenol. Flavour. Fragr. J. 2020, 35, 534–540. [Google Scholar] [CrossRef]
- Arruda, D.C.; Miguel, D.C.; Yokoyama-Yasunaka, J.K.U.; Katzin, A.M.; Uliana, S.R.B. Inhibitory Activity of Limonene against Leishmania Parasites in vitro and in vivo. Biomed. Pharmacother. 2009, 63, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Moreno, É.M.; Leal, S.M.; Stashenko, E.E.; García, L.T. Induction of Programmed Cell Death in Trypanosoma cruzi by Lippia alba Essential Oils and Their Major and Synergistic Terpenes (Citral, Limonene and Caryophyllene Oxide). BMC Complement. Altern. Med. 2018, 18, 225. [Google Scholar] [CrossRef]
- Otoguro, K.; Iwatsuki, M.; Ishiyama, A.; Namatame, M.; Nishihara-Tukashima, A.; Kiyohara, H.; Hashimoto, T.; Asakawa, Y.; Mura, S.; Yamada, H. In Vitro Antitrypanosomal Activity of Plant Terpenes against Trypanosoma brucei. Phytochemistry 2011, 72, 2024–2030. [Google Scholar] [CrossRef]
- Bailen, M.; Martínez-Díaz, R.A.; Hoffmann, J.J.; Gonzalez-Coloma, A. Molecular Diversity from Arid-Land Plants: Valorization of Terpenes and Biotransformation Products. Chem. Biodivers. 2020, 17, e1900663. [Google Scholar] [CrossRef]
- Soares, D.C.; Portella, N.A.; Ramos, M.F.D.S.; Siani, A.C.; Saraiva, E.M. Trans-β-Caryophyllene: An Effective Antileishmanial Compound Found in Commercial Copaiba Oil (Copaifera spp.). Evid.-Based Complement. Altern. Med. 2013, 2013, 761323. [Google Scholar] [CrossRef] [PubMed]
- Adão, I.S.; Garcia, A.R.; Sette, K.M.; Adade, C.M.; de Andrade Silva, J.R.; Amaral, A.C.F.; Pinheiro, A.S.; Rodrigues, I.A. Enantioselectivity of Pinene against Leishmania amazonensis. Med. Chem. Res. 2024, 33, 127–135. [Google Scholar] [CrossRef]
- Amaral, R.G.; Baldissera, M.D.; Grando, T.H.; Couto, J.C.M.; Posser, C.P.; Ramos, A.P.; Sagrillo, M.R.; Vaucher, R.A.; Da Silva, A.S.; Becker, A.P.; et al. Combination of the Essential Oil Constituents α-Pinene and β-Caryophyllene as a Potentiator of Trypanocidal Action on Trypanosoma evansi. J. Appl. Biomed. 2016, 14, 265–272. [Google Scholar] [CrossRef]
- Polanco-Hernández, G.; Escalante-Erosa, F.; García-Sosa, K.; Rosado, M.E.; Guzmán-Marín, E.; Acosta-Viana, K.Y.; Giménez-Turba, A.; Salamanca, E.; Peña-Rodríguez, L.M. Synergistic Effect of Lupenone and Caryophyllene Oxide against Trypanosoma cruzi. Evid.-Based Complement. Altern. Med. 2013, 2013, 435398. [Google Scholar] [CrossRef] [PubMed]
- Polanco-Hernández, G.M.; Giménez-Turba, A.; Salamanca, E.; Getti, G.; Rai, R.; Acosta-Viana, K.Y.; Arana-Argáez, V.E.; Torres-Romero, J.C.; Fernández-Martín, K.G.; Segura-Campos, M.R.; et al. Leishmanicidal Activity and Immunomodulatory Effect of a Mixture of Lupenone and β-Caryophyllene Oxide. Rev. Bras. Farmacogn. 2021, 31, 199–206. [Google Scholar] [CrossRef]
- Gasparrini, M.; Forbes-Hernandez, T.Y.; Cianciosi, D.; Quiles, J.L.; Mezzetti, B.; Xiao, J.; Giampieri, F.; Battino, M. The Efficacy of Berries against Lipopolysaccharide-Induced Inflammation: A Review. Trends Food Sci. Technol. 2021, 117, 74–91. [Google Scholar] [CrossRef]
Popular Name | Scientific Name | Most Used Parts and Examples of Use | Natural Geographic Distribution b |
---|---|---|---|
Araçá-boi | Eugenia stipitata McVaugh | Fruit (in natura) Fruit pulp (jam, pasty candy, cut candy, sparkling wine, jelly, yogurt, liqueur, sauce, mousse, frozen pulp, puree, ice cream, juice, and pie) | North (AC, AM, PA, and RO) Midwest (MT) |
