HS-SPME-GC–MS Profiling of Volatile Organic Compounds and Polar and Lipid Metabolites of the “Stendesto” Plum–Apricot Kernel with Reference to Its Parents
Abstract
:1. Introduction
2. Results and Discussion
Principal Component and Hierarchical Cluster Analyses of HS-SPME-GC–MS Data
3. Materials and Methods
3.1. Materials
3.2. Headspace Solid-Phase Microextraction (HS-SPME) and Gas Chromatography–Mass Spectrometry Analysis (GC–MS)
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Duft, R.G.; Castro, A.; Chacon-Mikahil, M.P.T.; Cavaglieri, C.R. Metabolomics and Exercise: Possibilities and Perspectives. Mot. Rev. Educ. Física 2017, 23, e101634. [Google Scholar] [CrossRef]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; Ewald, J.C.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass Spectrometry-Based Metabolomics: A Guide for Annotation, Quantification and Best Reporting Practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Dadwal, V.; Joshi, R.; Gupta, M. A Comparative Metabolomic Investigation in Fruit Sections of Citrus medica L. and Citrus maxima L. Detecting Potential Bioactive Metabolites Using UHPLC-QTOF-IMS. Food Res. Int. 2022, 157, 111486. [Google Scholar] [CrossRef] [PubMed]
- Lippa, K.A.; Aristizabal-Henao, J.J.; Beger, R.D.; Bowden, J.A.; Broeckling, C.; Beecher, C.; Clay Davis, W.; Dunn, W.B.; Flores, R.; Goodacre, R.; et al. Reference Materials for MS-Based Untargeted Metabolomics and Lipidomics: A Review by the Metabolomics Quality Assurance and Quality Control Consortium (MQACC). Metabolomics 2022, 18, 24. [Google Scholar] [CrossRef] [PubMed]
- Alsuhaymi, S.; Singh, U.; Al-Younis, I.; Kharbatia, N.M.; Haneef, A.; Chandra, K.; Dhahri, M.; Assiri, M.A.; Emwas, A.H.; Jaremko, M. Untargeted Metabolomics Analysis of Four Date Palm (Phoenix dactylifera L.) Cultivars Using MS and NMR. Nat. Prod. Bioprospect. 2023, 13, 44. [Google Scholar] [CrossRef]
- Saini, M.K.; Capalash, N.; Varghese, E.; Kaur, C.; Singh, S.P. A Targeted Metabolomics Approach to Study Secondary Metabolites and Antioxidant Activity in ‘Kinnow Mandarin’ during Advanced Fruit Maturity. Foods 2022, 11, 1410. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Fedrizzi, B.; Kilmartin, P.A.; Quek, S.Y. Development of Volatile Organic Compounds and Their Glycosylated Precursors in Tamarillo (Solanum betaceum Cav.) during Fruit Ripening: A Prediction of Biochemical Pathway. Food Chem. 2021, 339, 128046. [Google Scholar] [CrossRef] [PubMed]
- Gu, I.; Howard, L.; Lee, S.O. Volatiles in Berries: Biosynthesis, Composition, Bioavailability, and Health Benefits. Appl. Sci. 2022, 12, 10238. [Google Scholar] [CrossRef]
- Train, A. Critical Comparison of Total Vaporization- Solid Phase Microextraction vs Headspace- Solid Phase Microextraction. Ph.D. Thesis, Indiana University, Bloomington, IN, USA, 2021. [Google Scholar] [CrossRef]
