Impact of Soil Management Practices on Soil Culturable Bacteriota and Species Diversity in Central European a Productive Vineyard under Warm and Dry Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and History of Experimental Vineyard
2.2. Design of Experimental Vineyard
- T: Tillage system—involved soil plowing up to a depth of 25 cm between the rows of vines every autumn. During the vine vegetation season, intensive tillage was performed using a cultivator to a maximum depth of 12 cm. The purpose of soil loosening was to regulate or remove weeds between the vine rows, which was done on average three times during the vegetation season. No manure or mineral fertilizers were applied.
- T+FYM: A tillage system combined with the incorporation of farmyard manure by plowing in 4-year cycles. The soil tillage was the same as in the T treatment, both in autumn and during the vine vegetation season. In 2005, 2009, 2013, 2017, and 2021, farmyard manure was applied to the soil surface at a dose of 40 t ha−1 and incorporated to a depth of 20–25 cm. The poultry manure used had 55% organic substances in the dry matter, 2.8% total nitrogen (Nt), 1.3% phosphorus (P2O5), 1.2% potassium (K2O), and a pH ranging from 6 to 8.
- G: Grass between vine rows—a mixture of grasses, including Lolium perenne L., Poa pratensis L., Festuca rubra subsp. commutata Gaudin, and Trifolium repens L. were sown in spring 2006 at a ratio of 50:20:25:5. The aboveground grass biomass was cut down on average three times per vine vegetation season. The cut biomass was left in situ on the surface as a mulch layer. In this treatment, grass strips were not fertilized.
- G+NPK1: Grass strips between vine rows and the application of NPK at the first fertilization level. Between the rows of vines, the same mix of grasses as well as the same management practice as in the case of G treatment was used. Application doses of N, P, and K were 100 kg ha−1, 30 kg ha−1, and 120 kg ha−1, respectively. Every year, the nutrients were applied to the soil in the following ratios, 1/2 in March (bud burst) and 1/2 in May (flowering).
- G+NPK2: Grass strips between vine rows and the application of NPK at the second fertilization level. Between the vine rows, the same mix of grasses and the same management practices as in the G treatment were used. Application doses of N, P, and K were 125 kg ha−1, 50 kg ha−1, and 185 kg ha−1, respectively. Every year, the nutrients were applied to the soil in the following ratios, 2/3 in March (bud burst) and 1/3 in May (flowering).
2.3. Soil Sampling
2.4. Chemical Analysis
2.5. Bacterial Analysis
2.6. Statistical Analysis
3. Results
3.1. Effect of Soil Management Practices on Soil pH
3.2. Effect of Soil Management Practices on Electrical Conductivity
3.3. Effect of Soil Management Practices on Labile Carbon Content
3.4. Effect of Soil Management Practices on Soil Organic Carbon Content
3.5. Effect of Soil Management Practices on Abundance and Species Diversity of Soil Culturable Bacteriota
3.6. Relationships between Soil Parameters and Soil Culturable Bacteriota
4. Discussion
4.1. Effect of Soil Management Practices on Soil Properties and Soil Culturable Bacteriota
4.2. Relationships between Soil Properties under Different Soil Management Practices
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Millar, C.E.; Turk, L.M.; Foth, H.D. Fundamentals of Soil Science; John Wiley and Son, Inc.: New York, NY, USA, 1962; p. 526. [Google Scholar]
- Murphy, B.W. Soil Organic Matter and Soil Function—Review of the Literature and Underlying Data; Department of the Environment: Canberra, Australia, 2014; p. 155.