Cagaita | Eugenia dysenterica (Mart.) DC. | Fruit (in natura) Fruit pulp (chutney, candy, jelly, liqueur, sauce, mousse, frozen pulp, pudding, ice cream, juice, and pie) | North (TO) Northeast (BA, CE, MA, PE, and PI) Midwest (DF, GO, MS, and MT) Southeast (MG and SP) |
Cereja-do-rio-grande | Eugenia involucrata DC. | Fruit (in natura) Fruit pulp (candy, jelly, yogurt, liqueur, sauce, ice cream, juice, and pie) | Northeast (AL, BA, PE, and SE) Midwest (DF, GO, and MS) Southeast (ES, MG, RJ, and SP) South (PR, RS, and SC) |
Grumixama | Eugenia brasiliensis Lam. | Fruit (in natura) Fruit pulp (candy, jelly, yogurt, liqueur, sauce, mousse, ice cream, juice, and pie) | Northeast (BA) Southeast (ES, MG, RJ, and SP) South (PR and SC) |
Pera-do-cerrado | Eugenia klotzschiana O. Berg | Fruit (in natura) Fruit pulp (candy, jelly, yogurt, liqueur, sauce, mousse, ice cream, juice, and pie) | Midwest (DF, GO, and MS) Southeast (MG and SP) |
Pitanga | Eugenia uniflora L. | Fruit (in natura) Fruit pulp (candy, jelly, yogurt, liqueur, sauce, mousse, ice cream, juice, pie) | Northeast (AL, BA, and SE) Midwest (MS) Southeast (ES, MG, RJ, and SP) South (PR, RS, and SC) |
Uvaia | Eugenia pyriformis Cambess | Fruit (in natura) Fruit pulp (candy, jelly, yogurt, liqueur, frozen pulp, ice cream, juice, and pie) | Midwest (GO and MS) Southeast (MG, RJ, and SP) South (PR, RS, and SC) |
Plant | Plant Part | Essential Oil Obtention | Yield (%) | NIC a | TAI (%) b | Major Compounds (%) c | Ref. |
---|---|---|---|---|---|---|---|
E. stipitata | Fresh leaves | Steam distillation for 3 h | 0.025 | 29 | 74.20 | γ-Muurolene (22.34), β-caryophyllene (12.11), α-copaene (5.20), δ-elemene (4.68), germacrene D (5.04), α-muurolene (2.90), β-copaene (2.68), α-humulene (2.19), α-cubebene (1.93), and cis-β-guaiene (1.88). | [21] |
Fresh leaves | Hydrodistillation for 4 h | 0.13 | 39 | 100 | β-Eudesmol (15.28), γ-eudesmol (10.85), elemol (10.21), caryophyllene oxide (6.65), clovene (6.94), spathulenol (6.14), β-caryophyllene (4.38), β-cedrene (4.33), β-cubebene (4.19), and γ-cadinene (4.03). | [22] | |
Dried leaves | Hydrodistillation for 3 h | 0.20 | 66 | 91.30 | Germacrene D (11.8), (Z)-α-bisabolene (8.4), cadin-4-en-10-ol (6.1), δ-cadinene (5.7), τ-muurolol (5.0), β-caryophyllene (5.0), bicyclogermacrene (4.2), caryophyllene oxide (2.6), α-E,E-farnesene (2.6), and γ-muurolene (2.2). | [23] | |
Dried leaves | Hydrodistillation for 4 h | 0.73 | 49 | 97.04 | Guaiol (13.77), β-caryophyllene (11.36), β-eudesmol (8.13), γ-eudesmol (6.55), α-eudesmol (5.97), 10-epi-γ-eudesmol (5.97), elemol (4.39), terpinen-4-ol (4.06), bicyclogermacrene (3.97), and spathulenol (3.87). | [24] | |
E. dysenterica | Fresh leaves | Hydrodistillation for 3 h | 0.34 | 26 | 90.74 | (Z)-β-ocimene (19.14), β-caryophyllene (15.36), caryophyllene oxide (8.23), α-humulene (8.07), linalool (5.16), (E)-β-ocimene (4.99), β-myrcene (2.98), α-terpineol (2.91), limonene (2.89), and α-bulnesene (2.87). | [25] |
Fresh leaves | Hydrodistillation for 4 h | n.a. | 18 | n.a. | β-Caryophyllene (24.36), α-humulene (19.3), δ-selinene (n.a.), 7-epi-α-selinene (n.a.), δ-cadinene (n.a.), 7(11)-selinen-4α-ol (n.a.), caryophyllene oxide (n.a.), humulene epoxide II (n.a.), α-copaene (n.a.), and humulol (n.a.). | [26] | |
