Recent Advances in Molecular Genetics of Onion
Abstract
:1. Introduction
2. Use of Molecular Markers to Study Genetic Divergence
3. Bulb Color
4. Bulb Quality
4.1. Soluble Carbohydrates
Bulb Quality Trait | Linked Markers | Mapping Population | Chromosome | Reference |
---|---|---|---|---|
Carbohydrates | ||||
(6G,1)-nystose | API18–AOB77 | ‘Brigham Yellow Globe 15-23’ (BYG15-23) and ‘Ailsa Craig 43’ (AC43) | 4 | [112] |
Sucrose | AJK84–API89 | 3 | ||
Dry matter (DM%) | ACM171 | W202A’ × ‘Texas Grano 438’ | 5 | [89] |
Fructans, fructose, and sucrose | ACM235 and ACM033 | ‘Colossal Grano PVP’ × ‘Early Long-keeper P12’ | 8 | |
ACM033 and ACABE58 | ‘BYG15-23’ × ’AC43’ | 8 | ||
DM% | API92 | ‘BYG15-23’ × ’AC43’ | 5 | [113] |
DM% and fructans | ACM033 | 8 | ||
Pungency | ||||
Sulfur assimilation | ACM169 | ‘W202A’ × ‘Texas Grano 438’ | 3 | [114] |
ACM 171 | 5 | |||
Lachrymatory factor synthase (LFS) | ACP052 | A. fistulosum–shallot (A. cepa L. Aggregatum group) monosomic addition lines | 5A | [115] |
4.2. Pungency
5. Bulbing and Flowering
6. Biotic Stress
6.1. Fusarium Basal Rot
6.2. Pink Root
6.3. Purple Blotch
6.4. Downy Mildew
6.5. Gray Mold
7. Male Sterility and Hybrid Development
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moreno-Rojas, J.M.; Moreno-Ortega, A.; Ordóñez, J.L.; Moreno-Rojas, R.; Pérez-Aparicio, J.; Pereira-Caro, G. Development and Validation of UHPLC-HRMS Methodology for the Determination of Flavonoids, Amino Acids and Organosulfur Compounds in Black Onion, a Novel Derived Product from Fresh Shallot Onions (Allium cepa var. aggregatum). LWT 2018, 97, 376–383. [Google Scholar] [CrossRef]
- Zamri, N.; Hamid, H.A. Comparative Study of Onion (Allium cepa) and Leek (Allium ampeloprasum): Identification of Organosulphur Compounds by UPLC-QTOF/MS and Anticancer Effect on MCF-7 Cells. Plant Foods Hum. Nutr. 2019, 74, 525–530. [Google Scholar] [CrossRef]
- Ren, F.; Reilly, K.; Kerry, J.P.; Gaffney, M.; Hossain, M.; Rai, D.K. Higher Antioxidant Activity, Total Flavonols, and Specific Quercetin Glucosides in Two Different Onion (Allium cepa L.) Varieties Grown under Organic Production: Results from a 6-Year Field Study. J. Agric. Food Chem. 2017, 65, 5122–5132. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Parks, J.S.; Kang, H.W. Quercetin, a Functional Compound of Onion Peel, Remodels White Adipocytes to Brown-like Adipocytes. J. Nutr. Biochem. 2017, 42, 62–71. [Google Scholar] [CrossRef] [PubMed]
- Ma, Y.L.; Zhu, D.Y.; Thakur, K.; Wang, C.H.; Wang, H.; Ren, Y.F.; Zhang, J.G.; Wei, Z.J. Antioxidant and Antibacterial Evaluation of Polysaccharides Sequentially Extracted from Onion (Allium cepa L.). Int. J. Biol. Macromol. 2018, 111, 92–101. [Google Scholar] [CrossRef]
- Lanzotti, V.; Romano, A.; Lanzuise, S.; Bonanomi, G.; Scala, F. Antifungal Saponins from Bulbs of White Onion, Allium cepa L. Phytochemistry 2012, 74, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Dahlawi, S.M.; Nazir, W.; Iqbal, R.; Asghar, W.; Khalid, N. Formulation and Characterization of Oil-in-Water Nanoemulsions Stabilized by Crude Saponins Isolated from Onion Skin Waste. RSC Adv. 2020, 10, 39700–39707. [Google Scholar] [CrossRef]
- Ouyang, H.; Hou, K.; Peng, W.; Liu, Z.; Deng, H. Antioxidant and Xanthine Oxidase Inhibitory Activities of Total Polyphenols from Onion. Saudi J. Biol. Sci. 2018, 25, 1509–1513. [Google Scholar] [CrossRef]
- Loredana, L.; Adiletta, G.; Nazzaro, F.; Florinda, F.; Marisa, D.M.; Donatella, A. Biochemical, Antioxidant Properties and Antimicrobial Activity of Different Onion Varieties in the Mediterranean Area. J. Food Meas. Charact. 2019, 13, 1232–1241. [Google Scholar] [CrossRef]
- Jakaria, M.; Azam, S.; Cho, D.Y.; Haque, M.E.; Kim, I.S.; Choi, D.K. The Methanol Extract of Allium cepa L. Protects Inflammatory Markers in LPS-Induced BV-2 Microglial Cells and Upregulates the Antiapoptotic Gene and Antioxidant Enzymes in N27-A Cells. Antioxidants 2019, 8, 348. [Google Scholar] [CrossRef]
- Lee, J.S.; Cha, Y.J.; Lee, K.H.; Yim, J.E. Onion Peel Extract Reduces the Percentage of Body Fat in Overweight and Obese Subjects: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Study. Nutr. Res. Pract. 2016, 10, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Jini, D.; Sharmila, S. Green Synthesis of Silver Nanoparticles from Allium cepa and Its in Vitro Antidiabetic Activity. Mater. Today Proc. 2020, 22, 432–438. [Google Scholar] [CrossRef]
- Tsuboki, J.; Fujiwara, Y.; Horlad, H.; Shiraishi, D.; Nohara, T.; Tayama, S.; Motohara, T.; Saito, Y.; Ikeda, T.; Takaishi, K.; et al. Onionin A Inhibits Ovarian Cancer Progression by Suppressing Cancer Cell Proliferation and the Protumour Function of Macrophages. Sci. Rep. 2016, 6, 29588. [Google Scholar] [CrossRef] [PubMed]
- Colina-Coca, C.; Gonzalez-Pena, D.; de Ancos, B.; Sánchez-Moreno, C. Dietary Onion Ameliorates Antioxidant Defence, Inflammatory Response, and Cardiovascular Risk Biomarkers in Hypercholesterolemic Wistar Rats. J. Funct. Foods 2017, 36, 300–309. [Google Scholar] [CrossRef]
- Salami, M.; Tamtaji, O.R.; Mohammadifar, M.; Talaei, S.A.; Tameh, A.A.; Abed, A.R.; Shirkhoda, S.; Dadgostar, E.; Taghizadeh, M. Neuroprotective Effects of Onion (Allium cepa) Ethanolic Extract on Animal Model of Parkinson’s Disease Induced by 6-Hydroxydopamine: A Behavioral, Biochemical, and Histological Study. Gazi Med. J. 2020, 31, 25–29. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Al-Yousef, H.M.; Al-Qahtani, J.H.; Al-Said, M.S. A Hepatonephro-Protective Phenolic-Rich Extract from Red Onion (Allium cepa L.) Peels. Pak. J. Pharm. Sci. 2017, 30, 1971–1979. [Google Scholar] [PubMed]
- El-Hashim, A.Z.; Khajah, M.A.; Orabi, K.Y.; Balakrishnan, S.; Sary, H.G.; Abdelali, A.A. Onion Bulb Extract Downregulates EGFR/ERK1/2/AKT Signaling Pathway and Synergizes With Steroids to Inhibit Allergic Inflammation. Front. Pharmacol. 2020, 11, 551683. [Google Scholar] [CrossRef]
- Khajah, M.A.; EL-Hashim, A.Z.; Orabi, K.Y.; Hawai, S.; Sary, H.G. Onion Bulb Extract Can Both Reverse and Prevent Colitis in Mice via Inhibition of Pro-Inflammatory Signaling Molecules and Neutrophil Activity. PLoS ONE 2020, 15, e0233938. [Google Scholar] [CrossRef]
- Shokoohi, M.; Madarek, E.O.S.; Khaki, A.; Shoorei, H.; Khaki, A.A.; Soltani, M.; Ainehchi, N. Investigating the Effects of Onion Juice on Male Fertility Factors and Pregnancy Rate after Testicular Torsion/Detorsion by Intrauterine Insemination Method. Int. J. Women’s Health Reprod. Sci. 2018, 6, 499–505. [Google Scholar] [CrossRef]
- Alkhedaide, A.; Soliman, M.M.; Ismail, T.A. Protective effect of onion extract against experimental immunesuppression in wistar rats: Biological and molecular study. Afr. J. Tradit. Complement. Altern. Med. 2017, 14, 96–103. [Google Scholar] [CrossRef]
- Lamichhane, S.; Thapa, S. Advances from Conventional to Modern Plant Breeding Methodologies. Plant Breed. Biotechnol. 2022, 10, 1–14. [Google Scholar] [CrossRef]
- Bharti, G.; Chimata, M.K. Review on New Plant Breeding Techniques. Int. J. Sci. Res. 2019, 8, 723–730. [Google Scholar]
- Lema, M. Marker Assisted Selection in Comparison to Conventional Plant Breeding: Review Article. Agric. Res. Technol. 2018, 14, 555914. [Google Scholar] [CrossRef]
- Liang Jiang, G. Plant Marker-Assisted Breeding and Conventional Breeding: Challenges and Perspectives. Adv. Crop Sci. Technol. 2013, 1, e106. [Google Scholar] [CrossRef]