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soils; Pearson Education Limited: London, UK, 2017; p. 1104. [Google Scholar]
- Wolny-Koładka, K.; Jarosz, R.; Marcińska-Mazur, L.; Lošák, T.; Mierzwa-Hersztek, M. Effect of mineral and organic additions on soil microbial composition. Int. Agrophys. 2022, 36, 131–138. [Google Scholar] [CrossRef]
- Jia, Y.; Liu, Z.; Zhou, L.; Liu, X.; Ma, K.; Feng, X. Soil organic carbon sourcing variance in the rhizosphere vs. non-rhizosphere of two mycorrhizal tree species. Soil Biol. Biochem. 2023, 176, 108884. [Google Scholar] [CrossRef]
- Zhang, Y.; Shangguan, Z. Long-term N addition accelerated organic carbon mineralization in aggregates by shifting microbial community composition. Agric. Ecosyst. Environ. 2023, 342, 108249. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; van Elsas, J.D. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008, 16, 463–471. [Google Scholar] [CrossRef] [PubMed]
- Krause, S.M.B.; Dohrmann, A.B.; Gillor, O.; Christensen, B.T.; Merbach, I.; Tebbe, C.C. Soil properties and habitats determine the response of bacterial communities to agricultural wastewater irrigation. Pedosphere 2020, 30, 146–158. [Google Scholar] [CrossRef]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Schloter, M.; Nannipieri, P.; Sørensen, S.J.; van Elsas, J.D. Microbial indicators for soil quality. Biol. Fertil. Soils 2018, 54, 1–10. [Google Scholar] [CrossRef]
- Meetei, T.T.; Devi, Y.B.; Thounaojam, T.C. Role of Soil Organisms in Maintaining Soil Health. In Microbial Based Land Restoration Handbook, Volume 2 Soil and Plant Health Development; Pandey, V., Pankaj, U., Eds.; Taylor and Francis Group: Abingdon, UK; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar] [CrossRef]
- Climate Change Adaptation. Available online: https://climate-adapt.eea.europa.eu/en/countries-regions/countries/slovakia (accessed on 23 April 2024).
- Váchalová, R.; Kolář, L.; Muchová, Z. Primární Organická Pudní Hmota a Humus, Dvě Složky Pudní Organické Hmoty [Primary Soil Organic Matter and Humus, Two Components of Soil Organic Matter]; SUA: Nitra, Slovakia, 2016; p. 122. (In Czech) [Google Scholar]
- Bereza-Boruta, B. Selected enzymatic activities of actinomycetes of Streptomyces genus isolated from potato plantation. Agricultura 2002, 1, 27–36. [Google Scholar]
- Kováčik, P.; Ryant, P. Agrochémia, Princípy A Prax [Agrochemistry, Principles and Practice]; SPU: Nitra, Slovakia, 2019; p. 358. (In Slovak) [Google Scholar]
- Daunoras, J.; Kačergius, A.; Gudiukaité, R. Role of soil microbiota enzymes in soil health and activity changes depending on climate change and the type of soil ecosystem. Biology 2024, 13, 85. [Google Scholar] [CrossRef]
- Blankinship, J.C.; Niklaus, P.A.; Hungate, B.A. A meta-analysis of responses of soil biota to global change. Oecologia 2011, 165, 553–565. [Google Scholar] [CrossRef]
- Henry, H.A.L. Soil extracellular enzyme dynamics in a changing climate. Soil Biol. Biochem. 2012, 47, 53–59. [Google Scholar] [CrossRef]
- Manzoni, S.; Schimel, J.P.; Porporato, A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology 2012, 93, 930–938. [Google Scholar] [CrossRef]
- A’Bear, A.D.; Jones, T.H.; Boddy, L. Potential impacts of climate change on interactions among saprotrophic cord-forming fungal mycelia and grazing soil invertebrates. Fungal Ecol. 2014, 10, 34–43. [Google Scholar] [CrossRef]