Dried leaves | Steam distillation for 3 h | 0.064 | 19 | 64.86 | (-)-Elema-1,3,11(13)-trien-12-ol (24.86), junenol (6.24), δ-cadinene (5.33), muurola-4,10(14)-dien-1-β-ol (3.89), α-copaene (3.82), α-humulene (2.81), caryophyllenyl alcohol (2.57), caryophyllene oxide (2.46), α-calacorene (2.07), and humulol (1.91). | [27] | |
Dried leaves | Hydrodistillation for 3 h | 1.5 | 24 | 97.10 | Limonene (16.0), caryophyllene oxide (15.0), citral (9.0), β-caryophyllene (8.0), 1,8-cineole (7.3), α-humulene (5.0), δ-cadinene (4.7), α-terpineol (4.7), γ-terpinene (3.4), and α-copaene (3.0). | [28] | |
E. involucrata | Dried leaves | Hydrodistillation for 3 h | 0.45 | 33 | 88.33 | Germacrene B (22.17), bicyclogermacrene (19.76), β-elemene (10.86), β-caryophyllene (7.74), germacrene A (3.18), globulol (5.03), allo-aromadendrene (1.99), β-selinene (1.95), viridiflorol (1.84), and germacrene D (1.42). | [29] |
Dried leaves | Hydrodistillation for 4 h | 0.21 | 28 | 89.41 | Elixene (26.53), β-caryophyllene (13.16), α-copaene (8.41), germacrene D (7.17), β-cadinene (6.0), β-elemene (4.95), δ-elemene (4.29), α-caryophyllene (3.45), allo-aromadendrene (2.82), and spathulenol (2.57). | [30] | |
E. brasiliensis | Fresh leaves | Hydrodistillation for 4 h | 0.08–0.14 | 40 | 92.24–98.53 | Spathulenol (8.10–16.02), α-pinene (1.77–15.94), τ-cadinol (10.38–15.30), β-pinene (2.98–11.24), β-caryophyllene (3.82–8.65), globulol (4.55–7.87), 1-epi-cubenol (4.83–7.46), α-cadinol (4.27–6.04), δ-cadinene (3.38–5.81), and caryophyllene oxide (traces-4.08). | [31] |
Fresh leaves | Hydrodistillation for 4.5 h | 0.27 | 20 | 89.09 | α-Muurolol (12.01), limonene (8.96), tricyclene (7.27), selin-11-en-4-α-ol (7.10), spathulenol (6.16), thujopsan-2-α-ol (6.11), sabinene (5.39), δ-cadinene (5.26), 1,8-cineole (4.84), and cubeban-11-ol (4.40). | [32] | |
Dried leaves | Hydrodistillation for 3 h | 0.39 | 47 | 94.25 | β-Caryophyllene (7.70), spathulenol (6.42), δ-cadinene (5.55), globulol (5.25), intermedeol (4.92), epi-α-cadinol (4.48), 1-epi-cubenol (4.03), α-cadinol (4.00), β-copaene (3.97), and ledol (3.83). | [33] | |
E. klotzschiana | Dried leaves | Hydrodistillation for 2 h | 0.07–0.17 | 55 | 86.36–92.66 | α-Caryophyllene (14.04–17.38), γ-elemene (3.66–13.24), spathulenol (7.20–10.97), elixene (5.43–10.20), germacrene D (n.d.-10.03), caryophyllene oxide (3.66–6.23), bicyclogermacrene (n.d.-5.44), α-humulene (3.78–4.18), β-copaene (0.47–3.80), and α-cadinol (2.03–3.58). | [34] |
Fresh leaves | Hydrodistillation for 2 h | 0.10 | 34 | 75.52 | β-Elemene (10.65), spathulenol (8.76), caryophyllene oxide (7.44), α-cadinol (6.22), τ-muurolol (5.34), globulol (4.62), γ-selinene (3.82), α-humulene (3.14), γ-elemene (2.42), and α-copaene (1.83). | [34] | |
Fresh flowers | Hydrodistillation for 2 h | 0.09 | 32 | 88.55 | Germacrene D (29.90), γ-elemene (12.06), α-caryophyllene (10.14), globulol (4.58), α-farnesol (3.40), α-cadinol (2.81), α-humulene (2.46), γ-gurjunene (1.83), eugenol (1.68), and ledene oxide (1.66). | [34] | |
Fresh flowers | Hydrodistillation for 2 h | 0.09 | 33 | 85.80 | β-Caryophyllene (21.1), spathulenol (20.9), bicyclogermacrene (10.2), globulol (4.6), α-farnesol (3.4), α-cadinol (2.8), α-pinene (2.5), α-bergamotene (1.8), eugenol (1.7), and ledene oxide (1.6). | [35] | |
