An Evaluation of the Effect of Fertilizer Rate on Tree Growth and the Detection of Nutrient Stress in Different Irrigation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site, Planting Materials, and Design of Study
2.2. Fertilizer Rate
2.3. Irrigation System
2.4. Data Collection
2.4.1. Plant Growth Data
2.4.2. Normalized Difference Vegetation Index (NDVI)
2.4.3. Relative Chlorophyll
2.4.4. Visual Observation
2.4.5. Substrate Chemical Properties
2.4.6. Leaf Tissue Analysis
2.5. Statistical Analysis
3. Results
3.1. Plant Height
3.2. Stem Diameter
3.3. NDVI (Handheld Meter)
3.4. Relative Chlorophyll Content
3.5. Visual Observation
3.6. Substrate pH and EC
3.7. Nutrient Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dobermann, A.; Bruulsema, T.; Cakmak, I.; Gerard, B.; Majumdar, K.; McLaughlin, M.; Reidsma, P.; Vanlauwe, B.; Wollenberg, L.; Zhang, F. Responsible plant nutrition: A new paradigm to support food system transformation. Glob. Food Secur. 2022, 33, 100636. [Google Scholar] [CrossRef]
- Mee, C.; Siva, K.B.; Ahmad, H.M.H. Detecting and monitoring plant nutrient stress using remote sensing approaches: A review. Asian J. Plant Sci. 2017, 16, 1–8. [Google Scholar]
- Kirkby, E.A. Introduction, definition, and classification of nutrients. In Marschner’s Mineral Nutrition of Plants; Elsevier: Amsterdam, The Netherlands, 2023; pp. 3–9. [Google Scholar]
- Yang, K.; Li, Y. Effects of water stress and fertilizer stress on maize growth and spectral identification of different stresses. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 297, 122703. [Google Scholar] [CrossRef] [PubMed]
- Gianquinto, G.; Orsini, F.; Fecondini, M.; Mezzetti, M.; Sambo, P.; Bona, S. A methodological approach for defining spectral indices for assessing tomato nitrogen status and yield. Eur. J. Agron. 2011, 35, 135–143. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Elsevier: Amsterdam, The Netherlands, 2012; pp. 135–189. [Google Scholar]
- Fageria, N.K.; Baligar, V.C. Enhancing nitrogen use efficiency in crop plants. Adv. Agron. 2005, 88, 97–185. [Google Scholar]
- Li, S.-X.; Wang, Z.-H.; Malhi, S.; Li, S.-Q.; Gao, Y.-J.; Tian, X.-H. Nutrient and water management effects on crop production, and nutrient and water use efficiency in dryland areas of China. Adv. Agron. 2009, 102, 223–265. [Google Scholar]
- Rose, M.A.; Rose, M.; Wang, H. Fertilizer concentration and moisture tension affect growth and foliar N, P, and K contents of two woody ornamentals. HortScience 1999, 34, 246–250. [Google Scholar] [CrossRef]
- Cabrera, R.I. Nitrogen balance for two container-grown woody ornamental plants. Sci. Hortic. 2003, 97, 297–308. [Google Scholar] [CrossRef]
- Tisdale, S.L.; Nelson, W.L. Soil fertility and fertilizers. Soil Sci. 1966, 101, 346. [Google Scholar] [CrossRef]
- Hawkesford, M.J.; Cakmak, I.; Coskun, D.; De Kok, L.J.; Lambers, H.; Schjoerring, J.K.; White, P.J. Functions of macronutrients. In Marschner’s Mineral Nutrition of Plants; Elsevier: Amsterdam, The Netherlands, 2023; pp. 201–281. [Google Scholar]
- Kant, S.; Kafkafi, U.; Pasricha, N.; Bansal, S. Potassium and abiotic stresses in plants. In Potassium for Sustainable Crop Production; Potash Institute of India: Gurgaon, India, 2002; Volume 233, p. 251. [Google Scholar]
- Zahoor, R.; Dong, H.; Abid, M.; Zhao, W.; Wang, Y.; Zhou, Z. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ. Exp. Bot. 2017, 137, 73–83. [Google Scholar] [CrossRef]
- Novair, S.B.; Hosseini, H.M.; Etesami, H.; Pirmoradian, N.; Asgari Lajayer, B.; Price, G.W. Straw application improved soil biological properties and the growth of rice plant under low water irrigation. Environ. Res. 2024, 255, 119138. [Google Scholar] [CrossRef] [PubMed]
- Samadi, A.; Derafshi, M.; Hassani, A.; Gholamhoseini, M.; Asgari Lajayer, B.; Astatkie, T.; Price, G.W. Effects of biofertilizers and Potassium Sulfate on nutrients uptake and physiological characteristics of Maize (Zea mays L.) under drought stress. J. Crop Health 2023, 76, 209–218. [Google Scholar] [CrossRef]