- McCallum, J. Genome Mapping and Molecular Breeding in Plants; Chittaranjan, K., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 5. [Google Scholar]
- Das, G.; Patra, J.K.; Baek, K.H. Insight into MAS: A Molecular Tool for Development of Stress Resistant and Quality of Rice through Gene Stacking. Front. Plant Sci. 2017, 8, 985. [Google Scholar] [CrossRef] [PubMed]
- Bark, O.H.; Havey, M.J. Similarities and Relationships among Populations of the Bulb Onion as Estimated by Nuclear RFLPs. Theor. Appl. Genet. 1995, 90, 407–414. [Google Scholar] [CrossRef]
- Bradeen, J.M.; Havey, M.J. Randomly Amplified Polymorphic DNA in Bulb Onion and Its Use to Assess Inbred Integrity. J. Am. Soc. Hortic. Sci. 1995, 120, 752–758. [Google Scholar] [CrossRef]
- Cramer, C.S.; Havey, M.J. Morphological, Biochemical, and Molecular Markers in Onion. HortScience 1999, 34, 590. [Google Scholar] [CrossRef]
- Duangjit, J.; Bohanec, B.; Chan, A.P.; Town, C.D.; Havey, M.J. Transcriptome Sequencing to Produce SNP-Based Genetic Maps of Onion. Theor. Appl. Genet. 2013, 126, 2093–2101. [Google Scholar] [CrossRef]
- Finkers, R.; van Kaauwen, M.; Ament, K.; Burger-Meijer, K.; Egging, R.; Huits, H.; Kodde, L.; Kroon, L.; Shigyo, M.; Sato, S.; et al. Insights from the First Genome Assembly of Onion (Allium cepa). G3 Genes Genomes Genet. 2021, 11, jkab243. [Google Scholar] [CrossRef]
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Cai, K.; Zhang, G.; Zeng, F. Metabolite Profiling of Barley Grains Subjected to Water Stress: To Explain the Genotypic Difference in Drought-Induced Impacts on Malting Quality. Front. Plant Sci. 2017, 8, 1547. [Google Scholar] [CrossRef] [PubMed]
- Mitrová, K.; Svoboda, P.; Ovesná, J. The Selection and Validation of a Marker Set for the Differentiation of Onion Cultivars from the Czech Republic. Czech J. Genet. Plant Breed. 2015, 51, 62–67. [Google Scholar] [CrossRef]
- Hanci, F.; Gökçe, A.F. Molecular Characterization of Turkish Onion Germplasm Using SSR Markers. Czech J. Genet. Plant Breed. 2016, 52, 71–76. [Google Scholar] [CrossRef]
- González-Pérez, S.; Mallor, C.; Garcés-Claver, A.; Merino, F.; Taboada, A.; Rivera, A.; Pomar, F.; Perovic, D.; Silvar, C. Exploring Genetic Diversity and Quality Traits in a Collection of Onion (Allium cepa L.) Landraces from North-West Spain. Genetika 2015, 47, 885–900. [Google Scholar] [CrossRef]
- Rivera, A.; Mallor, C.; Garcés-Claver, A.; García-Ulloa, A.; Pomar, F.; Silvar, C. Assessing the Genetic Diversity in Onion (Allium cepa L.) Landraces from Northwest Spain and Comparison with the European Variability. N. Z. J. Crop Hortic. Sci. 2016, 44, 103–120. [Google Scholar] [CrossRef]
- Karić, L.; Golzardi, M.; Glamočlija, P.; Šutković, J. Genetic Diversity Assessment of Allium cepa L. Cultivars from Bosnia and Herzegovina Using SSR Makers. Genet. Mol. Res. 2018, 17, gmr16039870. [Google Scholar] [CrossRef]
- Ricciardi, L.; Mazzeo, R.; Marcotrigiano, A.R.; Rainaldi, G.; Iovieno, P.; Zonno, V.; Pavan, S.; Lotti, C. Assessment of Genetic Diversity of the “Acquaviva Red Onion” (Allium cepa L.) Apulian Landrace. Plants 2020, 9, 260. [Google Scholar] [CrossRef]
- Villano, C.; Esposito, S.; Carucci, F.; Iorizzo, M.; Frusciante, L.; Carputo, D.; Aversano, R. High-Throughput Genotyping in Onion Reveals Structure of Genetic Diversity and Informative SNPs Useful for Molecular Breeding. Mol. Breed. 2019, 39, 5. [Google Scholar] [CrossRef]
- Adeyemo, O.A.; Oko, I.; Onadipe, A.S. Molecular Diversity of 3 Allium spp. Local Races Based on Rapd Data and Assessment of SSR Markers in Cross-Species Transferability; University of Lagos Research Repository: Lagos, Nigeria, 2018; Volume 3. [Google Scholar]
- Jayaswall, K.; Bhandawat, A.; Sharma, H.; Yadav, V.K.; Mahajan, V.; Singh, M. Characterization of Allium Germplasms for Conservation and Sustainable Management Using SSR Markers. Indian J. Tradit. Know. 2019, 18, 193–199. [Google Scholar]
- Monteverde, E.; Galván, G.A.; Speranza, P. Genetic Diversification of Local Onion Populations under Different Production Systems in Uruguay. Plant Genet. Resour. Characterisation Util. 2015, 13, 238–246. [Google Scholar] [CrossRef]
- Samiei, L.; Kiani, M.; Zarghami, H.; Memariani, F.; Joharchi, M.R. Genetic Diversity and Interspecific Relationships of Some Allium Species Using Inter Simple Sequence Repeat Markers. Bangladesh J. Plant Taxon. 2015, 22, 67. [Google Scholar] [CrossRef]
- Sudha, G.S.; Ramesh, P.; Sekhar, A.C.; Krishna, T.S.; Bramhachari, P.V.; Riazunnisa, K. Genetic Diversity Analysis of Selected Onion (Allium cepa L.) Germplasm Using Specific RAPD and ISSR Polymorphism Markers. Biocatal. Agric. Biotechnol. 2019, 17, 110–118. [Google Scholar] [CrossRef]
- Nikhil, B.S.K.; Jadhav, A.S. Characterization of Onion (Allium cepa L) Genotypes Using Molecular Markers. Int. J. Trop. Agric. 2017, 35, 25–31. [Google Scholar]
- Fang, H.; Liu, H.; Ma, R.; Liu, Y.; Li, J.; Yu, X.; Zhang, H.; Yang, Y.; Zhang, G. Genome-Wide Assessment of Population Structure and Genetic Diversity of Chinese Lou Onion Using Specific Length Amplified Fragment (SLAF) Sequencing. PLoS ONE 2020, 15, e0231753. [Google Scholar] [CrossRef] [PubMed]
- Erb, M.; Kliebenstein, D.J. Plant Secondary Metabolites as Defenses, Regulators, and Primary Metabolites: The Blurred Functional Trichotomy. Plant Physiol. 2020, 184, 39–52. [Google Scholar] [CrossRef]
- Williams, C.A.; Grayer, R.J. Anthocyanins and Other Flavonoids. Nat. Prod. Rep. 2004, 21, 539–573. [Google Scholar] [CrossRef]
- Song, S.; Kim, C.-W.; Moon, J.S.; Kim, S. At Least Nine Independent Natural Mutations of the DFR-A Gene Are Responsible for Appearance of Yellow Onions (Allium cepa L.) from Red Progenitors. Mol. Breed. 2014, 33, 173–186. [Google Scholar] [CrossRef]
- Gu, K.-D.; Wang, C.-K.; Hu, D.-G.; Hao, Y.-J. How Do Anthocyanins Paint Our Horticultural Products? Sci. Hortic. 2019, 249, 257–262. [Google Scholar] [CrossRef]
- Russo, M.; Spagnuolo, C.; Tedesco, I.; Bilotto, S.; Russo, G.L. The Flavonoid Quercetin in Disease Prevention and Therapy: Facts and Fancies. Biochem. Pharmacol. 2012, 83, 6–15. [Google Scholar] [CrossRef]
- Clere, N.; Faure, S.; Carmen Martinez, M.; Andriantsitohaina, R. Anticancer Properties of Flavonoids: Roles in Various Stages of Carcinogenesis. Cardiovasc. Hematol. Agents Med. Chem. (Former. Curr. Med. Chem.-Cardiovasc. Hematol. Agents) 2011, 9, 62–77. [Google Scholar] [CrossRef] [PubMed]
- Nishiumi, S.; Miyamoto, S.; Kawabata, K.; Ohnishi, K.; Mukai, R.; Murakami, A.; Ashida, H.; Terao, J. Dietary Flavonoids as Cancer-Preventive and Therapeutic Biofactors. Front. Biosci.-Sch. 2011, 3, 1332–1362. [Google Scholar] [CrossRef] [PubMed]
- Yoshinari, O.; Shiojima, Y.; Igarashi, K. Anti-Obesity Effects of Onion Extract in Zucker Diabetic Fatty Rats. Nutrients 2012, 4, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Lotito, S.B.; Frei, B. Consumption of Flavonoid-Rich Foods and Increased Plasma Antioxidant Capacity in Humans: Cause, Consequence, or Epiphenomenon? Free Radic. Biol. Med. 2006, 41, 1727–1746. [Google Scholar] [CrossRef] [PubMed]
- Fossen, T.; Andersen, Ø.M.; Øvstedal, D.O.; Pedersen, A.T.; Raknes, Å. Characteristic Anthocyanin Pattern from Onions and Other Allium spp. J. Food Sci. 1996, 61, 703–706. [Google Scholar] [CrossRef]
- Meunissier, A. Expkriences Gknktiques Faitesii Verri2re. Bull. Soc. Acclim. Fr. 1918, 65, 81–90. [Google Scholar]