E. uniflora | Fresh leaves | Steam distillation (time n.a.) | n.a. | 10 | 91.82 | Selina-1,3,7(11)-trien-8-one (39.45), selina-1,3,7(11)-trien-8-one epoxide (36.71), β-elemene (2.93), β-caryophyllene (2.83), germacrene A (2.69), apiol (2.14), caryophyllene oxide (1.96), germacrone (1.06), β-selinene (1.04), and spathulenol (1.01). | [36] |
Fresh leaves | Steam distillation (time n.a.) | 0.19 | 9 | 64.64 | Selina-1,3,7(11)-trien-8-one (30.10), selina-1,3,7(11)-trien-8-one epoxide (21.89), β-caryophyllene (6.51), β-elemene (4.11), terpinolene (0.56), spathulenol (0.50), ocimene (0.38), α-caryophyllene (0.31), and β-myrcene (0.28). | [37] | |
Fresh leaves | Hydrodistillation (time n.a.) | n.a. | 19 | 98.20 | Acetosyringone (12.08), γ-elemene (12.00), β-caryophyllene (10.77), β-elemene (10.21), curzerene (10.15), (Z)-β-ocimene (7.75), ledene (5.14), tujone (5.07), δ-cadinene (4.18), and germacrene B (3.11). | [38] | |
Fresh leaves | Hydrodistillation for 2 h | 1.08 | 6 | 93.01 | Curzerene (65.80), germacrone (16.19), β-elemenone (4.47), γ-elemene (3.97), germacrene B (2.19), and β-elemene (0.39). | [39] | |
Fresh leaves | Hydrodistillation for 2 h | n.a. | 9 | 87.71 | Selina-1,3,7(11)-trien-8-one (36.37), selina-1,3,7(11)-trien-8-one epoxide (27.32), germacrene B (7.95), bicyclogermacrene (4.76), β-elemene (3.18), β-caryophyllene (3.16), germacrene D (2.12), germacrone (1.51), and α-bulnesene (1.34). | [40] | |
Fresh leaves | Hydrodistillation for 4 h | n.a. | 33 | 95.81–97.50 | Germacrone (n.d.-37.86), curzerene (16.60–22.37), furanodiene (n.d.-18.99), germacrene B (13.54–14.39), β-caryophyllene (6.02–9.35), β-elemene (3.26–4.76), germacrene D (2.78–4.13), atractylone (2.49–3.94), germacrene A (1.86–2.80), and (E)-β-ocimene (0.18–2.30). | [41] | |
Dried leaves | Steam distillation for 2.5 h | 0.84 | 13 | 68.50 | Oxidoselina-1,3,7(11)-trien-8-one (20.44), selina-3,5,7(11)-trien-8-one (13.34), spathulenol (9.27), globulol (6.66), curzerene (4.72), β -elemene (3.60), germacrone (2.92), selina-6-en-4-ol (2.62), germacrene B (1.74), and furanodiene (1.27). | [42] | |
Dried leaves | Hydrodistillation for 3 h | 0.55 | 24 | 96.40 | Germacrone (37.82), curzerene (16.60), germacrene B (13.54), β-caryophyllene (6.02), atractylone (3.74), β-elemene (3.26), germacrene D (2.78), germacrene A (1.86), viridiflorol (1.22), and globulol (1.15). | [33] | |
Dried leaves | Hydrodistillation for 3 h | 2.60 | 41 | 78.27 | Curzerene (33.4), caryophyllene oxide (7.6), β-elemene (6.5), β-caryophyllene (4.0), spathulenol (4.0), p-cymene (3.1), viridiflorol (2.1), atractylone (2.1), pogostol (1.8), and germacrone (1.3). | [43] | |
Dried leaves | Hydrodistillation for 3 h | 1.27 | 87 | 88.49 | Spathulenol (15.8), α-copaene (10.96), muurola-4,10-dien-1β-ol (9.3), caryophyllene oxide (8.93), allo-aromadendrene (5.5), nootkatone (5.17), eudesm-7(11)-en-4-ol (2.77), β-caryophyllene (2.73), β-cadinene (2.43), and cedr-8-en-13-ol (2.36). | [44] | |
Dried leaves | Hydrodistillation for 3 h | 1.34 | 17 | 55.12 | Germacrone (13.57), spathulenol (7.49), curzerene (5.31), α-cadinol (4.70), shyobunone (4.16), γ-elemene (3.12), β-elemene (3.03), cubenol (2.92), cis-jasmone (2.91), and β-cadinene (1.83). | [45] | |