- Klock-Moore, K.A.; Broschat, T.K. Irrigation systems and fertilizer affect petunia growth. HortTechnology 2001, 11, 416–418. [Google Scholar] [CrossRef]
- Ncama, K.; Magwaza, L.; Shezi, S. Integrated water management and its significance prior to, during, and after harvesting of fresh horticultural produce. Postharvest Manag. Fresh Prod. 2023, 195–216. [Google Scholar] [CrossRef]
- Gent, M.P.; McAvoy, R.J. Water and nutrient uptake and use efficiency with partial saturation ebb and flow watering. HortScience 2011, 46, 791–798. [Google Scholar] [CrossRef]
- Yang, P.; Wu, L.; Cheng, M.; Fan, J.; Li, S.; Wang, H.; Qian, L. Review on drip irrigation: Impact on crop yield, quality, and water productivity in China. Water 2023, 15, 1733. [Google Scholar] [CrossRef]
- Rowe, D.B.; Kolp, M.R.; Greer, S.E.; Getter, K.L. Comparison of irrigation efficiency and plant health of overhead, drip, and sub-irrigation for extensive green roofs. Ecol. Eng. 2014, 64, 306–313. [Google Scholar] [CrossRef]
- Davies, M.J.; Harrison-Murray, R.; Atkinson, C.J.; Grant, O.M. Application of deficit irrigation to container-grown hardy ornamental nursery stock via overhead irrigation, compared to drip irrigation. Agric. Water Manag. 2016, 163, 244–254. [Google Scholar] [CrossRef]
- Chowhan, P.; Chakraborty, A.P. Remote Sensing Technology—A new dimension in detection, quantification and tracking of abiotic and biotic stresses. In Plant Stress: Challenges and Management in the New Decade; Springer: Berlin/Heidelberg, Germany, 2022; pp. 445–457. [Google Scholar]
- Cadet, É.; Samson, G. Detection and discrimination of nutrient deficiencies in sunflower by blue-green and chlorophyll-a fluorescence imaging. J. Plant Nutr. 2011, 34, 2114–2126. [Google Scholar] [CrossRef]
- Gulzar, S.; Hassan, A.; Nawchoo, I.A. A review of nutrient stress modifications in plants, alleviation strategies, and monitoring through remote sensing. In Plant Micronutrients: Deficiency and Toxicity Management; Springer: Cham, Switzerland, 2020; pp. 331–343. [Google Scholar]
- Jiang, H.; Ali, M.A.; Jiao, Y.; Yang, B.; Dong, L. In-situ, real-time monitoring of nutrient uptake on plant chip integrated with nutrient sensor. In Proceedings of the 2017 19th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), Kaohsiung, Taiwan, 18–22 June 2017; pp. 289–292. [Google Scholar]
- Mahajan, G.; Sahoo, R.; Pandey, R.; Gupta, V.; Kumar, D. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 2014, 15, 499–522. [Google Scholar] [CrossRef]
- Conrad, C.; Usman, M.; Morper-Busch, L.; Schönbrodt-Stitt, S. Remote sensing-based assessments of land use, soil and vegetation status, crop production and water use in irrigation systems of the Aral Sea Basin. A review. Water Secur. 2020, 11, 100078. [Google Scholar] [CrossRef]
- Zwack, J.A.; Graves, W.R.; Townsend, A.M. Variation among red and Freeman maples in response to drought and flooding. HortScience 1999, 34, 664–668. [Google Scholar] [CrossRef]
- Day, S.; Seiler, J.; Persaud, N. A comparison of root growth dynamics of silver maple and flowering dogwood in compacted soil at differing soil water contents. Tree Physiol. 2000, 20, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Grant, O.M.; Davies, M.J.; Longbottom, H.; Atkinson, C.J. Irrigation scheduling and irrigation systems: Optimising irrigation efficiency for container ornamental shrubs. Irrig. Sci. 2009, 27, 139–153. [Google Scholar] [CrossRef]
- Beeson, R.; Knox, G. Analysis of efficiency of overhead irrigation in container production. HortScience 1991, 26, 848–850. [Google Scholar] [CrossRef]
- Witcher, A.L.; Baysal-Gurel, F.; Blythe, E.K.; Fare, D.C. Container size and shade duration affect growth of flowering dogwood. HortTechnology 2019, 29, 842–853. [Google Scholar] [CrossRef]
- Süß, A.; Danner, M.; Obster, C.; Locherer, M.; Hank, T.; Richter, K.; Consortium, E. Measuring Leaf Chlorophyll Content with the Konica Minolta SPAD-502Plus; EnMAP Consortium: Potsdam, Germany, 2015. [Google Scholar]