- Rieman, G.H. Genetic Factors for Pigmentation in the Onion and Their Relation to Disease Resistance; CABI Digital Library: Wallingford, CT, USA, 1931. [Google Scholar]
- Clarke, A.E.; Jones, H.A.; Little, T. Inheritance of Bulb Color in the Onion. Genetics 1944, 29, 569. [Google Scholar] [CrossRef]
- Jones, H.A. Complementary Factors for Light-Red Bulb Color in Onions. Proc. Am. Soc. Hortic. Sci. 1952, 59, 457. [Google Scholar]
- El-Shafie, M.; Davis, G.N. Inheritance of Bulb Color in the Onion (Allium cepa L.). Hilgardia 1967, 38, 607–622. [Google Scholar] [CrossRef]
- Khar, A.; Jakse, J.; Havey, M.J. Segregations for Onion Bulb Colors Reveal That Red Is Controlled by at Least Three Loci. J. Am. Soc. Hortic. Sci. 2008, 133, 42–47. [Google Scholar] [CrossRef]
- Duangjit, J.; Welsh, K.; Wise, M.L.; Bohanec, B.; Havey, M.J. Genetic Analyses of Anthocyanin Concentrations and Intensity of Red Bulb Color among Segregating Haploid Progenies of Onion. Mol. Breed. 2014, 34, 75–85. [Google Scholar] [CrossRef]
- Wilmouth, R.C.; Turnbull, J.J.; Welford, R.W.D.; Clifton, I.J.; Prescott, A.G.; Schofield, C.J. Structure and Mechanism of Anthocyanidin Synthase from Arabidopsis thaliana. Structure 2002, 10, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Goodrich, J.; Carpenter, R.; Coen, E.S. A Common Gene Regulates Pigmentation Pattern in Diverse Plant Species. Cell 1992, 68, 955–964. [Google Scholar] [CrossRef] [PubMed]
- Quattrocchio, F.; Wing, J.F.; Leppen, H.T.C.; Mol, J.N.M.; Koes, R.E. Regulatory Genes Controlling Anthocyanin Pigmentation Are Functionally Conserved among Plant Species and Have Distinct Sets of Target Genes. Plant Cell 1993, 5, 1497–1512. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Jones, R.; Yoo, K.S.; Pike, L.M. The L Locus, One of Complementary Genes Required for Anthocyanin Production in Onions (Allium cepa), Encodes Anthocyanidin Synthase. Theor. Appl. Genet. 2005, 111, 120–127. [Google Scholar] [CrossRef]
- Kim, S.; Yoo, K.S.; Pike, L.M. Development of a PCR-Based Marker Utilizing a Deletion Mutation in the Dihydroflavonol 4-Reductase (DFR) Gene Responsible for the Lack of Anthocyanin Production in Yellow Onions (Allium cepa). Theor. Appl. Genet. 2005, 110, 588–595. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Cho, D.Y.; Moon, J.S.; Yoon, M.-K.; Kim, S. Development of Functional Markers for Detection of Inactive DFR-A Alleles Responsible for Failure of Anthocyanin Production in Onions (Allium cepa L.). Hortic. Sci. Technol. 2013, 31, 72–79. [Google Scholar] [CrossRef]
- Masuzaki, S.-I.; Shigyo, M.; Yamauchi, N. Complete Assignment of Structural Genes Involved in Flavonoid Biosynthesis Influencing Bulb Color to Individual Chromosomes of the Shallot (Allium cepa L.). Genes Genet. Syst. 2006, 81, 255–263. [Google Scholar] [CrossRef]
- Kim, S.; Yoo, K.-S.; Pike, L.M. The Basic Color Factor, the C Locus, Encodes a Regulatory Gene Controlling Transcription of Chalcone Synthase Genes in Onions (Allium cepa). Euphytica 2005, 142, 273–282. [Google Scholar] [CrossRef]
- Kim, S.; Jones, R.; Yoo, K.S.; Pike, L.M. Gold Color in Onions (Allium cepa): A Natural Mutation of the Chalcone Isomerase Gene Resulting in a Premature Stop Codon. Mol. Genet. Genom. 2004, 272, 411–419. [Google Scholar] [CrossRef]
- Kim, S.; Binzel, M.L.; Park, S.; Yoo, K.S.; Pike, L.M. Inactivation of DFR (Dihydroflavonol 4-Reductase) Gene Transcription Results in Blockage of Anthocyanin Production in Yellow Onions (Allium cepa). Mol. Breed. 2004, 14, 253–263. [Google Scholar] [CrossRef]
- Jeon, S.; Han, J.; Moon, J.-H.; Kim, S. Identification of a Candidate Gene Responsible for the G Locus Determining Chartreuse Bulb Color in Onion (Allium cepa L.) Using Bulked Segregant RNA-Seq. Theor. Appl. Genet. 2022, 135, 1025–1036. [Google Scholar] [CrossRef] [PubMed]
- Jo, C.; Kim, S. Transposition of a Non-Autonomous DNA Transposon in the Gene Coding for a BHLH Transcription Factor Results in a White Bulb Color of Onions (Allium cepa L.). Theor. Appl. Genet. 2020, 133, 317–328. [Google Scholar] [CrossRef] [PubMed]
- Seo, I.; Kim, J.G.; Moon, J.H.; Kim, S. Construction of a Linkage Map Flanking the I Locus Controlling Dominant White Bulb Color and Analysis of Differentially Expressed Genes between Dominant White and Red Bulbs in Onion (Allium cepa L.). Euphytica 2020, 216, 97. [Google Scholar] [CrossRef]
- Kim, S.; Baek, D.; Cho, D.Y.; Lee, E.-T.; Yoon, M.-K. Identification of Two Novel Inactive DFR-A Alleles Responsible for Failure to Produce Anthocyanin and Development of a Simple PCR-Based Molecular Marker for Bulb Color Selection in Onion (Allium cepa L.). Theor. Appl. Genet. 2009, 118, 1391–1399. [Google Scholar] [CrossRef] [PubMed]
- Kim, E.Y.; Kim, C.W.; Kim, S. Identification of Two Novel Mutant ANS Alleles Responsible for Inactivation of Anthocyanidin Synthase and Failure of Anthocyanin Production in Onion (Allium cepa L.). Euphytica 2016, 212, 427–437. [Google Scholar] [CrossRef]
- Kim, B.; Cho, Y.; Kim, S. Identification of a Novel DFR-A Mutant Allele Determining the Bulb Color Difference between Red and Yellow Onions (Allium cepa L.). Plant Breed. Biotechnol. 2017, 5, 45–53. [Google Scholar] [CrossRef]
- Zhang, C.; Li, X.; Zhan, Z.; Cao, L.; Zeng, A.; Chang, G.; Liang, Y. Transcriptome Sequencing and Metabolism Analysis Reveals the Role of Cyanidin Metabolism in Dark-Red Onion (Allium cepa L.) Bulbs. Sci. Rep. 2018, 8, 14109. [Google Scholar] [CrossRef]
- Havey, M.J. Genetic Mapping of chartreuse Bulb Color in Onion. J. Am. Soc. Hortic. Sci. 2020, 145, 110–119. [Google Scholar] [CrossRef]
- Han, J.W.; Kim, C.W.; Kim, S. Genetic Analysis of the Interaction between G and R Loci Involved in the Determination of Bulb Colors in Onion (Allium cepa L.). Hortic. Environ. Biotechnol. 2023, 64, 801–810. [Google Scholar] [CrossRef]
- Schwinn, K.E.; Ngo, H.; Kenel, F.; Brummell, D.A.; Albert, N.W.; McCallum, J.A.; Pither-Joyce, M.; Crowhurst, R.N.; Eady, C.; Davies, K.M. The Onion (Allium cepa L.) R2R3-MYB Gene MYB1 Regulates Anthocyanin Biosynthesis. Front. Plant Sci. 2016, 7, 1865. [Google Scholar] [CrossRef] [PubMed]
- Baek, G.; Kim, C.-W.; Kim, S. Development of a Molecular Marker Tightly Linked to the C Locus Conferring a White Bulb Color in Onion (Allium cepa L.) Using Bulked Segregant Analysis and RNA-Seq. Mol. Breed. 2017, 37, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Cao, L.; Jiao, B.; Yang, H.; Ma, C.; Liang, Y. The BHLH Transcription Factor AcB2 Regulates Anthocyanin Biosynthesis in Onion (Allium cepa L.). Hortic. Res. 2022, 9, uhac128. [Google Scholar] [CrossRef] [PubMed]
- Suleria, H.A.R.; Butt, M.S.; Anjum, F.M.; Saeed, F.; Khalid, N. Onion: Nature Protection against Physiological Threats. Crit. Rev. Food Sci. Nutr. 2015, 55, 50–66. [Google Scholar] [CrossRef] [PubMed]
- Gubb, I.R.; Mactavish, H.S. Onion pre-and postharvest considerations. In Allium Crop Science: Recent Advances; CABI Digital Library: Wallingford, UK, 2002; pp. 233–265. [Google Scholar] [CrossRef]
- McCallum, J.; Clarke, A.; Pither-Joyce, M.; Shaw, M.; Butler, R.; Brash, D.; Scheffer, J.; Sims, I.; Van Heusden, S.; Shigyo, M.; et al. Genetic Mapping of a Major Gene Affecting Onion Bulb Fructan Content. Theor. Appl. Genet. 2006, 112, 958–967. [Google Scholar] [CrossRef]
- Darbyshire, B.; Henry, R.J. Differences in Fructan Content and Synthesis in Some Allium Species. N. Phytol. 1981, 87, 249–256. [Google Scholar] [CrossRef]