Dried leaves | Hydrodistillation for 3 h | 0.9–2.2 | 80 | 76.7–91.3 | Curzerene (n.d.-50.6), selina-1,3,7(11)-trien-2-one (n.d.-43.1), selina-1,3,7(11)-trien-2-one epoxide (n.d.-30.4), germacrene B (1.9–18.4), caryophyllene oxide (n.d.-18.1), β-caryophyllene (0.3–9.1), β-elemene (3.5–8.9), γ-elemene (2.0–7.8), germacrone (0.6–4.5), and spathulenol (n.d.-3.9). | [46] | |
Dried leaves | Hydrodistillation for 3 h | 0.8–3.1 | 61 | 71.2–86.2 | Curzerene (34.4–53.1), germacrone (n.d.-10.5), germacrene B (n.d.-7.5), globulol (n.d.-7.4), spathulenol (0.5–7.0), viridiflorol (0.8–6.2), β-elemene (1.8–5.8), (E)-β -ocimene (0.2–4.3), viridiflorene (0.8–4.1), and γ-elemene (0.8–3.7). | [47] | |
Dried leaves | Hydrodistillation for 3 h | 0.51 | 34 | 92.46 | Germacrone (8.52), spathulenol (8.20), α-selinene (7.50), β-elemene (4.88), (E,E)-farnesyl acetate (4.86), β-elemene (4.81), β-selinene (3.56), 8-α-acetoxyelemol (3.54), viridiflorol (3.49), and 7-epi-α-eudesmol (3.22). | [48] | |
Dried leaves | Hydrodistillation for 3 h | 1.26–1.40 | 23 | 95.06–99.98 | Curzerene (48.10–49.44), germacrone (9.36–14.33), β-elemenone (6.14–9.88), γ-elemene (n.d.-8.71), germacrene B (3.46–6.46), β-elemene (4.59–5.68), atractylone (1.39–3.21), β-caryophyllene (2.64–3.16), β-selinene (0.61–1.48), and spathulenol (0.22–1.33). | [49] | |
Dried leaves | Hydrodistillation for 4 h | 1.04–1.37 | 44 | 90.98–93.94 | Germacrone (41.15–48.05), 6-ethenyl-6-methyl-3,5-di(prop-1-en-2-yl)cycloexen-2-en-1-one (9.39–10.56), curzerene (7.73–10.14), germacrene B (6.17–7.95), β-elemenone (2.07–2.40), β-elemene (1.58–2.13), 7,14-anhydro-amorpha-4,9-diene (1.44–1.90), α-cadinol (1.68–1.87), viridiflorene (1.07–1.68), and cedr-8 (15)-en-9α-ol acetate (1.19–1.50). | [50] | |
Dried leaves | Hydrodistillation for 4 h | 0.15–0.37 | 12 | 60.0–67.1 | Curzerene plus viridiflorene (14.6–15.5), globulol (7.7–8.8), α-cadinol (7.4–8.6), epi-α-muurolol (5.3–7.5), germacrene B (3.9–5.9), viridiflorol plus cubeban-11-ol (5.0–5.8), germacrone (4.5–5.8), germacrene D (3.7–4.9), palustrol (2.1–2.4), and (E)-β-ocimene (n.d.-2.1). | [51] | |
Dried leaves | Hydrodistillation for 4 h | 0.22–1.68 | 78 | 51.59–82.93 | Germacrone (n.a.-65.03), selina-1,3,7(11)-trien-8-one (n.d.-29.41), 7-epi-α-selinene (n.d.-28.00), germacrene B (0.64–22.71), 7,14-anhydro-amorpha-4,9-diene (n.d.-22.16), curzerene (n.d.-18.45), α-cadinol (n.d.-16.98), epi-α-muurolol (n.d.-10.25), δ-cadinene (0.19–9.90), and selina-1,3,7(11)-trien-8-one epoxide (n.d.-9.07). | [52] | |
Fresh fruits | Hydrodistillation for 2 h | 0.03–0.14 | 28 | 87.39–99.54 | Germacrone (6.31–56.80), selina-1,3,7(11)-trien-8-one (n.d.-41.22), selina-1,3,7(11)-trien-8-one epoxide (n.d.-34.28), curzerene (n.d.-15.75), atractylone (0.72–10.10), (E)-β-ocimene (0.58–10.06), germacrene B (4.08–8.36), spathulenol (n.d.-4.91), (Z)-β-ocimene (0.27–4.14), and zonarene (n.d.-2.53). | [53] | |
E. pyriformis | Fresh leaves | Hydrodistillation for 1–4 h | 0.13–0.25 | 28 | 95.90 | β-Caryophyllene (18.0), bicyclogermacrene (16.4), spathulenol (10.0), α-cadinol (8.7), β-myrcene (5.3), germacrene D (4.0) α-bisabolol (4.0), globulol (3.0), τ-cadinol (3.0), and α-copaene (2.3). | [54] |