- LeBude, A.; Bilderback, T. The Pour-Through Extraction Procedure: A Nutrient Management Tool for Nursery Crops; Bull. AG-717-W; North Carolina Cooperative Extension Service: Gatesville, NC, USA, 2009. [Google Scholar]
- Messiga, A.J.; Dyck, K.; Ronda, K.; van Baar, K.; Haak, D.; Yu, S.; Dorais, M. Nutrients leaching in response to long-term fertigation and broadcast nitrogen in blueberry production. Plants 2020, 9, 1530. [Google Scholar] [CrossRef] [PubMed]
- Worrall, R.; Lamont, G.; O’Connell, M.; Nicholls, P. The growth response of container-grown woody ornamentals to controlled-release fertilizers. Sci. Hortic. 1987, 32, 275–286. [Google Scholar] [CrossRef]
- Clark, M.J.; Zheng, Y. Use of species-specific controlled-release fertilizer rates to manage growth and quality of container nursery crops. HortTechnology 2015, 25, 370–379. [Google Scholar] [CrossRef]
- Witte, W.T.; Windham, M.T.; Windham, A.S.; Hale, F.A.; Clatterbuck, W.K. Dogwoods for American Gardens; University of Tennessee, Agricultural Extension Service: Knoxville, TN, USA, 2000. [Google Scholar]
- Warren, S.L. Growth and nutrient concentration in flowering dogwood after nitrogen fertilization and dormant root pruning. J. Arboric. 1993, 19, 57–63. [Google Scholar] [CrossRef]
- Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K. Assessing correlation of high-resolution NDVI with fertilizer application level and yield of rice and wheat crops using small UAVs. Remote Sens. 2019, 11, 112. [Google Scholar] [CrossRef]
- Edalat, M.; Naderi, R.; Egan, T.P. Corn nitrogen management using NDVI and SPAD sensor-based data under conventional vs. reduced tillage systems. J. Plant Nutr. 2019, 42, 2310–2322. [Google Scholar] [CrossRef]
- Dunn, B.L.; Shrestha, A.; Goad, C. Determining nitrogen fertility status using optical sensors in geranium with controlled release fertilizer. J. Appl. Hortic. 2015, 17, 7–11. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Dunn, B.L.; Arnall, D.B. Assessing nitrogen status in potted geranium through discriminant analysis of ground-based spectral reflectance data. HortScience 2012, 47, 343–348. [Google Scholar] [CrossRef]
- Wang, Y.-W.; Dunn, B.L.; Arnall, D.B.; Mao, P.-S. Use of an active canopy sensor and SPAD chlorophyll meter to quantify geranium nitrogen status. HortScience 2012, 47, 45–50. [Google Scholar] [CrossRef]
- Fox, L.C. Effects of Transplanting and Irrigation Regime on Growth and Gas Exchange of Select Tree Species in a Semi-Arid Climate. Master’s Thesis, Texas Tech University, Lubbock, TX, USA, 2004. [Google Scholar]
- Kjelgren, R.; Cleveland, B. Growth and water relations of Kentucky coffee tree and silver maple following transplanting. J. Environ. Hortic. 1994, 12, 96–99. [Google Scholar] [CrossRef]
- Gilman, E.F.; Black, R.J.; Dehgan, B. Irrigation volume and frequency and tree size affect establishment rate. Arboric. Urban For. 1998, 24, 1–9. [Google Scholar] [CrossRef]
- Tyshchenko, A.; Tyshchenko, O.; Piliarska, O.; Biliaieva, I.; Kuts, H.; Lykhovyd, P.; Halchenko, N. Seed productivity of alfalfa varieties depending on the conditions of humidification and growth regulators in the southern steppe of Ukraine. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural. Dev. 2020, 20, 551. [Google Scholar]
- Warren, S.L.; Bilderback, T.E. Timing of low pressure irrigation affects plant growth and water utilization efficiency. J. Environ. Hortic. 2002, 20, 184–188. [Google Scholar] [CrossRef]
- Criscione, K.S.; Fields, J.S.; Owen, J.S.; Fultz, L.; Bush, E. Evaluating stratified substrates effect on containerized crop growth under varied irrigation strategies. HortScience 2022, 57, 400–413. [Google Scholar] [CrossRef]
- Witcher, A.L. Evaluation of Fertilizer and Irrigation Production Systems for Large Nursery Containers. Master’s Thesis, Louisiana State University and Agricultural & Mechanical College, Baton Rouge, LA, USA, 2003. [Google Scholar]