- Taper, H.S.; Delzenne, N.M.; Roberfroid, M.B. Growth Inhibition of Transplantable Mouse Tumors by Non-Digestible Carbohydrates. Int. J. Cancer 1997, 71, 1109–1112. [Google Scholar] [CrossRef]
- Rowland, I.R.; Rumney, C.J.; Coutts, J.T.; Lievense, L.C. Effect of Bifidobacterium Longum and Inulin on Gut Bacterial Metabolism and Carcinogen-Induced Aberrant Crypt Foci in Rats. Carcinogenesis 1998, 19, 281–285. [Google Scholar] [CrossRef]
- Gibson, G.R.; Wang, X. Regulatory Effects of Bifidobacteria on the Growth of Other Colonic Bacteria. J. Appl. Microbiol. 1994, 77, 412–420. [Google Scholar] [CrossRef]
- Kleessen, B.; Svkura, B.; Zunft, H.-J.; Blaut, M. Effects of Inulin and Lactose on Fecal Microflora, Microbial Activity, and Bowel Habit in Elderly Constipated Persons. Am. J. Clin. Nutr. 1997, 65, 1397–1402. [Google Scholar] [CrossRef]
- Niness, K.R. Inulin and Oligofructose: What Are They? J. Nutr. 1999, 129, 1402S–1406S. [Google Scholar] [CrossRef]
- Sinclair, P.J.; Blakeney, A.B.; Barlow, E.W.R. Relationships between Bulb Dry Matter Content, Soluble Solids Concentration and Non-Structural Carbohydrate Composition in the Onion (Allium cepa). J. Sci. Food Agric. 1995, 69, 203–209. [Google Scholar] [CrossRef]
- Lin, M.-W.; Watson, J.F.; Baggett, J.R. Inheritance of Soluble Solids and Pyruvic Acid Content of Bulb Onions. J. Am. Soc. Hortic. Sci. 1995, 120, 119–122. [Google Scholar] [CrossRef]
- Suzuki, M.; Cutcliffe, J.A. Fructans in Onion Bulbs in Relation to Storage Life. Can. J. Plant Sci. 1989, 69, 1327–1333. [Google Scholar] [CrossRef]
- Debaene, J.E.P.; Goldman, I.L.; Yandell, B.S. Postharvest Flux and Genotype × Environment Effects for Onion-Induced Antiplatelet Activity, Pungency, and Soluble Solids in Long-Day Onion during Postharvest Cold Storage. J. Am. Soc. Hortic. Sci. 1999, 124, 366–372. [Google Scholar] [CrossRef]
- Mcgill, H.C.; Mcmahan, C.A.; Zieske, A.W.; Tracy, R.E.; Malcom, G.T.; Herderick, E.E.; Strong, J.P. Association of Coronary Heart Disease Risk Factors With Microscopic Qualities of Coronary Atherosclerosis in Youth. Circulation 2000, 102, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Jaime, L.; Martín-Cabrejas, M.A.; Mollá, E.; López-Andréu, F.J.; Esteban, R.M. Effect of Storage on Fructan and Fructooligosaccharide of Onion (Allium cepa L.). J. Agric. Food Chem. 2001, 49, 982–988. [Google Scholar] [CrossRef] [PubMed]
- Shiomi, N.; Onodera, S.; Sakai, H. Fructo-Oligosaccharide Content and Fructosyltransferase Activity during Growth of Onion Bulbs. N. Phytol. 1997, 136, 105–113. [Google Scholar] [CrossRef]
- Pak, C.; van der Plas, L.H.W.; de Boer, A.D. Importance of Dormancy and Sink Strength in Sprouting of Onions (Allium cepa) during Storage. Physiol. Plant 1995, 94, 277–283. [Google Scholar] [CrossRef]
- Van Den Ende, W.; Clerens, S.; Vergauwen, R.; Boogaerts, D.; Le Roy, K.; Arckens, L.; Van Laere, A. Cloning and Functional Analysis of a High DP Fructan:Fructan 1-Fructosyl Transferase from Echinops Ritro (Asteraceae): Comparison of the Native and Recombinant Enzymes. J. Exp. Bot. 2006, 57, 775–789. [Google Scholar] [CrossRef]
- Vijn, I.; Van Dijken, A.; Sprenger, N.; Van Dun, K.; Weisbeek, P.; Wiemken, A.; Smeekens, S. Fructan of the Inulin Neoseries Is Synthesized in Transgenic Chicory Plants (Cichorium intybus L.) Harbouring Onion (Allium cepa L.) Fructan:Fructan 6G-Fructosyltransferase. Plant J. 1997, 11, 387–398. [Google Scholar] [CrossRef] [PubMed]
- Ueno, K.; Onodera, S.; Kawakami, A.; Yoshida, M.; Shiomi, N. Molecular Characterization and Expression of a CDNA Encoding Fructan:Fructan 6G-Fructosyltransferase from Asparagus (Asparagus Officinalis). N. Phytol. 2005, 165, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Cortés-Romero, C.; Martínez-Hernández, A.; Mellado-Mojica, E.; López, M.G.; Simpson, J. Molecular and Functional Characterization of Novel Fructosyltransferases and Invertases from Agave tequilana. PLoS ONE 2012, 7, e35878. [Google Scholar] [CrossRef] [PubMed]
- Kawakami, A.; Yoshida, M.; Van Den Ende, W. Molecular Cloning and Functional Analysis of a Novel 6&1-FEH from Wheat (Triticum aestivum L.) Preferentially Degrading Small Graminans like Bifurcose. Gene 2005, 358, 93–101. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.I.; Sanada, Y.; Tase, K.; Komatsu, T.; Yoshida, M. Pp6-FEH1 Encodes an Enzyme for Degradation of Highly Polymerized Levan and Is Transcriptionally Induced by Defoliation in Timothy (Phleum pratense L.). J. Exp. Bot. 2011, 62, 3421–3431. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Liang, M.; Xu, L.; Li, H.; Zhang, X.; Kang, J.; Zhao, Q.; Zhao, H. Cloning and Functional Characterization of Two Abiotic Stress-Responsive Jerusalem Artichoke (Helianthus tuberosus) Fructan 1-Exohydrolases (1-FEHs). Plant Mol. Biol. 2015, 87, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Valluru, R. Fructan and Hormone Connections. Front. Plant Sci. 2015, 6, 180. [Google Scholar] [CrossRef]
- Havey, M.J.; Galmarini, C.R.; Gökçe, A.F.; Henson, C. QTL Affecting Soluble Carbohydrate Concentration in Stored Onion Bulbs and Their Association with Flavor and Health-Enhancing Attributes. Genome 2004, 47, 463–468. [Google Scholar] [CrossRef]
- Raines, S.; Henson, C.; Havey, M.J. Genetic Analyses of Soluble Carbohydrate Concentrations in Onion Bulbs. J. Am. Soc. Hortic. Sci. 2009, 134, 618–623. [Google Scholar] [CrossRef]
- Imai, S.; Tsuge, N.; Tomotake, M.; Nagatome, Y.; Sawada, H.; Nagata, T.; Kumagai, H. An Onion Enzyme That Makes the Eyes Water. Nature 2002, 419, 685. [Google Scholar] [CrossRef]
- Khan, M.S.; Haas, F.H.; Allboje Samami, A.; Moghaddas Gholami, A.; Bauer, A.; Fellenberg, K.; Reichelt, M.; Hänsch, R.; Mendel, R.R.; Meyer, A.J. Sulfite Reductase Defines a Newly Discovered Bottleneck for Assimilatory Sulfate Reduction and Is Essential for Growth and Development in Arabidopsis thaliana. Plant Cell 2010, 22, 1216–1231. [Google Scholar] [CrossRef] [PubMed]
- Galmarini, C.R.; Goldman, I.L.; Havey, M.J. Genetic Analyses of Correlated Solids, Flavor, and Health-Enhancing Traits in Onion (Allium cepa L.). Mol. Genet. Genom. 2001, 265, 543–551. [Google Scholar] [CrossRef] [PubMed]
- McCallum, J.; Pither-Joyce, M.; Shaw, M.; Kenel, F.; Davis, S.; Butler, R.; Scheffer, J.; Jakse, J.; Havey, M.J. Genetic Mapping of Sulfur Assimilation Genes Reveals a QTL for Onion Bulb Pungency. Theor. Appl. Genet. 2007, 114, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Masamura, N.; McCallum, J.; Khrustaleva, L.; Kenel, F.; Pither-Joyce, M.; Shono, J.; Suzuki, G.; Mukai, Y.; Yamauchi, N.; Shigyo, M. Chromosomal Organization and Sequence Diversity of Genes Encoding Lachrymatory Factor Synthase in Allium cepa L. G3 Genes Genomes Genet. 2012, 2, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A Global Benefit to Health. Phytother. Res. 2002, 16, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, S.; Weston, W.J. Onion Flavor and Odor, Enzymatic Development of Pyruvic Acid in Onion as a Measure of Pungency. J. Agric. Food Chem. 1961, 9, 301–304. [Google Scholar] [CrossRef]
- Randle, W.M. Onion Flavor Chemistry and Factors Influencing Flavor Intensity; ACS Publications: Washington, DC, USA, 1997; ISBN 1947-5918. [Google Scholar]
- Randle, W.M.; Lancaster, J.E. Sulphur Compounds in Alliums in Relation to Flavour Quality. In Allium Crop Science: Recent Advances; CABI Digital Library: Wallingford, UK, 2002; pp. 329–356. [Google Scholar] [CrossRef]