Fresh leaves | Hydrodistillation for 6 h | n.a. | 14 | n.a. | γ-Terpinene (n.a.), ο-cymene (n.a.), 1,8-cineol (n.a.), linalool (n.a.), terpinen-4-ol (n.a.), 2-carene (n.a.), terpinolene (n.a.), di-tert-butylacetylene (n.a.), p-benzoquinone-2,6-di-tert-butyl (n.a.), and retinal (n.a.). | [55] | |
Dried leaves | Hydrodistillation (time n.a.) | 0.14 | 36 | 78.80 | β-Caryophyllene (17.82), bicyclogermacrene (12.84), globulol (5.96), δ-cadinene (4.33), α-copaene (3.83), viridiflorol (3.52), germacrene D (2.79), α-humulene (2.69), aromandrene (2.21), and 9-epi-(E)-caryophyllene (2.17). | [56] | |
Fresh aerial parts (leaves and twigs) | Hydrodistillation for 3 h | n.a. | 31 | 98.90 | Limonene (14.8), nerolidol (11.0), α-cadinol (10.3), caryophyllene oxide (9.9), β-pinene (7.1), spathulenol (6.8), δ-cadinene (5.9), β-humulene (5.0), globulol (3.7), and bicyclogermacrene (3.7). | [57] |
Plant | Plant Part | Method | Major Findings | Ref. |
---|---|---|---|---|
E. stipitata | Leaves | Six bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Bacillus subtilis, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli) |
| [22] |
Leaves | Seven Staphylococcus aureus strains (one collection strain and six antibiotic-resistant clinical isolates) |
| [61] | |
E. dysenterica | Leaves | Five oral pathogenic bacteria (Streptococcus salivarius, Streptococcus sobrinus, Streptococcus mutans, Streptococcus mitis, and Streptococcus sanguinis) |
| [28] |
Leaves | One yeast strain (Candida albicans), three bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus), and one fungal strain (Aspergillus brasiliensis) |
| [27] | |
E. involucrata | Leaves | Six Gram-negative bacterial strains (Escherichia coli, Salmonella Enteritidis, Salmonella Typhimurium, Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae), four Gram-positive bacterial strains (Staphylococcus aureus, Enterococcus faecalis, Staphylococcus epidermidis, and Bacillus subtilis), and one yeast strain (Candida albicans) |
| [30] |
E. brasiliensis | Leaves | Four bacterial strains (collection strains and clinical isolates of Escherichia coli and Staphylococcus aureus) |
| [32] |
Leaves | Two Gram-positive bacterial strains (Staphylococcus aureus and Staphylococcus saprophyticus), two Gram-negative bacterial strains (Escherichia coli and Pseudomonas aeruginosa), and two mollicutes strains (Mycoplasma mycoides subsp. capri and Ureaplasma urealyticum) |
| [31] | |
Leaves | Fusarium oxysporum |
| [33] | |
E. klotzschiana | Leaves and flowers | Six bacterial strains (Streptococcus salivarius, Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus sobrinus, and Prevotella nigrescens) |
| [34] |
E. uniflora | Leaves | Clinical and food bacteria isolates (16 Staphylococcus aureus strains (MRSA), 15 Staphylococcus aureus strains (MSSA), 15 Escherichia coli strains, 15 Pseudomonas aeruginosa strains, 15 Salmonella Typhimurium strains, and 16 Salmonella Enteritidis strains) and reference bacterial strains (Staphylococcus aureus, Escherichia coli, Pseudonomas aeruginosa, and Salmonella Typhimurium) |
| [37] |
Leaves | Eight bacterial strains (Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Listeria monocytogenes, Escherichia coli, Salmonella Typhimurium, Salmonella Typhi, and Shigella flexneri) |
| [36] | |
Leaves | Six bacterial strains (collection strains and clinical isolates of Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) |
| [39] | |