- Chen, S.; Zou, J.; Hu, Z.; Chen, H.; Lu, Y. Global annual soil respiration in relation to climate, soil properties and vegetation characteristics: Summary of available data. Agric. For. Meteorol. 2014, 198–199, 335–346. [Google Scholar] [CrossRef]
- Zhang, N.N.; Sun, G.; Zhong, B.; Wang, E.T.; Zhao, C.Z.; Wang, Y.J.; Cheng, W.; Wu, N. Impacts of wise grazing on physicochemical and biological features of soil in a sandy grassland on the Tibetan Plateau. Land Degrad. Dev. 2019, 30, 719–729. [Google Scholar] [CrossRef]
- Pereira e Silva, M.C.; Semenov, A.V.; Schmitt, H.; van Elsas, J.D.; Salles, J.F. Microbe-mediated processes as indicators to establish the normal operating range of soil functioning. Soil Biol. Biochem. 2013, 57, 995–1002. [Google Scholar] [CrossRef]
- Tibbett, M.; Gil-Martínez, M.; Fraser, T.; Green, I.D.; Duddigan, S.; De Oliveira, V.H.; Raulund-Rasmussen, K.; Sizmur, T.; Diaz, A. Long-term acidification of pH neutral grasslands affects soil biodiversity, fertility and function in a heathland restoration. Catena 2019, 180, 401–415. [Google Scholar] [CrossRef]
- Lundquist, E.J.; Jackson, L.E.; Scow, K.M. Wet–dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biol. Biochem. 1999, 31, 1031–1038. [Google Scholar] [CrossRef]
- Kardol, P.; Wardle, D.A. How understanding aboveground–belowground linkages can assist restoration ecology. Trends Ecol. Evol. 2010, 25, 670–679. [Google Scholar] [CrossRef]
- Smith, R.S.; Shiel, R.S.; Bardgett, R.D.; Millward, D.; Corkhill, P.; Rolph, G.; Hobbs, P.J.; Peacock, S. Soil microbial community, fertility, vegetation and diversity as targets in the restoration management of a meadow grassland. J. Appl. Ecol. 2003, 40, 51–64. [Google Scholar] [CrossRef]
- Wang, Y.; Li, C.; Tu, C.; Hoyt, G.D.; DeForest, J.L.; Hu, S. Long-term no-tillage and organic input management enhanced the diversity and stability of soil microbial community. Sci. Total Environ. 2017, 609, 341–347. [Google Scholar] [CrossRef]
- Zhao, Q.; Xiong, W.; Xing, Y.; Sun, Y.; Lin, X.; Dong, Y. Long-term cofee monoculture alters soil chemical properties and microbial communities. Sci. Rep. 2018, 8, 6116. [Google Scholar] [CrossRef]
- Tian, J.; Wang, J.; Dippold, M.; Gao, Y.; Blagodatskaya, E.; Kuzyakov, Y. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil. Sci. Total Environ. 2016, 556, 89–97. [Google Scholar] [CrossRef]
- Toyota, K.; Kuninaga, S. Comparison of soil microbial community between soils amended with or without farmyard manure. Appl. Soil Ecol. 2006, 33, 39–48. [Google Scholar] [CrossRef]
- Zhen, Z.; Liu, H.; Wang, N.; Guo, L.; Meng, J.; Ding, N.; Wu, G.; Jiang, G. Effects of manure compost application on soil microbial community diversity and soil microenvironments in a temperate cropland in China. PLoS ONE 2014, 9, e108555. [Google Scholar] [CrossRef]
- Iqbal, A.; Tang, X.; Ali, I.; Yuan, P.; Khan, R.; Khan, Z.; Adnan, M.; Wei, S.; Jiang, L. Integrating low levels of organic fertilizer improves soil fertility and rice yields in paddy fields by influencing microbial communities without increasing CH4 emissions. Appl. Soil Ecol. 2023, 189, 104951. [Google Scholar] [CrossRef]
- Lehmann, J.; Rillig, M.C.; Thies, J.; Masiell, C.A.; Hockaday, W.C.; Crowley, D. Biochar effects on soil biota, A review. Soil Biol. Biochem. 2011, 43, 1812–1836. [Google Scholar] [CrossRef]
- Šimanský, V.; Aydın, E.; Horák, J. Is it possible to control the nutrient regime of soils with different texture through biochar substrates? Agronomy 2022, 12, 51. [Google Scholar] [CrossRef]