- Yang, S.; Hao, N.; Meng, Z.; Li, Y.; Zhao, Z. Identification, Comparison and Classification of Volatile Compounds in Peels of 40 Apple Cultivars by Hs–Spme with Gc–Ms. Foods 2021, 10, 1051. [Google Scholar] [CrossRef]
- Shirahata, T.; Kanazawa, A.; Uematsu, M.; Fuchino, H.; Kawano, N.; Kawahara, N.; Yoshimatsu, K.; Hanawa, T.; Odaguchi, H.; Kobayashi, Y. Near-Infrared Metabolic Profiling for Discrimination of Apricot and Peach Kernels. Chem. Pharm. Bull. 2022, 70, 863–867. [Google Scholar] [CrossRef]
- Makovi, C.M.; Parker, C.H.; Zhang, K. Determination of Amygdalin in Apricot Kernels and Almonds Using LC-MS/MS. J. AOAC Int. 2023, 106, 457–463. [Google Scholar] [CrossRef]
- Akhone, M.A.; Bains, A.; Tosif, M.M.; Chawla, P.; Fogarasi, M.; Fogarasi, S. Apricot Kernel: Bioactivity, Characterization, Applications, and Health Attributes. Foods 2022, 11, 2184. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.S. Valorization of Fruit Wastes for Circular Bioeconomy: Current Advances, Challenges, and Opportunities. Bioresour. Technol. 2022, 359, 127459. [Google Scholar] [CrossRef]
- Teslić, N.; Kojić, J.; Đermanović, B.; Šarić, L.; Maravić, N.; Pestorić, M.; Šarić, B. Sour Cherry Pomace Valorization as a Bakery Fruit Filling: Chemical Composition, Bioactivity, Quality and Sensory Properties. Antioxidants 2023, 12, 1234. [Google Scholar] [CrossRef]
- Jaafar, H.J. Effects of Apricot and Apricot Kernels on Human Health and Nutrition: A Review of Recent Human Research. Tech. BioChemMed 2021, 2, 139–162. [Google Scholar] [CrossRef]
- Abd, M.; Sorour, E.; Mehanni, A.-H.E.-S.; Mahmoud, S.; Mustafa, H.; Mustafa, A.; Mustafa, M.A.; Hussien, S.M. Chemical Composition and Functional Properties of Some Fruit Seed Kernel Flours. J. Sohag Agrisci. (JSAS) 2021, 6, 184–191. [Google Scholar] [CrossRef]
- Lebaka, V.R.; Wee, Y.J.; Ye, W.; Korivi, M. Nutritional Composition and Bioactive Compounds in Three Different Parts of Mango Fruit. Int. J. Env. Res. Public Health 2021, 18, 741. [Google Scholar] [CrossRef]
- Lara, M.V.; Bonghi, C.; Famiani, F.; Vizzotto, G.; Walker, R.P.; Drincovich, M.F. Stone Fruit as Biofactories of Phytochemicals With Potential Roles in Human Nutrition and Health. Front. Plant Sci. 2020, 11, 562252. [Google Scholar] [CrossRef]
- Fatima, E.A.; Moha, T.; Said, W.; Abdelilah, M.; Mohammed, R. Use of Metabolomics Data Analysis to Identify Fruit Quality Markers Enhanced by the Application of an Aminopolysaccharide. RSC Adv. 2021, 11, 35514. [Google Scholar] [CrossRef]
- Muhie, S.H. Novel Approaches and Practices to Sustainable Agriculture. J. Agric. Food Res. 2022, 10, 100446. [Google Scholar] [CrossRef]
- Popova, A.; Mihaylova, D.; Pandova, S.; Doykina, P. Research-Gap-Spotting in Plum–Apricot Hybrids—Bioactive Compounds, Antioxidant Activities, and Health Beneficial Properties. Horticulturae 2023, 9, 584. [Google Scholar] [CrossRef]