- Schwimmer, S.; Guadagni, D.G. Relation between Olfactory Threshold Concentration and Pyruvic Acid Content of Onion Juice. J. Food Sci. 1962, 27, 94–97. [Google Scholar] [CrossRef]
- McManus, M.T.; Joshi, S.; Searle, B.; Pither-Joyce, M.; Shaw, M.; Leung, S.; Albert, N.; Shigyo, M.; Jakse, J.; Havey, M.J.; et al. Genotypic Variation in Sulfur Assimilation and Metabolism of Onion (Allium cepa L.) III. Characterization of Sulfite Reductase. Phytochemistry 2012, 83, 34–42. [Google Scholar] [CrossRef]
- Rabinowitch, H.D. Onions and Allied Crops; CRC Press: Boca Raton, FL, USA, 2017. [Google Scholar]
- Heath, O.V.S. Studies in the Physiology of the Onion Plant: I. An Investigation of Factors Concerned in the Flowering (‘Bolting’) of Onions Grown from Sets and Its Prevention. Ann. Appl. Biol. 1943, 30, 208–220. [Google Scholar] [CrossRef]
- Heath, O.V.S.; Mathur, P.B. Studies in the Physiology of the Onion Plant: II. Inflorescence Initiation and Development, and Other Changes in the Internal Morphology of Onion Sets, as Influenced by Temperature and Day Length. Ann. Appl. Biol. 1944, 31, 173–186. [Google Scholar] [CrossRef]
- Austin, R.B. Bulb Formation in Onions as Affected by Photoperiod and Spectral Quality of Light. J. Hortic. Sci. 1972, 47, 493–504. [Google Scholar] [CrossRef]
- Lercari, B. Role of Phytochrome in Photoperiodic Regulation of Bulbing and Growth in the Long Day Plant Allium cepa. Physiol. Plant 1984, 60, 433–436. [Google Scholar] [CrossRef]
- Sobeih, W.Y.; Wright, C.J. The Photoperiodic Regulation of Bulbing in Onions (Allium cepa L.). II. Effects of Plant Age and Size. J. Hortic. Sci. 1986, 61, 337–341. [Google Scholar] [CrossRef]
- Brewster, J.L. Environmental Physiology of the Onion: Towards Quantitative Models for the Effects of Photoperiod, Temperature and Irradiance on Bulbing, Flowering and Growth. In Proceedings of the I International Symposium on Edible Alliaceae 433, Mendoza, Argentina, 14–18 March 1994; pp. 347–374. [Google Scholar]
- Brewster, J.L. Onions and Other Vegetable Alliums; CABI: Wallingford, UK, 2008; Volume 15, ISBN 1845936221. [Google Scholar]
- Shishido, Y.; Saito, T. Studies on the Flower Bud Formation in Onion Plants I. Effects of Temperature, Photoperiod and Light Intensity on the. Low Temperature Induction of Flower Buds. J. Jpn. Soc. Hortic. Sci. 1975, 44, 122–130. [Google Scholar] [CrossRef]
- Wiebe, H.-J. Vernalization of Vegetable Crops-a Review. In Proceedings of the VI Symposium on the Timing of Field Production of Vegetables 267, Wageningen, The Netherlands, 21–25 August 1989; pp. 323–328. [Google Scholar]
- Khokhar, K.M.; Hadley, P.; Pearson, S. Effect of Cold Temperature Durations of Onion Sets in Store on the Incidence of Bolting, Bulbing and Seed Yield. Sci. Hortic. 2007, 112, 16–22. [Google Scholar] [CrossRef]
- Sung, S.; Schmitz, R.J.; Amasino, R.M. A PHD Finger Protein Involved in Both the Vernalization and Photoperiod Pathways in Arabidopsis. Genes. Dev. 2006, 20, 3244–3248. [Google Scholar] [CrossRef] [PubMed]
- Abe, M.; Kobayashi, Y.; Yamamoto, S.; Daimon, Y.; Yamaguchi, A.; Ikeda, Y.; Ichinoki, H.; Notaguchi, M.; Goto, K.; Araki, T. FD, a BZIP Protein Mediating Signals from the Floral Pathway Integrator FT at the Shoot Apex. Science 2005, 309, 1052–1056. [Google Scholar] [CrossRef]
- Yoo, S.K.; Chung, K.S.; Kim, J.; Lee, J.H.; Hong, S.M.; Yoo, S.J.; Yoo, S.Y.; Lee, J.S.; Ahn, J.H. Constans Activates Suppressor of Overexpression of Constans 1 through Flowering Locus T to Promote Flowering in Arabidopsis. Plant Physiol. 2005, 139, 770–778. [Google Scholar] [CrossRef]
- Greb, T.; Mylne, J.S.; Crevillen, P.; Geraldo, N.; An, H.; Gendall, A.R.; Dean, C. The PHD Finger Protein VRN5 Functions in the Epigenetic Silencing of Arabidopsis FLC. Curr. Biol. 2007, 17, 73–78. [Google Scholar] [CrossRef]
- Nakamichi, N. Molecular Mechanisms Underlying the Arabidopsis Circadian Clock. Plant Cell Physiol. 2011, 52, 1709–1718. [Google Scholar] [CrossRef]
- Whittaker, C.; Dean, C. The FLC Locus: A Platform for Discoveries in Epigenetics and Adaptation. Annu. Rev. Cell Dev. Biol. 2017, 33, 555–575. [Google Scholar] [CrossRef] [PubMed]
- Putterill, J.; Robson, F.; Lee, K.; Simon, R.; Coupland, G. The CONSTANS Gene of Arabidopsis Promotes Flowering and Encodes a Protein Showing Similarities to Zinc Finger Transcription Factors. Cell 1995, 80, 847–857. [Google Scholar] [CrossRef]
- Sawa, M.; Nusinow, D.A.; Kay, S.A.; Imaizumi, T. FKF1 and GIGANTEA Complex Formation Is Required for Day-Length Measurement in Arabidopsis. Science 2007, 318, 261–265. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, T.; Schultz, T.F.; Harmon, F.G.; Ho, L.A.; Kay, S.A. FKF1 F-Box Protein Mediates Cyclic Degradation of a Repressor of CONSTANS in Arabidopsis. Science 2005, 309, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.; Marchal, V.; Panigrahi, K.C.S.; Wenkel, S.; Soppe, W.; Deng, X.; Valverde, F.; Coupland, G. Arabidopsis COP1 Shapes the Temporal Pattern of CO Accumulation Conferring a Photoperiodic Flowering Response. EMBO J. 2008, 27, 1277–1288. [Google Scholar] [CrossRef] [PubMed]
- Fornara, F.; de Montaigu, A.; Coupland, G. SnapShot: Control of Flowering in Arabidopsis. Cell 2010, 141, 550. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.H.; Ito, S.; Imaizumi, T. Flowering Time Regulation: Photoperiod-and Temperature-Sensing in Leaves. Trends Plant Sci. 2013, 18, 575–583. [Google Scholar] [CrossRef]
- Song, J.; Angel, A.; Howard, M.; Dean, C. Vernalization–a Cold-Induced Epigenetic Switch. J. Cell Sci. 2012, 125, 3723–3731. [Google Scholar] [CrossRef]
- Navarro, C.; Abelenda, J.A.; Cruz-Oró, E.; Cuéllar, C.A.; Tamaki, S.; Silva, J.; Shimamoto, K.; Prat, S. Control of Flowering and Storage Organ Formation in Potato by FLOWERING LOCUS T. Nature 2011, 478, 119–122. [Google Scholar] [CrossRef]
- Hsu, C.-Y.; Adams, J.P.; Kim, H.; No, K.; Ma, C.; Strauss, S.H.; Drnevich, J.; Vandervelde, L.; Ellis, J.D.; Rice, B.M. FLOWERING LOCUS T Duplication Coordinates Reproductive and Vegetative Growth in Perennial Poplar. Proc. Natl. Acad. Sci. USA 2011, 108, 10756–10761. [Google Scholar] [CrossRef]
- Lee, R.; Baldwin, S.; Kenel, F.; McCallum, J.; Macknight, R. FLOWERING LOCUS T Genes Control Onion Bulb Formation and Flowering. Nat. Commun. 2013, 4, 2884. [Google Scholar] [CrossRef] [PubMed]
- Taylor, A.; Massiah, A.J.; Thomas, B. Conservation of Arabidopsis Thaliana Photoperiodic Flowering Time Genes in Onion (Allium cepa L.). Plant Cell Physiol. 2010, 51, 1638–1647. [Google Scholar] [CrossRef] [PubMed]
- Rashid, M.H.A.; Thomas, B. Diurnal Expression of Arabidopsis Gene Homologs during Daylength-Regulated Bulb Formation in Onion (Allium cepa L.). Sci. Hortic. 2020, 261, 108946. [Google Scholar] [CrossRef]
- Baldwin, S.; Revanna, R.; Pither-Joyce, M.; Shaw, M.; Wright, K.; Thomson, S.; Moya, L.; Lee, R.; Macknight, R.; McCallum, J. Genetic Analyses of Bolting in Bulb Onion (Allium cepa L.). Theor. Appl. Genet. 2014, 127, 535–547. [Google Scholar] [CrossRef] [PubMed]
- Khar, A.; Galván, G.A.; Singh, H. Allium Breeding against Biotic Stresses. In Genomic Designing for Biotic Stress Resistant Vegetable Crops; Chittaranjan, K., Ed.; Springer International Publishing: Cham, Switzerland, 2022; pp. 233–259. [Google Scholar]