- Šimanský, V.; Wójcik-Gront, E.; Horváthová, J.; Pikuła, D.; Lošák, T.; Parzych, A.; Lukac, M.; Aydın, E. Changes in relationships between humic substances and soil structure following different mineral fertilization of Vitis vinifera L. in Slovakia. Agronomy 2022, 12, 1460. [Google Scholar] [CrossRef]
- Igaz, D.; Šimanský, V.; Horák, J.; Kondrlová, E.; Domanová, J.; Rodný, M.; Buchkina, N.P. Can a single dose of biochar affect selected soil physical and chemical characteristics? J. Hydrol. Hydromech. 2018, 66, 421–428. [Google Scholar] [CrossRef]
- Kuzyakov, Y.; Chang, W. Photosynthesis controls of rhizosphere respiration and organic matter decomposition. Soil Biol. Biochem. 2001, 33, 1915–1925. [Google Scholar] [CrossRef]
- Burns, K.N.; Bokulich, N.A.; Cantu, D.; Greenhut, R.F.; Kluepfel, D.A.; O’Geen, A.T.; Strauss, S.L.; Steenwerth, K.L. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by vineyard management. Soil Biol. Biochem. 2016, 103, 337–348. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019. [Google Scholar]
- Barreiro, J.R.; Ferreira, C.R.; Sanvido, G.B.; Kostrzewa, M.; Maier, T.; Wegemann, B.; Böttcher, V.; Eberlin, M.N.; dos Santos, M.V. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Dairy Sci. 2010, 93, 5661–5667. [Google Scholar] [CrossRef]
- Böhme, K.; Fernández-No, I.C.; Barros-Velázquez, J.; Gallardo, J.M.; Cañas, B.; Calo-Mata, P. Rapid species identification of seafood spoilage and pathogenic Gram-positive bacteria by MALDI-TOF mass fingerprinting. Electrophoresis 2011, 32, 2951–2965. [Google Scholar] [CrossRef]
- Pandey, A.; Jain, R.; Sharma, A.; Dhakar, K.; Kaira, G.S.; Rahi, P.; Dhyani, A.; Pandey, N.; Adhikari, P.; Shouche, Y.S. 16S rRNA gene sequencing and MALDI-TOF mass spectrometry based comparative assessment and bioprospection of psychrotolerant bacteria isolated from high altitudes under mountain ecosystem. SN Appl. Sci. 2019, 1, 278. [Google Scholar] [CrossRef]
- El-Nemr, I.M.; Mushtaha, M.; Sundararaju, S.; Fontejon, C.; Suleiman, M.; Tang, P.; Goktepe, I.; Hasan, M.R. Application of MALDI biotyper system for rapid identification of bacteria isolated from a fresh produce market. Curr. Microbiol. 2019, 76, 290–296. [Google Scholar] [CrossRef]
- Surányi, B.B.; Zwirzitz, B.; Mohácsi-Farkas, C.; Engelhardt, T.; Domig, K.J. Comparing the efficacy of MALDI-TOF MS and sequencing-based identification techniques (Sanger and NGS) to monitor the microbial community of irrigation water. Microorganisms 2023, 11, 287. [Google Scholar] [CrossRef] [PubMed]
- Jesser, K.J.; Noble, R.T. Vibrio ecology in the neuse river estuary, North Carolina, characterized by next-generation amplicon sequencing of the gene encoding heat shock protein 60 (hsp60). Appl. Environ. Microbiol. 2018, 84, e00333-18. [Google Scholar] [CrossRef] [PubMed]
- Hreško, J.; Pucherová, Z.; Baláž, I.; Ambróz, M.; Bezák, P. Krajina Nitry a jej Okolia [The Landscape of Nitra and its Surroundings]; UKF: Nitra, Slovakia, 2006; p. 254. (In Slovak) [Google Scholar]
- Jankowski, M.; Šimanský, V.; Markiewicz, M.; Pilichowska, A.; Michalak, J. Differently Used Soils of the Tribeč Mountain Range and Nitra Valley Slope. In Soil Sequences Atlas IV; Switoniak, M., Charzyński, P., Eds.; Nicolaus Copernicus University: Toruń, Poland, 2018; pp. 139–158. [Google Scholar]
- Kottek, M.; Grieser, J.; Beck, C.H.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Z. 2006, 15, 259–263. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources 2014. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015; Available online: http://www.fao.org/3/i3794en/I3794en.pdf (accessed on 23 April 2024).