Leaves | Three bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus) |
| [50] | |
Leaves | Two Gram-positive bacterial strains (Staphylococcus aureus and Listeria monocytogenes) and three Gram-negative bacterial strains (Escherichia coli, Pseudomonas aeruginosa, and Salmonella Typhimurium) |
| [45] | |
Leaves | Ten oral pathogenic bacteria (five aerobic (Streptococcus mutans, Streptococcus mitis, Streptococcus sanguinis, Streptococcus sobrinus, and Streptococcus salivarius), and five anaerobic (Actinomyces naeslundii, Bacteroides fragilis, Bacteroides thetaiotaomicron, Porphyromonas gingivalis and Prevotella nigrescens)) |
| [48] | |
Leaves | Seven bacterial strains (Bacillus cereus, Escherichia coli, Enterococcus faesium, Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium, and Salmonella Gallinarum) and one yeast strain (Candida albicans) |
| [38] | |
Leaves | Four bacterial strains (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, and Staphylococcus epidermidis) and three yeast strains (Candida albicans, Candida krusei, and Candida parapsilosis) |
| [62] | |
Leaves | Six Gram-positive bacterial strains (Staphylococcus aureus strains (MRSA), Staphylococcus aureus, Staphylococcus epidermidis, Bacillus licheniformis, Bacillus subtilis, and vancomycin-resistant Van-b positive Enterococcus faecalis (VRE)), three Gram-negative bacterial strains (Escherichia coli, Klebsiella pneumoniae, and Pseudomonas aeruginosa), and two yeast strains (Candida parapsilosis and Candida albicans) |
| [44] | |
Leaves | Three yeast strains (Candida albicans, Candida tropicalis, and Candida krusei) |
| [40] | |
Leaves | Fusarium oxysporum |
| [33] | |
E. pyriformis | Leaves | Nine bacterial strains (Enterococcus faecalis, Staphylococcus aureus, Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella Typhimurium, and Enterobacter aerogenes) and three yeast strains (Candida albicans, Candida krusei, and Candida parapsilosis) |
| [56] |
Aerial parts (leaves and twigs) | Malassezia furfur |
| [57] |
Plant | Plant Part | Method | Major Findings | Ref. |
---|---|---|---|---|
E. stipitata | Leaves | DPPH and ABTS |
| [22] |
Leaves | DPPH, ABTS, and β-carotene bleaching |
| [21] | |
E. dysenterica | Leaves | DPPH |
| [27] |
E. involucrata | Leaves | DPPH |
| [30] |
E. brasiliensis | Leaves | DPPH, iron-reducing power, and β-carotene/linoleic acid |
| [31] |
E. klotzschiana | Leaves and flowers | DPPH and ABTS |
| [34] |
E. uniflora | Leaves | DPPH |
| [50] |
Leaves | DPPH |
| [47] | |
Leaves | DPPH |
| [52] | |
Leaves | DPPH and phosphomolybdenum reducing |
| [45] | |
Leaves | DPPH, ABTS, and FRAP |
| [38] | |
Leaves | DPPH and β-carotene/linoleic acid |
| [46] |
Plant | Plant Part | Model | Major Findings | Ref. |
---|---|---|---|---|
E. stipitata | Leaves | Four human cancer cell lines including HCT116, AGP01, MCF7, and SKMEL-19 |
| [23] |
E. involucrata | Leaves | Cancer cell lines MCF7 and B16F10 |
| [29] |
E. uniflora | Leaves | Human breast cancer cells (MCF7) |
| [44] |
Leaves | Human adrenocortical cancer cells (H295R) |
| [38] | |
Leaves | Three human cancer cell lines including HCT116, AGP01, and SKMEL-19 |
| [46] | |
Leaves | Three human cancer cell lines including HeLa, MCF7, and M059J |
| [48] | |