- Straley, E.; Marzu, J.C.; Havey, M.J. Genetic Analyses of Resistance to Fusarium Basal Rot in Onion. Horticulturae 2021, 7, 538. [Google Scholar] [CrossRef]
- Taylor, A.; Teakle, G.R.; Walley, P.G.; Finch-Savage, W.E.; Jackson, A.C.; Jones, J.E.; Hand, P.; Thomas, B.; Havey, M.J.; Pink, D.A.C.; et al. Assembly and Characterisation of a Unique Onion Diversity Set Identifies Resistance to Fusarium Basal Rot and Improved Seedling Vigour. Theor. Appl. Genet. 2019, 132, 3245–3264. [Google Scholar] [CrossRef] [PubMed]
- Black, L.; Chan, E.K.; Colcol, J.F.; Jones, R.; Kramer, C.; Xiang, W. QTLs Conferring Resistance to Fusarium Basal Rot, Pink Root and Complementary Pinks in Onions. U.S. Patent 11,457,582, 4 October 2022. [Google Scholar]
- Marzu, J.C.; Straley, E.; Havey, M.J. Genetic Analyses and Mapping of Pink-Root Resistance in Onion. J. Am. Soc. Hortic. Sci. 2018, 143, 503–507. [Google Scholar] [CrossRef]
- Chakraborty, M.; Quddus, T.; Rahman, S.; Azad, M.; Hossain, M.; Hoque, A.; Saha, M.; Haque, M. Molecular Characterization of Selected Mutant Lines of Onion (Allium cepa L.) against Purple Leaf Blotch Disease Using SSR Markers. Am. J. Exp. Agric. 2015, 8, 261–267. [Google Scholar] [CrossRef]
- Chand, S.K.; Nanda, S.; Joshi, R.K. Genetics and Molecular Mapping of a Novel Purple Blotch-Resistant Gene ApR1 in Onion (Allium cepa L.) Using STS and SSR Markers. Mol. Breed. 2018, 38, 109. [Google Scholar] [CrossRef]
- Sahoo, J.; Mahanty, B.; Mishra, R.; Joshi, R.K. Development of SNP Markers Linked to Purple Blotch Resistance for Marker-Assisted Selection in Onion (Allium cepa L.) Breeding. 3 Biotech 2023, 13, 137. [Google Scholar] [CrossRef]
- Kim, S.; Kim, C.W.; Choi, M.S.; Kim, S. Development of a Simple PCR Marker Tagging the Allium Roylei Fragment Harboring Resistance to Downy Mildew (Peronospora Destructor) in Onion (Allium cepa L.). Euphytica 2016, 208, 561–569. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, J.S.; Park, T.; Lee, H.M.; Choi, J.R.; Park, Y.D. Development of Molecular Markers Associated with Resistance to Gray Mold Disease in Onion (Allium cepa L.) through Rapd-Pcr and Transcriptome Analysis. Horticulturae 2021, 7, 436. [Google Scholar] [CrossRef]
- Brayford, D. Fusarium Oxysporum f. Sp. Cepae. Mycopathologia 1996, 133, 39–40. [Google Scholar]
- Cramer, C.S. Breeding and Genetics of Fusarium Basal Rot Resistance in Onion. Euphytica 2000, 115, 159–166. [Google Scholar] [CrossRef]
- Bacher, J.W. Inheritance of Resistance to Fusarium Oxysporum f. Sp. Cepae in Cultivated Onions; Michigan State University: East Lansing, MI, USA, 1989; ISBN 9798641845807. [Google Scholar]
- Tsutsui, K. Inheritance of Resistance to Fusarium Oxysporum in Onion; University of Wisconsin: Madison, WI, USA, 1991. [Google Scholar]
- Krueger, S.K. Resistance to Fusarium Basal Rot in Onions (Allium cepa L.); University of Wisconsin: Madison, WI, USA, 1986. [Google Scholar]
- Krueger, S.K.; Weinman, A.A.; Gabelman, W.H. Combining Ability among Inbred Onions for Resistance to Fusarium Basal Rot. HortScience 1989, 24, 1021–1023. [Google Scholar] [CrossRef]
- Kehr, A.E.; O’Brien, M.J.; Davis, E.W. Pathogenicity of Fusarium oxysporum f. Sp. Cepae and Its Interaction with Pyrenochaeta terrestris on Onion. Euphytica 1962, 11, 197–208. [Google Scholar] [CrossRef]
- Lorbeer, J.W.; Stone, K.W. Reaction of Onion to Fusarium Basal Rot. Plant Dis. Rep. 1965, 49, 522–526. [Google Scholar]
- Holz, G.; Knox-Davies, P.S. Resistance of Onion Selections to Fusarium oxysporum f. sp. Cepae* (Met Opsomming in Afrikaans). Phytophylactica 1974, 6, 153–156. [Google Scholar]
- VanEtten, H.D.; Mansfield, J.W.; Bailey, J.A.; Farmer, E.E. Two Classes of Plant Antibiotics: Phytoalexins versus “Phytoanticipins”. Plant Cell 1994, 6, 1191. [Google Scholar] [CrossRef]
- Abdelrahman, M.; El-Sayed, M.; Sato, S.; Hirakawa, H.; Ito, S.I.; Tanaka, K.; Mine, Y.; Sugiyama, N.; Suzuki, M.; Yamauchi, N.; et al. RNA-Sequencing-Based Transcriptome and Biochemical Analyses of Steroidal Saponin Pathway in a Complete Set of Allium fistulosum—A. cepa Monosomic Addition Lines. PLoS ONE 2017, 12, e0181784. [Google Scholar] [CrossRef]
- Augustin, J.M.; Kuzina, V.; Andersen, S.B.; Bak, S. Molecular Activities, Biosynthesis and Evolution of Triterpenoid Saponins. Phytochemistry 2011, 72, 435–457. [Google Scholar] [CrossRef] [PubMed]
- Morrissey, J.P.; Osbourn, A.E. Fungal Resistance to Plant Antibiotics as a Mechanism of Pathogenesis. Microbiol. Mol. Biol. Rev. 1999, 63, 708–724. [Google Scholar] [CrossRef] [PubMed]
- Ito, S.I.; Ihara, T.; Tamura, H.; Tanaka, S.; Ikeda, T.; Kajihara, H.; Dissanayake, C.; Abdel-Motaal, F.F.; El-Sayed, M.A. α-Tomatine, the Major Saponin in Tomato, Induces Programmed Cell Death Mediated by Reactive Oxygen Species in the Fungal Pathogen Fusarium oxysporum. FEBS Lett. 2007, 581, 3217–3222. [Google Scholar] [CrossRef] [PubMed]
- Vu, H.Q.; El-Sayed, M.A.; Ito, S.I.; Yamauchi, N.; Shigyo, M. Discovery of a New Source of Resistance to Fusarium oxysporum, Cause of Fusarium Wilt in Allium fistulosum, Located on Chromosome 2 of Allium cepa Aggregatum Group. Genome 2012, 55, 797–807. [Google Scholar] [CrossRef] [PubMed]
- Teshima, Y.; Ikeda, T.; Imada, K.; Sasaki, K.; El-Sayed, M.A.; Shigyo, M.; Tanaka, S.; Ito, S.I. Identification and Biological Activity of Antifungal Saponins from Shallot (Allium cepa L. Aggregatum Group). J. Agric. Food Chem. 2013, 61, 7440–7445. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.K.; Lee, S.B.; Shim, H.S.; Lee, C.J.; Kim, H.D. Pink Root of Onion Caused by Pyrenochaeta terrestris (Syn. Phoma Terrestris). Plant Pathol. J. 2003, 19, 195–199. [Google Scholar] [CrossRef]
- Jones, H.A.; Perry, B.A. Inheritance of Resistance to Pink Root in the Onion. J. Hered. 1956, 47, 33–34. [Google Scholar] [CrossRef]
- Nichols, C.G.; Gabelman, W.H.; Larson, R.H.; Walker, J.C. The Expression and Inheritance of Resistance in Onion to Pink Root in Seedling Assays. Phytopathology 1965, 55, 752–756. [Google Scholar]
- Dar, A.A.; Sharma, S.; Mahajan, R.; Mushtaq, M.; Salathia, A.; Ahamad, S.; Sharma, J.P. Overview of Purple Blotch Disease and Understanding Its Management through Chemical, Biological and Genetic Approaches. J. Integr. Agric. 2020, 19, 3013–3024. [Google Scholar] [CrossRef]
- Kareem, M.A.; Murthy, K.V.; Hasansab, A.N.; Waseem, M.A. Effect of Temperature, Relative Humidity and Light on Lesion Length Due to Alternaria Porri in Onion. BIOINFOLET-A Q. J. Life Sci. 2012, 9, 264–266. [Google Scholar]
- Miller, M.E.; Lacy, M.L. Purple Blotch. In Compendium of Onion and Garlic Disease; Schwartz, H.F., Mohan, S.K., Eds.; APS Press: St. Paul, MN, USA, 1995. [Google Scholar]
- Suheri, H.; Price, T.V. The Epidemiology of Purple Leaf Blotch on Leeks in Victoria, Australia. Eur. J. Plant Pathol. 2001, 107, 503–510. [Google Scholar] [CrossRef]
- Yarwood, C.E. Onion Downy Mildew. Hilgardia 1943, 14, 595–691. [Google Scholar] [CrossRef]
- Schwartz, H.F.; Mohan, S.K. Compendium of Onion and Garlic Diseases and Pests, 2nd ed.; APS Press: St. Paul, MN, USA, 2008. [Google Scholar]
- Kofoet, A.; Kik, C.; Wietsma, W.A.; De Vries, J.N. Inheritance of Resistance to Downy Mildew (Peronospora destructor [Berk.] Casp.) from Allium Roylei Stearn in the Backcross Allium cepa L.×(A. Roylei× A. cepa). Plant Breed. 1990, 105, 144–149. [Google Scholar] [CrossRef]