- Dziadowiec, H.; Gonet, S. Przewodnik Metodyczny do Badań Materii Organicznej Gleb [Methodological Guidebook for The Organic Matter Researches]; PTG: Warszawa, Poland, 1999; pp. 31–34. (In Polish) [Google Scholar]
- Loginow, W.; Wisniewski, W.; Gonet, S.S.; Ciescinska, B. Fractionation of organic carbon based on susceptibility to oxidation. Pol. J. Soil Sci. 1987, 20, 47–52. [Google Scholar]
- Kačániová, M.; Klūga, A.; Kántor, A.; Medo, J.; Žiarovská, J.; Puchalski, C.; Terentjeva, M. Comparison of MALDI-TOF MS Biotyper and 16S rDNA sequencing for the identification of Pseudomonas species isolated from fish. Microb. Pathog. 2019, 132, 313–318. [Google Scholar] [CrossRef] [PubMed]
- Šimanský, V.; Polláková, N.; Chlpík, J.; Kolenčík, M. Pôdoznalectvo [Soil Science]; SPU: Nitra, Slovakia, 2018; p. 398. (In Slovak) [Google Scholar]
- Vaněk, V.; Ložek, O.; Balík, J.; Pavlíková, D.; Tlustoš, P. Výživa Pol’ných a Záhradných Plodín [Nutrition of Field and Garden Crops]; Profi Press: Praha, Czech Republic, 2013; p. 175. (In Slovak) [Google Scholar]
- White, R.E. Understanding Vineyard Soils; Oxford University Press: New York, NY, USA, 2015; p. 280. [Google Scholar]
- Torre, C.M.; Morano, P.; Tajani, F. Saving soil for sustainable land use. Sustainability 2017, 9, 350. [Google Scholar] [CrossRef]
- Lazcano, C.; Decock, C.; Wilson, S.G. Defining and managing for healthy vineyard soils, intersections with the concept of terroir. Front. Environ. Sci. 2020, 8, 68. [Google Scholar] [CrossRef]
- Šimanský, V.; Bajčan, D. The response of different soil management practices in a vineyard to water availability. Acta Fytotechn. Zootechn. 2013, 16, 53–57. [Google Scholar]
- Graham, P.H.; Draeger, K.J.; Ferrey, M.L.; Conroy, M.J.; Hammer, B.E.; Martinez, E.; Aarons, S.R.; Quinto, C. Acid pH tolerance in strains of Rhizobium and Bradyrhizobium, and initial studies on the basis for acid tolerance of Rhizobium tropici UMR1899. Can. J. Microbiol. 1994, 40, 198–207. [Google Scholar] [CrossRef]
- Zifcakova, L. Factors Affecting Soil Microbial Processes. In Carbon and Nitrogen Cycling in Soil; Datta, R., Meena, R.S., Pathan, S.I., Ceccherini, M.T., Eds.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 439–461. [Google Scholar]
- Ratzke, C.; Gore, J. Modifying and reacting to the environmental pH can drive bacterial interactions. PLoS Biol. 2019, 16, e2004248. [Google Scholar] [CrossRef] [PubMed]
- Hanes, J. Analýza Sorpčných Vlastností Pôd [Analyzes of Soil Sorptive Characteristics]; SSCRI: Bratislava, Slovakia, 1999; p. 138. (In Slovak) [Google Scholar]
- Das, S.; Deb, S.; Sahoo, S.S.; Sahoo, U.K. Soil microbial biomass carbon stock and its relation with climatic and other environmental factors in forest ecosystems: A review. Acta Ecol. Sin. 2023, 43, 933–945. [Google Scholar] [CrossRef]