- Marshall, M.D.; Gilman, E.F. Effects of nursery container type on root growth and landscape establishment of Acer rubrum L. J. Environ. Hortic. 1998, 16, 55–59. [Google Scholar] [CrossRef]
- Neupane, K.; Witcher, A.; Baysal-Gurel, F. Evaluation of physiological changes in flowering dogwood under drought conditions in a container production system. HortScience 2023, 58, 1077–1084. [Google Scholar] [CrossRef]
- Chang, S.X.; Robison, D.J. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. For. Ecol. Manag. 2003, 181, 331–338. [Google Scholar] [CrossRef]
- Demotes-Mainard, S.; Boumaza, R.; Meyer, S.; Cerovic, Z.G. Indicators of nitrogen status for ornamental woody plants based on optical measurements of leaf epidermal polyphenol and chlorophyll contents. Sci. Hortic. 2008, 115, 377–385. [Google Scholar] [CrossRef]
- Freidenreich, A.; Barraza, G.; Jayachandran, K.; Khoddamzadeh, A.A. Precision agriculture application for sustainable nitrogen management of Justicia brandegeana using optical sensor technology. Agriculture 2019, 9, 98. [Google Scholar] [CrossRef]
- Gamble, E.; Daniels, R. Parent Material of Upper-and Middle-Coastal-Plain Soils in North Carolina. Soil Sci. Soc. Am. J. 1974, 38, 633–637. [Google Scholar] [CrossRef]
- Daniels, R.; Gamble, E.; Wheeler, W. Age of soil landscapes in the Coastal Plain of North Carolina. Soil Sci. Soc. Am. J. 1978, 42, 98–105. [Google Scholar] [CrossRef]
- Richards, D.L.; Reed, D.W. New Guinea impatiens growth response and nutrient release from controlled-release fertilizer in a recirculating subirrigation and top-watering system. HortScience 2004, 39, 280–286. [Google Scholar] [CrossRef]
- Bayer, A.; Ruter, J.; van Iersel, M.W. Optimizing irrigation and fertilization of Gardenia jasminoides for good growth and minimal leaching. HortScience 2015, 50, 994–1001. [Google Scholar] [CrossRef]
- Neilsen, G.; Parchomchuk, P.; Neilsen, D.; Berard, R.; Hague, E. Leaf nutrition and soil nutrients are affected by irrigation frequency and method for NP-fertigated Gala’Apple. J. Am. Soc. Hortic. Sci. 1995, 120, 971–976. [Google Scholar] [CrossRef]
- ShalekBriski, A.; Brorsen, B.W.; Biermacher, J.T.; Rohla, C.T.; Chaney, W. Effect of irrigation method on tree growth, foliar nutrient levels, and nut characteristics of young pecan trees in the southern Great Plains. HortTechnology 2019, 29, 109–113. [Google Scholar] [CrossRef]
- Wu, W.; Liu, M.; Wu, X.; Wang, Z.; Yang, H. Effects of deficit irrigation on nitrogen uptake and soil mineral nitrogen in alfalfa grasslands of the inland arid area of China. Agric. Water Manag. 2022, 269, 107724. [Google Scholar] [CrossRef]
- Amankwaa-Yeboah, P.; Aruna Akoriko, F.; Amponsah, W.; Yeboah, S.; Brempong, M.B.; Keteku, A.K. Combining deficit irrigation and nutrient amendment enhances the water productivity of tomato (Solanum lycopersicum L.) in the tropics. Front. Sustain. Food Syst. 2023, 7, 1199386. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neupane, K.; Witcher, A.; Baysal-Gurel, F. An Evaluation of the Effect of Fertilizer Rate on Tree Growth and the Detection of Nutrient Stress in Different Irrigation Systems. Horticulturae 2024, 10, 767. https://doi.org/10.3390/horticulturae10070767
Neupane K, Witcher A, Baysal-Gurel F. An Evaluation of the Effect of Fertilizer Rate on Tree Growth and the Detection of Nutrient Stress in Different Irrigation Systems. Horticulturae. 2024; 10(7):767. https://doi.org/10.3390/horticulturae10070767
Chicago/Turabian StyleNeupane, Krishna, Anthony Witcher, and Fulya Baysal-Gurel. 2024. "An Evaluation of the Effect of Fertilizer Rate on Tree Growth and the Detection of Nutrient Stress in Different Irrigation Systems" Horticulturae 10, no. 7: 767. https://doi.org/10.3390/horticulturae10070767
APA StyleNeupane, K., Witcher, A., & Baysal-Gurel, F. (2024). An Evaluation of the Effect of Fertilizer Rate on Tree Growth and the Detection of Nutrient Stress in Different Irrigation Systems. Horticulturae, 10(7), 767. https://doi.org/10.3390/horticulturae10070767