E. pyriformis | Aerial parts (leaves and twigs) | Three human cancer cell lines including HeLa, MCF7, and M059J |
| [57] |
Plant | Plant Part | Model | Major Findings | Ref. |
---|---|---|---|---|
E. stipitata | Leaves | Antiprotozoal activity against Trypanosoma cruzi, Leishmania braziliensis, and Leishmania infantum |
| [22] |
E. dysenterica | Leaves | Trypanocidal activity against Trypanosoma cruzi |
| [28] |
E. klotzschiana | Flowers | Trypanocidal activity against Trypanosoma cruzi |
| [35] |
E. uniflora | Leaves | Trypanocidal activity against Trypanosoma brucei brucei |
| [44] |
Leaves | Leishmanicidal activity against Leishmania amazonensis |
| [48] | |
E. pyriformis | Leaves | Leishmanicidal activity against Leishmania amazonensis |
| [77] |
Aerial parts (leaves and twigs) | Leishmanicidal activity against Leishmania amazonensis |
| [57] |
Biological Activity | Plant | Method/Model | Major Findings | Ref. |
---|---|---|---|---|
Anti-inflammatory | E. stipitata | In vitro anti-inflammatory activity using the BSA denaturing assay and in vivo anti-inflammatory activity in Swiss mice treated orally with 40, 100, and 250 mg EO/kg bw |
| [24] |
E. dysenterica | LPS-stimulated RAW 264.7 murine macrophages |
| [26] | |
E. uniflora | Mice (Mus musculus) treated orally with 50, 100, and 200 mg EO/kg bw |
| [43] | |
Antinociceptive | E. stipitata | Swiss mice treated orally with 40, 100, and 250 mg EO/kg bw |
| [24] |
E. uniflora | Mice (Mus musculus) treated orally with 50, 100, and 200 mg EO/kg bw |
| [43] | |
Antipyretic | E. stipitata | Saccharomyces cerevisae-induced fever in Swiss mice treated orally with 40, 100, and 250 mg/kg bw |
| [24] |
Antidiarrhoeic | E. dysenterica | Castor oil-induced diarrhea in Swiss mice treated orally with 3, 30, and 300 mg EO/kg bw |
| [25] |
Wound Healing | E. dysenterica | Scratch wound healing assay using mouse fibroblast cells (L929 cell line)Irritation potential and angiogenesis activity by chorioallantoic membrane assay |
| [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borsoi, F.T.; Possas, A.; Pastore, G.M.; Arruda, H.S. Essential Oils from Native Brazilian Plants of the Genus Eugenia as an Innovative and Sustainable Source of Active Ingredients for Food Systems and Human Health and Well-Being. Horticulturae 2024, 10, 768. https://doi.org/10.3390/horticulturae10070768
Borsoi FT, Possas A, Pastore GM, Arruda HS. Essential Oils from Native Brazilian Plants of the Genus Eugenia as an Innovative and Sustainable Source of Active Ingredients for Food Systems and Human Health and Well-Being. Horticulturae. 2024; 10(7):768. https://doi.org/10.3390/horticulturae10070768
Chicago/Turabian StyleBorsoi, Felipe Tecchio, Arícia Possas, Glaucia Maria Pastore, and Henrique Silvano Arruda. 2024. "Essential Oils from Native Brazilian Plants of the Genus Eugenia as an Innovative and Sustainable Source of Active Ingredients for Food Systems and Human Health and Well-Being" Horticulturae 10, no. 7: 768. https://doi.org/10.3390/horticulturae10070768
APA StyleBorsoi, F. T., Possas, A., Pastore, G. M., & Arruda, H. S. (2024). Essential Oils from Native Brazilian Plants of the Genus Eugenia as an Innovative and Sustainable Source of Active Ingredients for Food Systems and Human Health and Well-Being. Horticulturae, 10(7), 768. https://doi.org/10.3390/horticulturae10070768