- Jakab, G.; Madarász, B.; Masoudi, M.; Karlik, M.; Király, C.; Zacháry, D.; Filep, T.; Dekemati, I.; Centeri, C.; Al-Graiti, T.; et al. Soil organic matter gain by reduced tillage intensity: Storage, pools, and chemical composition. Soil Tillage Res. 2023, 226, 105584. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [PubMed]
- Masood, S.; Naz, T.; Javed, M.T.; Ahmed, I.; Ullah, H.; Iqbal, M. Effect of short-term supply of farmyard manure on maize growth and soil parameters in pot culture. Arch. Agron. Soil Sci. 2013, 60, 337–347. [Google Scholar] [CrossRef]
- Šimanský, V.; Jonczak, J.; Pikuła, D.; Lukac, M. Grass sward cover improves soil organic carbon and nitrogen in a vineyard. Soil Sci. Plant Nutr. 2023, 69, 240–249. [Google Scholar] [CrossRef]
- Conant, R.T.; Cerri, C.E.P.; Osborne, B.B.; Paustian, K. Grassland management impacts on soil carbon stocks: A new synthesis. Ecol. Appl. 2017, 27, 662–668. [Google Scholar] [CrossRef]
- Tian, K.; Zhao, Y.; Xu, X.; Hai, N.; Huang, B.; Deng, W. Effects of long-term fertilization and residue management on soil organic carbon changes in paddy soils of China: A meta-analysis. Agric. Ecosyst. Environ. 2015, 204, 40–50. [Google Scholar] [CrossRef]
- Shimizu, M.M.; Marutani, S.; Desyatkin, A.R.; Jin, T.; Hata, H.; Hatano, R. The effect of manure application on carbon dynamics and budgets in a managed grassland of Southern Hokkaido, Japan. Agric. Ecosyst. Environ. 2009, 130, 31–40. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, P.; Tian, H.; Xiao, Q.; Jiang, H. Pyrosequencing-based assessment of soil microbial community structure and analysis of soil properties with vegetable planted at different years under greenhouse conditions. Soil Tillage Res. 2019, 187, 1–10. [Google Scholar] [CrossRef]
- Natywa, M.; Sawicka, A.; Wolna-Maruwka, A. Microbial and enzymatic activity in the soil under maize crop in relation to differentiated nitrogen fertilisation. Water-Environ. Rural Areas 2010, 10, 111–120. [Google Scholar]
- Saxena, A.K.; Kumar, M.; Chakdar, H.; Anuroopa, N.; Bagyaraj, D.J. Bacillus species in soil as a natural resource for plant health and nutrition. J. Appl. Microbiol. 2020, 128, 1583–1594. [Google Scholar] [CrossRef]
- Vega-Avila, A.D.; Gumiere, T.; Andrade, P.A.M.; Lima-Perim, J.E.; Durrer, A.; Baigori, M.; Vazquez, F.; Andreote, F.D. Bacterial communities in the rhizosphere of Vitis vinifera L. cultivated under distinct agricultural practices in Argentina. Anton. Leeuw. 2015, 107, 575–588. [Google Scholar] [CrossRef]
- Reeve, J.R.; Schadt, C.W.; Carpenter-Boggs, L.; Kang, S.; Zhou, J.; Reganold, J.P. Effects of soil type and farm management on soil ecological functional genes and microbial activities. ISME J. 2010, 4, 1099–1107. [Google Scholar] [CrossRef]
- Lamb, E.G.; Kennedy, N.; Siciliano, S.D. Effects of plant species richness and evenness on soil microbial community diversity and function. Plant Soil. 2011, 338, 483–495. [Google Scholar] [CrossRef]