- Van der Meer, Q.P.; De Vries, J.N. An Interspecific Cross between Allium roylei Stearn and Allium cepa L., and Its Backcross to A. cepa. Euphytica 1990, 47, 29–31. [Google Scholar] [CrossRef]
- Harrewijn, J.L.; Hoogenboom, J.P.H. Resistance to Downy Mildew of Onion Caused by the Fungus Peronospora Destructor 2014. U.S. Patent 8,119,856, 21 February 2012. [Google Scholar]
- Kim, S.; Kim, M.S.; Kim, Y.M.; Yeom, S.I.; Cheong, K.; Kim, K.T.; Jeon, J.; Kim, S.; Kim, D.S.; Sohn, S.H.; et al. Integrative Structural Annotation of de Novo RNA-Seq Provides an Accurate Reference Gene Set of the Enormous Genome of the Onion (Allium cepa L.). DNA Res. 2015, 22, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Khrustaleva, L.; Mardini, M.; Kudryavtseva, N.; Alizhanova, R.; Romanov, D.; Sokolov, P.; Monakhos, G. The Power of Genomic in Situ Hybridization (GISH) in Interspecific Breeding of Bulb Onion (Allium cepa L.) Resistant to Downy Mildew (Peronospora destructor [Berk.] Casp.). Plants 2019, 8, 36. [Google Scholar] [CrossRef] [PubMed]
- Choquer, M.; Fournier, E.; Kunz, C.; Levis, C.; Pradier, J.M.; Simon, A.; Viaud, M. Botrytis cinerea Virulence Factors: New Insights into a Necrotrophic and Polyphageous Pathogen. FEMS Microbiol. Lett. 2007, 277, 1–10. [Google Scholar] [CrossRef]
- Carisse, O.; Tremblay, D.M.; McDonald, M.R.; Brodeur, L.; McRoberts, N. Managemant of Botrytis Leaf Blight of Onion: The Québec Experience of 20 Tears of Continual Improvement. Plant Dis. 2011, 95, 504–514. [Google Scholar] [CrossRef]
- Lee, H.M.; Park, J.S.; Kim, S.J.; Kim, S.G.; Park, Y.D. Using Transcriptome Analysis to Explore Gray Mold Resistance-Related Genes in Onion (Allium cepa L.). Genes 2022, 13, 542. [Google Scholar] [CrossRef]
- Hanson, M.R.; Bentolila, S. Interactions of Mitochondrial and Nuclear Genes That Affect Male Gametophyte Development. Plant Cell 2004, 16, S154–S169. [Google Scholar] [CrossRef]
- Tang, H.; Xie, Y.; Liu, Y.G.; Chen, L. Advances in Understanding the Molecular Mechanisms of Cytoplasmic Male Sterility and Restoration in Rice. Plant Reprod. 2017, 30, 179–184. [Google Scholar] [CrossRef] [PubMed]
- Jones, H.A.; Emsweller, S.L. A Male-Sterile Onion. In Proceedings of the American Society for Horticultural Science, Atlantic City, NJ, USA, 29–31 December 1936; pp. 582–585. [Google Scholar]
- Jones HA, C.A. Inheritance of Male-Sterility in the Onion and the Production of Hybrid Seed. Proc. Am. Soc. Hortic. Sci. 1943, 43, 189–194. [Google Scholar]
- Berninger, E. Contribution to the Study of Male Sterility in the Onion (Allium cepa L.). Ann. L’amélioration Plantes 1965, 15, 183–199. [Google Scholar]
- Schweisguth, B. A New Type of Male-Sterility in Onion, Allium cepa L. Ann. Amélior Plant 1973, 23, 221–233. [Google Scholar]
- Yen, D.E. Pollen Sterility in Pukekohe Longkeeper Onions. N. Z. J. Agric. Res. 1959, 2, 605–612. [Google Scholar] [CrossRef]
- Havey, M.J.; Randle, W.M. Combining Abilities for Yield and Bulb Quality among Long-and Intermediate-Day Open-Pollinated Onion Populations. J. Am. Soc. Hortic. Sci. 1996, 121, 604–608. [Google Scholar] [CrossRef]
- Havey, M.J. A Putative Donor of S-Cytoplasm and Its Distribution among Open-Pollinated Populations of Onion. Theor. Appl. Genet. 1993, 86, 128–134. [Google Scholar] [CrossRef]
- Havey, M.J. Identification of Cytoplasms Using the Polymerase Chain Reaction to Aid in the Extraction of Maintainer Lines from Open-Pollinated Populations of Onion. Theor. Appl. Genet. 1995, 90, 263–268. [Google Scholar] [CrossRef]
- Khar, A.; Singh, H. Rapid Methods for Onion Breeding. In Accelerated Plant Breeding; Singh, G.S., Hussain, W.S., Eds.; Springer: Cham, Switzerland, 2020; Volume 2, pp. 77–99. [Google Scholar]
- De Courcel, A.G.; Vedel, F.; Boussac, J.M. DNA Polymorphism in Allium cepa Cytoplasms and Its Implications Concerning the Origin of Onions. Theor. Appl. Genet. 1989, 77, 793–798. [Google Scholar] [CrossRef]
- Havey, M.J. On the Origin and Distribution of Normal Cytoplasm of Onion. Genet. Resour. Crop Evol. 1997, 44, 307–313. [Google Scholar] [CrossRef]
- Holford, P.; Croft, J.H.; Newbury, H.J. Differences between, and Possible Origins of, the Cytoplasms Found in Fertile and Male-Sterile Onions (Allium cepa L.). Theor. Appl. Genet. 1991, 82, 737–744. [Google Scholar] [CrossRef] [PubMed]
- Havey, M.J. Phylogenetic Relationships among Cultivated Allium Species from Restriction Enzyme Analysis of the Chloroplast Genome. Theor. Appl. Genet. 1991, 81, 752–757. [Google Scholar] [CrossRef] [PubMed]
- Havey, M.J. Diversity among Male-Sterility-Inducing and Male-Fertile Cytoplasms of Onion. Theor. Appl. Genet. 2000, 101, 778–782. [Google Scholar] [CrossRef]
- Satoh, Y.; Nagai, M.; Mikami, T.; Kinoshita, T. The Use of Mitochondrial DNA Polymorphism in the Classification of Individual Onion Plants by Cytoplasmic Genotypes. Theor. Appl. Genet. 1993, 86, 345–348. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y. PCR Amplification of CMS-Specific Mitochondrial Nucleotide Sequences to Identify Cytoplasmic Genotypes of Onion (Allium cepa L.); Springer: Berlin/Heidelberg, Germany, 1998; Volume 96. [Google Scholar]
- Engelke, T.; Terefe, D.; Tatlioglu, T. A PCR-Based Marker System Monitoring CMS-(S), CMS-(T) and (N)-Cytoplasm in the Onion (Allium cepa L.). Theor. Appl. Genet. 2003, 107, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lee, E.T.; Cho, D.Y.; Han, T.; Bang, H.; Patil, B.S.; Ahn, Y.K.; Yoon, M.K. Identification of a Novel Chimeric Gene, Orf725, and Its Use in Development of a Molecular Marker for Distinguishing among Three Cytoplasm Types in Onion (Allium cepa L.). Theor. Appl. Genet. 2009, 118, 433–441. [Google Scholar] [CrossRef] [PubMed]
- Von Kohn, C.; Kiełkowska, A.; Havey, M.J.; Bonen, L. Sequencing and Annotation of the Chloroplast DNAs and Identification of Polymorphisms Distinguishing Normal Male-Fertile and Male-Sterile Cytoplasms of Onion. Genome 2013, 56, 737–742. [Google Scholar] [CrossRef]
- Kim, S.; Kim, C.W.; Park, M.; Choi, D. Identification of Candidate Genes Associated with Fertility Restoration of Cytoplasmic Male-Sterility in Onion (Allium cepa L.) Using a Combination of Bulked Segregant Analysis and RNA-Seq. Theor. Appl. Genet. 2015, 128, 2289–2299. [Google Scholar] [CrossRef]
- Kim, B.; Kim, C.W.; Kim, S. Inheritance of Fertility Restoration of Male-Sterility Conferred by Cytotype Y and Identification of Instability of Male Fertility Phenotypes in Onion (Allium cepa L.). J. Hortic. Sci. Biotechnol. 2019, 94, 341–348. [Google Scholar] [CrossRef]
- Kim, S. A Codominant Molecular Marker in Linkage Disequilibrium with a Restorer-of-Fertility Gene (Ms) and Its Application in Reevaluation of Inheritance of Fertility Restoration in Onions. Mol. Breed. 2014, 34, 769–778. [Google Scholar] [CrossRef]
- De Vries, J.N.; Wietsma, W.A. Allium Roylei Stearn Restores Cytoplasmic Male Sterility of Rijnsburger Onion (A. cepa L.). J. Genet. Breed. 1992, 46, 379–382. [Google Scholar]
- Havey, M.J.; Kim, S. Molecular Marker Characterization of Commercially Used Cytoplasmic Male Sterilities in Onion. J. Am. Soc. Hortic. Sci. 2021, 146, 351–355. [Google Scholar] [CrossRef]
- Miller, R.J.; Koeppe, D.E. Southern Corn Leaf Blight: Susceptible and Resistant Mitochondria. Science 1971, 173, 67–69. [Google Scholar] [CrossRef] [PubMed]
- Havey, M.J. Seed Yield, Floral Morphology, and Lack of Male-Fertility Restoration of Male-Sterile Onion (Allium cepa) Populations Possessing the Cytoplasm of Allium galanthum. J. Am. Soc. Hortic. Sci. 1999, 124, 626–629. [Google Scholar] [CrossRef]