- Aranha, B.C.; Hoffmann, J.F.; Barbieri, R.L.; Rombaldi, C.V.; Chaves, F.C. Untargeted Metabolomic Analysis of Capsicum Spp. by GC-MS. Phytochem. Anal. 2017, 28, 439–447. [Google Scholar] [CrossRef]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef]
- Sulaiman, M.A.; Yusoff, F.M.; Kamarudin, M.S.; Amin, S.M.N.; Kawata, Y. Fruit Wastes Improved the Growth and Health of Hybrid Red Tilapia Oreochromis sp. and Malaysian Mahseer, Tor tambroides (Bleeker, 1854). Aquac. Rep. 2022, 24, 101177. [Google Scholar] [CrossRef]
- Farag, M.A.; Ramadan, N.S.; Shorbagi, M.; Farag, N.; Gad, H.A. Profiling of Primary Metabolites and Volatiles in Apricot (Prunus armeniaca L.) Seed Kernels and Fruits in the Context of Its Different Cultivars and Soil Type as Analyzed Using Chemometric Tools. Foods 2022, 11, 1339. [Google Scholar] [CrossRef]
- McNeal, C.J.; Meininger, C.J.; Reddy, D.; Wilborn, C.D.; Wu, G. Safety and Effectiveness of Arginine in Adults. J. Nutr. 2016, 146, 2587S–2593S. [Google Scholar] [CrossRef]
- Holeček, M. Serine Metabolism in Health and Disease and as a Conditionally Essential Amino Acid. Nutrients 2022, 14, 1987. [Google Scholar] [CrossRef]
- Lee, H.J.; Jang, H.B.; Kim, W.H.; Park, K.J.; Kim, K.Y.; Park, S.I.; Lee, H.J. 2-Aminoadipic Acid (2-AAA) as a Potential Biomarker for Insulin Resistance in Childhood Obesity. Sci. Rep. 2019, 9, 13610. [Google Scholar] [CrossRef]
- Baker, B.P.; Grant, J.A. Malic Acid Profile Active Ingredient Eligible for Minimum Risk Pesticide Use; New York State Integrated Pest Management; Cornwell University: Geneva, NY, USA, 2018. [Google Scholar]
- Srikanth, K.K.; Orrick, J.A. Biochemistry, Polyol Or Sorbitol Pathways; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Sheet, B.S.; Artik, N.; Ayed, M.A.; Abdulaziz, O.F. Some Alternative Sweeteners (Xylitol, Sorbitol, Sucralose and Stevia): Review. Karaelmas Fen Mühendislik Derg./Karaelmas Sci. Eng. J. 2014, 4, 63–70. [Google Scholar] [CrossRef]
- Özcan, M. Short Communications Composition of Some Apricot (Prunus armeniaca L.) Kernels Grown in Turkey. Acta Aliment. 2000, 29, 289–293. [Google Scholar] [CrossRef]
- Song, J.; He, Y.; Luo, C.; Feng, B.; Ran, F.; Xu, H.; Ci, Z.; Xu, R.; Han, L.; Zhang, D. New Progress in the Pharmacology of Protocatechuic Acid: A Compound Ingested in Daily Foods and Herbs Frequently and Heavily. Pharmacol. Res. 2020, 161, 105109. [Google Scholar] [CrossRef]
- Dutta Kalita, R.; Hussain, I.; Deka, R.C.; Kumar Buragohain, A. Antimycobacterial Activity of Linoleic Acid and Oleic Acid Obtained from the Hexane Extract of the Seeds of Mesua ferrea L. and Their in Silico Investigation. Indian J. Nat. Prod. Resour. 2018, 9, 132–142. [Google Scholar]