- Zarraonaindia, I.; Owens, S.M.; Weisenhorn, P.; West, K.; Hampton-Marcell, J.; Lax, S.; Bokulich, N.A.; Mills, D.A.; Martin, G.; Taghavi, S.; et al. The soil microbiome influences grapevine-associated microbiota. mBio 2015, 6, e02527-14. [Google Scholar] [CrossRef] [PubMed]
- Rousk, J.; Bååth, E.; Brookes, P.C.; Lauber, C.L.; Lozupone, C.; Caporaso, J.G.; Knight, R.; Fierer, N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010, 4, 1340–1351. [Google Scholar] [CrossRef] [PubMed]
- Fierer, N.; Jackson, R.B. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA 2006, 103, 626–631. [Google Scholar] [CrossRef]
- Burns, K.N.; Kluepfel, D.A.; Strauss, S.L.; Bokulich, N.A.; Cantu, D.; Steenwerth, K.L. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: Differentiation by geographic features. Soil Biol. Biochem. 2015, 91, 232–247. [Google Scholar] [CrossRef]
Month | Total Precipitation | Average Air Temperature | ||||||
---|---|---|---|---|---|---|---|---|
Climatic Normal (mm) | Year 2022 (mm) | Difference (%) | Classification | Climatic Normal (°C) | Year 2022 (°C) | Difference (°C) | Classification | |
January | 32.8 | 0.99 | 3 | extremely dry | −0.5 | 5.9 | 5.4 | extremely warm |
February | 28.9 | 34.5 | 119 | normal | 1.3 | 3.6 | 2.3 | normal |
March | 32.9 | 3.5 | 11 | extremely dry | 5.5 | 4.6 | −0.9 | normal |
April | 36.3 | 12.9 | 36 | very dry | 11.4 | 8.5 | −2.9 | cold |
May | 59.3 | 12.7 | 21 | very dry | 16.0 | 15.8 | −0.2 | normal |
June | 59.1 | 88.4 | 150 | wet | 19.6 | 20.7 | 1.1 | warm |
July | 64.6 | 60.4 | 94 | normal | 21.7 | 21.5 | −0.2 | normal |
August | 54.6 | 59.9 | 110 | normal | 21.1 | 21.9 | 0.8 | normal |
September | 58.1 | 6.6 | 11 | very dry | 15.9 | 14.4 | −1.5 | cold |
October | 46.1 | 27.5 | 60 | normal | 10.4 | 11.5 | 1.1 | warm |
November | 44.9 | 8.7 | 19 | very dry | 5.6 | 5.5 | −0.1 | normal |
December | 41.6 | 67.2 | 162 | wet | 0.7 | 1.35 | 0.7 | normal |
Treatments | Abundance of Culturable Bacteriota | Soil pH | EC | CL | SOC |
---|---|---|---|---|---|
Mann-Kendall Trends | |||||
T | Increasing | Stable/No Trend | Stable/No Trend | Decreasing | Stable/No Trend |
T+FYM | Stable/No Trend | Stable/No Trend | Stable/No Trend | Decreasing | Stable/No Trend |
G | Stable/No Trend | Stable/No Trend | Stable/No Trend | Stable/No Trend | Stable/No Trend |
G+NPK1 | Stable/No Trend | Stable/No Trend | Stable/No Trend | Stable/No Trend | Stable/No Trend |
G+NPK2 | Stable/No Trend | Stable/No Trend | Stable/No Trend | Stable/No Trend | Stable/No Trend |
Treatments | Abundance of Culturable Bacteriota | Soil pH | EC | CL | SOC |
---|---|---|---|---|---|
m S/m | g/kg | ||||
T | 4.0 ± 0.39 a | 6.89 ± 0.09 bc | 277 ± 68 a | 1.77 ± 0.24 a | 14.4 ± 0.88 a |
T+FYM | 4.1 ± 0.30 a | 7.01 ± 0.07 bc | 342 ± 64 a | 1.84 ± 0.33 a | 18.4 ± 1.13 b |