- Vu, H.Q.; Iwata, M.; Yamauchi, N.; Shigyo, M. Production of Novel Alloplasmic Male Sterile Lines in Allium cepa Harbouring the Cytoplasm from Allium roylei. Plant Breed. 2011, 130, 469–475. [Google Scholar] [CrossRef]
- Gökçe, A.F.; Havey, M.J. Linkage Equilibrium among Tightly Linked RFLPs and the Ms Locus in Open-Pollinated Onion Populations. J. Am. Soc. Hortic. Sci. 2002, 127, 944–946. [Google Scholar] [CrossRef]
- Martin, W.J.; McCallum, J.; Shigyo, M.; Jakse, J.; Kuhl, J.C.; Yamane, N.; Pither-Joyce, M.; Gokce, A.F.; Sink, K.C.; Town, C.D.; et al. Genetic Mapping of Expressed Sequences in Onion and in Silico Comparisons with Rice Show Scant Colinearity. Mol. Genet. Genom. 2005, 274, 197–204. [Google Scholar] [CrossRef]
- Bang, H.; Cho, D.Y.; Yoo, K.S.; Yoon, M.K.; Patil, B.S.; Kim, S. Development of Simple PCR-Based Markers Linked to the Ms Locus, a Restorer-of-Fertility Gene in Onion (Allium cepa L.). Euphytica 2011, 179, 439–449. [Google Scholar] [CrossRef]
- Bang, H.; Kim, S.; Park, S.O.; Yoo, K.S.; Patil, B.S. Development of a Codominant CAPS Marker Linked to the Ms Locus Controlling Fertility Restoration in Onion (Allium cepa L.). Sci. Hortic. 2013, 153, 42–49. [Google Scholar] [CrossRef]
- Park, J.; Bang, H.; Cho, D.Y.; Yoon, M.K.; Patil, B.S.; Kim, S. Construction of High-Resolution Linkage Map of the Ms Locus, a Restorer-of-Fertility Gene in Onion (Allium cepa L.). Euphytica 2013, 192, 267–278. [Google Scholar] [CrossRef]
- Havey, M.J. Single Nucleotide Polymorphisms in Linkage Disequilibrium with the Male-Fertility Restoration (Ms) Locus in Open-Pollinated and Inbred Populations of Onion. J. Am. Soc. Hortic. Sci. 2013, 138, 306–309. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Huo, Y.M.; Miao, J.; Liu, B.J.; Kong, S.P.; Gao, L.M.; Liu, C.; Wang, Z.B.; Tahara, Y.; Kitano, H.; et al. Identification of Two SCAR Markers Co-Segregated with the Dominant Ms and Recessive Ms Alleles in Onion (Allium cepa L.). Euphytica 2013, 190, 267–277. [Google Scholar] [CrossRef]
- Huo, Y.M.; Liu, B.J.; Yang, Y.Y.; Miao, J.; Gao, L.M.; Kong, S.P.; Wang, Z.B.; Kitano, H.; Wu, X. AcSKP1, a Multiplex PCR-Based Co-Dominant Marker in Complete Linkage Disequilibrium with the Male-Fertility Restoration (Ms) Locus, and Its Application in Open-Pollinated Populations of Onion. Euphytica 2015, 204, 711–722. [Google Scholar] [CrossRef]
- Khar, A.; Saini, N. Limitations of PCR-Based Molecular Markers to Identify Male-Sterile and Maintainer Plants from Indian Onion (Allium cepa L.) Populations. Plant Breed. 2016, 135, 519–524. [Google Scholar] [CrossRef]
- Khrustaleva, L.; Jiang, J.; Havey, M.J. High-Resolution Tyramide-FISH Mapping of Markers Tightly Linked to the Male-Fertility Restoration (Ms) Locus of Onion. Theor. Appl. Genet. 2016, 129, 535–545. [Google Scholar] [CrossRef] [PubMed]
- Havey, M.J.; von Kohn, C. Efficacy of Molecular Markers Jnurf13 and AcPms1 for Prediction of Genotypes at the Nuclear Ms Locus in Three Open-Pollinated Populations of Onion from North America. HortScience 2017, 52, 1052–1053. [Google Scholar] [CrossRef]
- Khar, A.; Zimik, M.; Verma, P.; Singh, H.; Mangal, M.; Singh, M.C.; Gupta, A.J. Molecular Marker-Based Characterization of Cytoplasm and Restorer of Male Sterility (Ms) Locus in Commercially Grown Onions in India. Mol. Biol. Rep. 2022, 49, 5535–5545. [Google Scholar] [CrossRef]
- Kim, T.; Kim, S. Identification of a Novel Haplotype of the Ms Locus Controlling Restoration of Male-Fertility and Its Implication in Origination of Cytoplasmic Male-Sterility in Onion (Allium cepa L.). J. Hortic. Sci. Biotechnol. 2021, 96, 750–758. [Google Scholar] [CrossRef]
- Yu, N.; Kim, S. Identification of Ms2, a Novel Locus Controlling Male-Fertility Restoration of Cytoplasmic Male-Sterility in Onion (Allium cepa L.), and Development of Tightly Linked Molecular Markers. Euphytica 2021, 217, 191. [Google Scholar] [CrossRef]
- Santos, C.A.; Leite, D.L.; Oliveira, V.R.; Rodrigues, M.A. Marker-Assisted Selection of Maintainer Lines within an Onion Tropical Population. Sci. Agric. 2010, 67, 223–227. [Google Scholar] [CrossRef]
- Ragassi, C.F.; Santos, M.D.M.; Fonseca, M.E.N.; Oliveira, V.R.; Buzar, A.G.R.; Costa, C.P.; Boiteux, L.S. Genotyping of Polymorphisms Associated with Male-Sterility Systems in Onion Accessions Adapted for Cultivation in Brazil. Hortic. Bras. 2012, 30, 409–414. [Google Scholar] [CrossRef]
- Saini, N.; Hedau, N.K.; Khar, A.; Yadav, S.; Bhatt, J.C.; Agrawal, P.K. Successful Deployment of Marker Assisted Selection (MAS) for Inbred and Hybrid Development in Long-Day Onion (Allium cepa L.). Indian J. Genet. Plant Breed. 2015, 75, 93–98. [Google Scholar] [CrossRef]
- Ferreira, R.R.; Santos, C.A.; Oliveira, V.R. Fertility Restoration Locus and Cytoplasm Types in Onion. Genet. Mol. Res. 2017, 16, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, R.R.; Santos, C.A.F. Partial Success of Marker-Assisted Selection of ‘A’ and ‘B’ Onion Lines in Brazilian Germplasm. Sci. Hortic. 2018, 242, 110–115. [Google Scholar] [CrossRef]
- Manjunathagowda, D.C.; Anjanappa, M. Identification and Development of Male Sterile and Their Maintainer Lines in Short-Day Onion (Allium cepa L.) Genotypes. Genet. Resour. Crop Evol. 2020, 67, 357–365. [Google Scholar] [CrossRef]
- Gazendam, I.; Greyling, M.M.; Laurie, S.M. The Application of Molecular Markers to Accelerate the Recovery of Cytoplasmic and Nuclear Male Sterility in South African Onion (Allium cepa L.) Hybrid Parental Lines. J. Agric. Sci. 2018, 10, 95. [Google Scholar] [CrossRef]
- Yuan, Q.; Song, C.; Gao, L.; Zhang, H.; Yang, C.; Sheng, J.; Ren, J.; Chen, D.; Wang, Y. Transcriptome de Novo Assembly and Analysis of Differentially Expressed Genes Related to Cytoplasmic Male Sterility in Onion. Plant Physiol. Biochem. 2018, 125, 35–44. [Google Scholar] [CrossRef]
Disease | Linked Markers | Chromosome | Reference |
---|---|---|---|
Fusarium basal rot | isotig38484_281 | 2B | [156] |
isotig44683_192 | 4A | ||
isotig31106_505 | 4C | ||
I30594_1021 | 8 | [157] | |
i34519_442 | 6B | ||
c00676_1004 | 1 | ||
i33746_1093 | Unmapped | ||
i33439_640 | Unmapped | ||
NQ0345038 and NQ0257326 | 4 | [158] | |
Pink root | isotig26045_1046 | 4 | [159] |
NQ0257277 and NQ0258453 | 4 | [158] | |
Purple blotch | matK and rbcL | 8 | [160] |
AcSSR7 and ApR-450 | Unmapped | [161] | |
ApRsnip14 and ApRsnip23 | Unmapped | [162] | |
Downy mildew | DMR1 | 3 | [163] |
Gray mold | SCAR-OPAN1 | Unmapped | [164] |
SNP-3 HRM | Unmapped |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, S.; Khar, A.; Khosa, J.S.; Mandal, S.; Malla, S. Recent Advances in Molecular Genetics of Onion. Horticulturae 2024, 10, 256. https://doi.org/10.3390/horticulturae10030256
Sharma S, Khar A, Khosa JS, Mandal S, Malla S. Recent Advances in Molecular Genetics of Onion. Horticulturae. 2024; 10(3):256. https://doi.org/10.3390/horticulturae10030256
Chicago/Turabian StyleSharma, Suman, Anil Khar, Jiffinvir S. Khosa, Subhankar Mandal, and Subas Malla. 2024. "Recent Advances in Molecular Genetics of Onion" Horticulturae 10, no. 3: 256. https://doi.org/10.3390/horticulturae10030256
APA StyleSharma, S., Khar, A., Khosa, J. S., Mandal, S., & Malla, S. (2024). Recent Advances in Molecular Genetics of Onion. Horticulturae, 10(3), 256. https://doi.org/10.3390/horticulturae10030256