- Rodríguez-Blázquez, S.; Gómez-Mejía, E.; Rosales-Conrado, N.; León-González, M.E.; García-Sánchez, B.; Miranda, R. Valorization of Prunus Seed Oils: Fatty Acids Composition and Oxidative Stability. Molecules 2023, 28, 7045. [Google Scholar] [CrossRef]
- Sun, Z.; Lyu, Q.; Chen, L.; Zhuang, K.; Wang, G.; Ding, W.; Wang, Y.; Chen, X. An HS-GC-IMS Analysis of Volatile Flavor Compounds in Brown Rice Flour and Brown Rice Noodles Produced Using Different Methods. LWT 2022, 161, 113358. [Google Scholar] [CrossRef]
- Pino, J.A.; Espinosa, S.; Duarte, C. Characterization of Odor-Active Volatile Compounds of Jambolan [Syzgium cumini (L.) Skeels] Wine. J. Food Sci. Technol. 2022, 59, 1529–1537. [Google Scholar] [CrossRef]
- Pino, J.A.; Pérez, J.C. Analysis of the Volatile Compounds in Acerola Vinegar by Solid-Phase Microextraction Techniques Coupled with Gas Chromatography-Mass Spectrometry. Rev. CENIC. Cienc. Químicas 2019, 50, 33–40. [Google Scholar]
- Vichi, S.; Mayer, M.N.; León-Cárdenas, M.G.; Quintanilla-Casas, B.; Tres, A.; Guardiola, F.; Batlle, I.; Romero, A. Chemical Markers to Distinguish the Homo- and Heterozygous Bitter Genotype in Sweet Almond Kernels. Foods 2020, 9, 747. [Google Scholar] [CrossRef]
- Franklin, L.M.; Mitchell, A.E. Review of the Sensory and Chemical Characteristics of Almond (Prunus dulcis) Flavor. J. Agric. Food Chem. 2019, 67, 2743–2753. [Google Scholar] [CrossRef]
- Xi, Y.; Ikram, S.; Zhao, T.; Shao, Y.; Liu, R.; Song, F.; Sun, B.; Ai, N. 2-Heptanone, 2-Nonanone and 2-Undecanone Confer Oxidation off-Flavor in Cow Milk Storage. J. Dairy Sci. 2023, 106, 8538–8550. [Google Scholar] [CrossRef]
- Manzano, P.; Diego, J.C.; Bernal, J.L.; Nozal, M.J.; Bernal, J. Comprehensive Two-Dimensional Gas Chromatography Coupled with Static Headspace Sampling to Analyze Volatile Compounds: Application to Almonds. J. Sep. Sci. 2014, 37, 675–683. [Google Scholar] [CrossRef]
- Condurso, C.; Cincotta, F.; Verzera, A. Determination of Furan and Furan Derivatives in Baby Food. Food Chem. 2018, 250, 155–161. [Google Scholar] [CrossRef]
- Tsao, W.X.; Chen, B.H.; Lin, P.; You, S.H.; Kao, T.H. Analysis of Furan and Its Derivatives in Food Matrices Using Solid Phase Extraction Coupled with Gas Chromatography-Tandem Mass Spectrometry. Molecules 2023, 28, 1639. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N. Frying Fats. In Lipid Oxidation I; Elsevier: Amsterdam, The Netherlands, 2012; pp. 355–389. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, S.; Huang, D.; Mao, D.; Chen, J.; Zhang, C.; Kong, W.; Liu, X.; Xu, Y.; Wu, Y.; et al. GC-MS Combined with Multivariate Analysis for the Determination of the Geographical Origin of Elsholtzia rugulosa Hemsl. in Yunnan Province. RSC Adv. 2022, 12, 21287–21296. [Google Scholar] [CrossRef]