G | 4.3 ± 0.35 a | 7.20 ± 0.08 c | 395 ± 65 a | 4.02 ± 0.88 b | 31.8 ± 6.12 d |
G+NPK1 | 4.2 ± 0.46 a | 6.51 ± 0.63 b | 1309 ± 888 b | 3.91 ± 0.97 b | 27.9 ± 5.65 c |
G+NPK2 | 4.1 ± 0.39 a | 5.79 ± 0.74 a | 2825 ± 1167 c | 3.62 ± 0.63 b | 25.1 ± 2.82 c |
Culturable Bacteriota | Soil pH | EC | CL | SOC | Air Temperature | Precipitation | |
---|---|---|---|---|---|---|---|
Culturable bacteriota | −0.09 | 0.69 | −0.26 | −0.26 | 0.35 | −0.08 | |
Soil pH | −0.07 | 0.16 | 0.40 | −0.25 | −0.23 | −0.20 | |
EC | 0.58 | 0.13 | −0.25 | −0.13 | 0.62 | 0.22 | |
CL | −0.19 | 0.22 | −0.14 | −0.14 | −0.07 | −0.02 | |
SOC | −0.31 | 0.25 | −0.27 | 0.20 | 0.31 | 0.11 | |
Air temperature | 0.17 | −0.34 | 0.68 | −0.38 | −0.39 | 0.71 | |
Precipitation | −0.13 | −0.36 | 0.32 | −0.01 | −0.37 | 0.71 | |
Culturable bacteriota | −0.20 | 0.52 | 0.35 | 0.43 | 0.68 | 0.17 | |
Soil pH | −0.44 | −0.73 | −0.92 | −0.45 | −0.39 | ||
EC | 0.23 | 0.53 | 0.69 | 0.43 | |||
CL | 0.87 | 0.35 | 0.17 | ||||
SOC | 0.52 | 0.32 | |||||
Air temperature | 0.71 | ||||||
Culturable bacteriota | 0.09 | 0.54 | −0.08 | 0.08 | 0.79 | 0.32 | |
Soil pH | 0.17 | −0.51 | −0.12 | −0.26 | 0.00 | −0.49 | |
EC | 0.37 | −0.43 | −0.01 | −0.13 | 0.78 | 0.90 | |
CL | −0.07 | 0.47 | −0.03 | 0.74 | −0.07 | −0.02 | |
SOC | −0.65 | 0.01 | −0.11 | 0.70 | −0.18 | −0.26 | |
Air temperature | 0.63 | −0.02 | 0.64 | 0.25 | −0.01 | 0.71 | |
Precipitation | 0.05 | −0.44 | 0.81 | 0.19 | 0.32 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šimanský, V.; Kačániová, M.; Juriga, M.; Čmiková, N.; Borotová, P.; Aydın, E.; Wójcik-Gront, E. Impact of Soil Management Practices on Soil Culturable Bacteriota and Species Diversity in Central European a Productive Vineyard under Warm and Dry Conditions. Horticulturae 2024, 10, 753. https://doi.org/10.3390/horticulturae10070753
Šimanský V, Kačániová M, Juriga M, Čmiková N, Borotová P, Aydın E, Wójcik-Gront E. Impact of Soil Management Practices on Soil Culturable Bacteriota and Species Diversity in Central European a Productive Vineyard under Warm and Dry Conditions. Horticulturae. 2024; 10(7):753. https://doi.org/10.3390/horticulturae10070753
Chicago/Turabian StyleŠimanský, Vladimír, Miroslava Kačániová, Martin Juriga, Natália Čmiková, Petra Borotová, Elena Aydın, and Elzbieta Wójcik-Gront. 2024. "Impact of Soil Management Practices on Soil Culturable Bacteriota and Species Diversity in Central European a Productive Vineyard under Warm and Dry Conditions" Horticulturae 10, no. 7: 753. https://doi.org/10.3390/horticulturae10070753
APA StyleŠimanský, V., Kačániová, M., Juriga, M., Čmiková, N., Borotová, P., Aydın, E., & Wójcik-Gront, E. (2024). Impact of Soil Management Practices on Soil Culturable Bacteriota and Species Diversity in Central European a Productive Vineyard under Warm and Dry Conditions. Horticulturae, 10(7), 753. https://doi.org/10.3390/horticulturae10070753