- Uekane, T.M.; Nicolotti, L.; Griglione, A.; Bizzo, H.R.; Rubiolo, P.; Bicchi, C.; Rocha-Leão, M.H.M.; Rezende, C.M. Studies on the Volatile Fraction Composition of Three Native Amazonian-Brazilian Fruits: Murici (Byrsonima crassifolia L., Malpighiaceae), Bacuri (Platonia insignis M., Clusiaceae), and Sapodilla (Manilkara sapota L., Sapotaceae). Food Chem. 2017, 219, 13–22. [Google Scholar] [CrossRef]
- Ivanova, T.; Dincheva, I.; Badjakov, I.; Iantcheva, A. Transcriptional and Metabolic Profiling of Arabidopsis Thaliana Transgenic Plants Expressing Histone Acetyltransferase HAC1 upon the Application of Abiotic Stress—Salt and Low Temperature. Metabolites 2023, 13, 994. [Google Scholar] [CrossRef] [PubMed]
- Assaad, H.I.; Zhou, L.; Carroll, R.J.; Wu, G. Rapid Publication-Ready MS-Word Tables for One-Way ANOVA. Springerplus 2014, 3, 474. [Google Scholar] [CrossRef]
RI | Class/Name | Modesto | Stanley | Stendesto |
---|---|---|---|---|
Amino acids | ||||
1105 | Alanine | 0.35 ± 0.11 a | 0.22 ± 0.07 a | 0.30 ± 0.13 a |
1232 | Valine | 0.17 ± 0.06 a | 0.14 ± 0.05 a | 0.08 ± 0.02 a |
1259 | Leucine | 0.76 ± 0.24 a | 0.57 ± 0.18 ab | 0.28 ± 0.09 b |
1296 | Isoleucine | 0.30 ± 0.10 a | 0.21 ± 0.07 a | 0.12 ± 0.04 a |
1302 | Proline | 0.93 ± 0.30 a | 0.18 ± 0.06 b | 0.13 ± 0.04 b |
1343 | Serine | 1.07 ± 0.34 a | 0.73 ± 0.23 ab | 0.30 ± 0.10 b |
1362 | Threonine | 0.25 ± 0.08 a | 0.45 ± 0.15 a | 0.36 ± 0.12 a |
1502 | Aspartic acid | 0.78 ± 0.25 a | 0.33 ± 0.11 a | 0.48 ± 0.15 a |
1519 | Pyroglutamic acid | 0.64 ± 0.20 a | 0.42 ± 0.13 ab | 0.11 ± 0.03 b |
1625 | Phenylalanine | 0.18 ± 0.06 ab | 0.37 ± 0.12 a | 0.06 ± 0.02 b |
1656 | Asparagine | 0.68 ± 0.22 a | 0.39 ± 0.13 a | 0.31 ± 0.10 a |
1775 | Glutamine | 0.30 ± 0.10 a | 0.22 ± 0.07 a | 0.16 ± 0.05 a |
1839 | Arginine | 0.88 ± 0.28 b | 5.43 ± 1.74 a | 4.61 ± 1.48 a |
Organic acids | ||||
1119 | Oxalic acid | 0.73 ± 0.23 a | 0.45 ± 0.14 ab | 0.11 ± 0.04 b |
1314 | Succinic acid | 0.19 ± 0.06 a | 0.08 ± 0.03 b | 0.05 ± 0.02 b |
1330 | Fumaric acid | 0.11 ± 0.03 a | 0.05 ± 0.02 b | 0.03 ± 0.01 b |
1475 | Mallic acid | 1.92 ± 0.62 a | 0.05 ± 0.02 b | 2.60 ± 0.83 a |
1530 | γ-Aminobutyric acid | 0.13 ± 0.04 ab | 0.16 ± 0.05 a | 0.06 ± 0.02 b |
1727 | 2-Aminoadipic acid | 1.85 ± 0.59 a | 1.36 ± 0.44 a | 1.07 ± 0.34 a |
1816 | Isocitric acid | 0.39 ± 0.12 ab | 0.24 ± 0.08 b | 0.74 ± 0.24 a |
Sugar acids and alcohols | ||||
1264 | Glycerol | 1.75 ± 0.56 a | 0.36 ± 0.11 b | 0.47 ± 0.15 b |
1541 | Eritrreonic acid | 1.19 ± 0.38 a | 0.93 ± 0.30 a | 0.52 ± 0.17 a |
1611 | Glutamic acid | 0.43 ± 0.14 a | 0.14 ± 0.04 b | 0.15 ± 0.05 b |
1695 | Xylitol | 2.30 ± 0.74 a | 1.65 ± 0.53 a | 0.87 ± 0.28 a |
1718 | Arabitol | 0.68 ± 0.22 a | 0.50 ± 0.16 a | 0.27 ± 0.09 a |
1801 | Glyceric acid-3-phosphate | 0.21 ± 0.07 a | 0.19 ± 0.06 a | 0.43 ± 0.14 a |
1920 | Sorbitol | 7.22 ± 2.32 a | 12.31 ± 3.95 a | 11.53 ± 3.70 a |
2009 | Gluconic acid | 0.12 ± 0.04 b | 0.30 ± 0.10 a | 0.11 ± 0.03 b |
2018 | Glucaric acid | 0.25 ± 0.08 a | 0.15 ± 0.05 a | 0.12 ± 0.04 a |
2041 | Myo-Inositol isomer | 0.83 ± 0.27 a | 0.53 ± 0.17 ab | 0.29 ± 0.09 b |
2101 | Myo-Inositol isomer | 2.05 ± 0.66 a | 0.21 ± 0.07 b | 0.74 ± 0.24 b |
Mono- and disaccharides | ||||
1855 | Fructose isomer | 2.38 ± 0.76 b | 6.48 ± 2.08 ab | 7.05 ± 2.11 a |
1869 | Fructose isomer | 1.60 ± 0.51 b | 4.95 ± 1.59 ab | 5.51 ± 1.77 a |
1876 | 1-Methyl-α-D-glucopyranoside | 0.10 ± 0.03 b | 0.27 ± 0.09 ab | 0.36 ± 0.12 a |
1882 | Glucose isomer | 2.78 ± 0.89 b | 9.90 ± 2.18 a | 12.00 ± 2.85 a |
1898 | Glucose isomer | 0.83 ± 0.27 b | 2.21 ± 0.71 ab | 2.60 ± 0.83 a |
1937 | Glucose 1-phosphate | 0.16 ± 0.05 b | 0.25 ± 0.08 b | 4.05 ± 1.30 a |
2687 | Sucrose | 15.54 ± 2.99 a | 7.39 ± 1.37 b | 10.25 ± 2.29 ab |
Phenolic acids | ||||
1835 | Protocatechuic acid | 0.32 ± 0.10 ab | 0.17 ± 0.06 b | 0.60 ± 0.19 a |
1940 | trans-p-Coumaric acid | 0.55 ± 0.18 a | 0.41 ± 0.13 a | 0.24 ± 0.10 a |
2106 | trans-Ferulic acid | 0.19 ± 0.07 a | 0.38 ± 0.12 a | 0.26 ± 0.08 a |
Others | ||||
1400 | Tetradecane | 0.64 ± 0.21 a | 0.46 ± 0.15 ab | 0.13 ± 0.04 b |
1600 | Hexadecane | 0.29 ± 0.09 a | 0.20 ± 0.06 a | 0.12 ± 0.04 a |
RI | Fatty Acids | “Modesto” | “Stanley” | “Stendesto” |
---|---|---|---|---|
1519 | Lauric acid | 3.93 ± 1.12 a | 3.16 ± 1.12 a | 2.67 ± 1.12 a |
1572 | Dodecanol | 1.59 ± 0.45 a | 1.04 ± 0.45 a | 0.97 ± 0.45 a |
1725 | Mirystic acid | 8.75 ± 2.51 a | 8.00 ± 2.51 a | 8.66 ± 2.51 a |
1874 | Tetradecanol | 0.33 ± 0.09 a | 0.21 ± 0.09 a | 0.24 ± 0.09 a |
1920 | Palmitic acid | 1.16 ± 0.33 a | 0.94 ± 0.33 a | 1.07 ± 0.33 a |
1943 | Hexadecanol | 0.48 ± 0.14 a | 0.34 ± 0.14 a | 0.64 ± 0.14 a |
2094 | Linoleic acid | 7.06 ± 2.02 a | 4.27 ± 2.02 a | 5.08 ± 2.02 a |
2101 | Oleic acid | 12.68 ± 3.63 a | 11.00 ± 3.63 a | 13.39 ± 3.63 a |
2106 | Linolenic acid | 0.78 ± 0.22 ab | 1.24 ± 0.22 a | 0.38 ± 0.22 b |
2128 | Stearic acid | 0.94 ± 0.27 b | 1.41 ± 0.27 ab | 1.71 ± 0.27 a |
2157 | Octadecanol | 0.89 ± 0.25 a | 1.12 ± 0.25 a | 1.44 ± 0.25 a |
2311 | Eicosanoic acid | 1.00 ± 0.29 a | 0.52 ± 0.29 a | 0.79 ± 0.29 a |
RI | Name/Class | Modesto | Stanley | Stendesto |
---|---|---|---|---|
Aldehydes | ||||
566 | 2-Methylpropanal | 5.43 ± 0.91 a | 2.50 ± 0.42 b | 6.34 ± 1.07 a |
595 | n-Butanal | 1.52 ± 0.26 ab | 1.94 ± 0.33 a | 1.22 ± 0.20 b |
653 | 3-Methylbutanal | 0.61 ± 0.10 a | 0.53 ± 0.09 a | 0.49 ± 0.08 a |
667 | 2-Methylbutanal | 2.98 ± 0.50 a | 1.33 ± 0.22 a | 2.38 ± 0.40 a |
698 | Pentanal | 4.41 ± 0.74 b | 8.12 ± 1.36 a | 5.53 ± 0.93 ab |
752 | (E)-2-Pentenal | 0.88 ± 0.15 a | 0.27 ± 0.05 a | 0.70 ± 0.12 a |
792 | n-Hexanal | 9.74 ± 1.64 b | 18.61 ± 3.13 a | 14.79 ± 2.49 ab |
830 | 2-Furfural | 2.61 ± 0.44 a | 3.40 ± 0.57 a | 2.09 ± 0.35 a |
902 | Heptanal | 1.46 ± 0.25 b | 1.67 ± 0.28 a | 1.17 ± 0.20 b |
961 | (E)-2-Heptenal | 6.15 ± 1.03 a | 10.19 ± 1.71 a | 4.92 ± 0.83 a |
975 | Benzaldehyde | 26.99 ± 4.53 b | 20.82 ± 3.50 a | 22.59 ± 3.79 b |
1011 | n-Octanal | 1.37 ± 0.23 b | 2.29 ± 0.39 a | 1.10 ± 0.18 ab |
1073 | (E)-2-Octenal | 3.18 ± 0.53 a | 5.34 ± 0.90 a | 4.55 ± 0.76 a |
1106 | n-Nonanal | 4.10 ± 0.69 ab | 2.84 ± 0.48 a | 3.28 ± 0.55 b |
1146 | (E)-2-Nonenal | 0.71 ± 0.12 b | 0.94 ± 0.16 b | 0.57 ± 0.10 a |
1232 | (E)-2-Decenal | 1.08 ± 0.18 b | 0.80 ± 0.13 a | 1.86 ± 0.31 a |
Alcohols | ||||
500 | Ethanol | 0.20 ± 0.03 b | 1.00 ± 0.17 ab | 1.25 ± 0.21 a |
680 | 1-Butanol | 0.64 ± 0.11 b | 0.95 ± 0.16 a | 1.19 ± 0.20 a |
689 | 1-Penten-3-ol | 0.17 ± 0.03 ab | 0.52 ± 0.09 b | 0.65 ± 0.11 a |
770 | 1-Pentanol | 4.25 ± 0.71 a | 2.66 ± 0.45 b | 5.33 ± 0.90 b |
1036 | Benzyl alcohol | 10.35 ± 1.74 a | 2.30 ± 0.39 a | 2.87 ± 0.48 a |
1173 | 4-Ethylphenol | 0.65 ± 0.11 a | 0.48 ± 0.08 a | 0.60 ± 0.10 a |
Ketones | ||||
515 | 2-Propanone | 0.95 ± 0.16 a | 0.44 ± 0.07 b | 0.75 ± 0.13 ab |
691 | 2-Pentanone | 0.75 ± 0.13 a | 0.49 ± 0.08 a | 0.61 ± 0.10 a |
892 | 2-Heptanone | 1.58 ± 0.27 a | 1.86 ± 0.31 a | 2.38 ± 0.40 a |
Furans | ||||
995 | 2-Pentylfuran | 1.33 ± 0.22 b | 3.89 ± 0.65 a | 4.86 ± 0.82 ab |
Acids | ||||
741 | Acetic acid | 0.25 ± 0.04 b | 2.02 ± 0.34 a | 2.74 ± 0.46 a |
Esters | ||||
617 | Ethyl acetate | 0.35 ± 0.06 b | 0.57 ± 0.10 a | 0.12 ± 0.02 c |
1161 | Benzyl acetate | 0.49 ± 0.08 | ND | 0.69 ± 0.12 |
1175 | Ethyl benzoate | 0.63 ± 0.11 | ND | 0.80 ± 0.13 |
Alkanes | ||||
900 | Nonane | 0.95 ± 0.16 | ND | ND |
1000 | Decane | 0.48 ± 0.08 | ND | ND |
1100 | Undecane | 0.67 ± 0.11 | ND | ND |
1200 | Dodecane | 0.29 ± 0.05 | ND | ND |
1300 | Tridecane | 0.73 ± 0.12 | ND | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihaylova, D.; Popova, A.; Dincheva, I.; Pandova, S. HS-SPME-GC–MS Profiling of Volatile Organic Compounds and Polar and Lipid Metabolites of the “Stendesto” Plum–Apricot Kernel with Reference to Its Parents. Horticulturae 2024, 10, 257. https://doi.org/10.3390/horticulturae10030257
Mihaylova D, Popova A, Dincheva I, Pandova S. HS-SPME-GC–MS Profiling of Volatile Organic Compounds and Polar and Lipid Metabolites of the “Stendesto” Plum–Apricot Kernel with Reference to Its Parents. Horticulturae. 2024; 10(3):257. https://doi.org/10.3390/horticulturae10030257
Chicago/Turabian StyleMihaylova, Dasha, Aneta Popova, Ivayla Dincheva, and Svetla Pandova. 2024. "HS-SPME-GC–MS Profiling of Volatile Organic Compounds and Polar and Lipid Metabolites of the “Stendesto” Plum–Apricot Kernel with Reference to Its Parents" Horticulturae 10, no. 3: 257. https://doi.org/10.3390/horticulturae10030257
APA StyleMihaylova, D., Popova, A., Dincheva, I., & Pandova, S. (2024). HS-SPME-GC–MS Profiling of Volatile Organic Compounds and Polar and Lipid Metabolites of the “Stendesto” Plum–Apricot Kernel with Reference to Its Parents. Horticulturae, 10(3), 257. https://doi.org/10.3390/horticulturae10030257