Obtaining Lignin from Nutshells under Mild Extraction Conditions and Its Use as a Biostimulant in Tomato Seedlings
Abstract
1. Introduction
2. Materials and Methods
2.1. Nutshell and Reagents
2.2. Quantification of Lignocellulosic Material from Nutshells
2.3. Extraction of Lignin with Organic Solvents
2.4. Characterization of Lignin
2.4.1. Proton Nuclear Magnetic Resonance (1H-NMR)
2.4.2. Fourier Transform Infrared Spectroscopy (FTIR)
2.4.3. Scanning Electron Microscopy (SEM)
2.4.4. Dynamic Light Scattering (DLS)
2.5. Seedling Growth
2.5.1. Location of the Experiment
2.5.2. Plant Material
2.6. Treatments of Lignin
2.7. Sampling
2.8. Experimental Design and Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rouphael, Y.; Colla, G. Synergistic biostimulatory action: Designing the next generation of plant biostimulants for sustainable agriculture. Front. Plant Sci. 2018, 871, 426696. [Google Scholar] [CrossRef]
- Bajpai, S.; Shukla, P.S.; Prithiviraj, B.; Critchley, A.T.; Nivetha, N. Editorial: Development of next generation bio stimulants for sustainable agriculture. Front. Plant Sci. 2024, 15, 8–10. [Google Scholar] [CrossRef]
- Research, P. Biostimulants Market Size, Share, and Trends 2024 to 2034. Available online: https://www.precedenceresearch.com/biostimulants-market (accessed on 10 September 2024).
- Mahmud, M.; Shamim Hasan, M.; Riajul Islam Sardar, M.; Adnan Shafin, A.; Sohanur Rahman, M.; Mosaddek Hossen, M.; Md Hasan, C.S.; Islam Sardar, M.R.; Adnan Shafin, A.; Rahman, M.S.; et al. Brief Review on Applications of Lignin. J. Chem. Rev 2023, 5, 56–82. [Google Scholar]
- Abejón, R.; Pérez-Acebo, H.; Clavijo, L. Alternatives for chemical and biochemical lignin valorization: Hot topics from a bibliometric analysis of the research published during the 2000–2016 period. Processes 2018, 6, 98. [Google Scholar] [CrossRef]
- Ahmad, U.M.; Ji, N.; Li, H.; Wu, Q.; Song, C.; Liu, Q.; Ma, D.; Lu, X. Can lignin be transformed into agrochemicals? Recent advances in the agricultural applications of lignin. Ind. Crop. Prod. 2021, 170, 113646. [Google Scholar] [CrossRef]
- Lim, S.F.; Matu, S.U. Utilization of agro-wastes to produce biofertilizer. Int. J. Energy Environ. Eng. 2015, 6, 31–35. [Google Scholar] [CrossRef]
- Orona Castillo, I.; Sangerman-Jarquín, D.M.; Cervantes Vázquez, M.G.; Espinoza Arellano, J.d.J.; Núñez Moreno, J.H. producción y comercialización de nuez pecanera en México. Rev. Mex. Cienc. Agrícolas 2019, 10, 1797–1808. [Google Scholar] [CrossRef]
- Suarez-Jacobo, A.; Obregon, E.; Urzua, E.; García-Fajardo, J.A. Retos y Oportunidades para el Aprovechamiento de la Nuez Pecanera en México; Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ): Guadalajara, México, 2016. [Google Scholar]
- Ranum, P.; Peña-Rosas, J.P.; Garcia-Casal, M.N. Global maize production, utilization, and consumption. Ann. N. Y. Acad. Sci. 2014, 1312, 105–112. [Google Scholar] [CrossRef]
- de Prá Andrade, M.; Piazza, D.; Poletto, M. Pecan nutshell: Morphological, chemical and thermal characterization. J. Mater. Res. Technol. 2021, 13, 2229–2238. [Google Scholar] [CrossRef]
- Liao, J.J.; Latif, N.H.A.; Trache, D.; Brosse, N.; Hussin, M.H. Current advancement on the isolation, characterization and application of lignin. Int. J. Biol. Macromol. 2020, 162, 985–1024. [Google Scholar] [CrossRef]
- Chio, C.; Sain, M.; Qin, W. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 2019, 107, 232–249. [Google Scholar] [CrossRef]
- Sturgeon, M.R.; Kim, S.; Lawrence, K.; Paton, R.S.; Chmely, S.C.; Nimlos, M.; Foust, T.D.; Beckham, G.T. A Mechanistic investigation of acid-catalyzed cleavage of aryl-ether linkages: Implications for lignin depolymerization in acidic environments. ACS Sustain. Chem. Eng. 2014, 2, 472–485. [Google Scholar] [CrossRef]
- Hong, S.; Shen, X.J.; Pang, B.; Xue, Z.; Cao, X.F.; Wen, J.L.; Sun, Z.H.; Lam, S.S.; Yuan, T.Q.; Sun, R.C. In-depth interpretation of the structural changes of lignin and formation of diketones during acidic deep eutectic solvent pretreatment. Green Chem. 2020, 22, 1851–1858. [Google Scholar] [CrossRef]
- Díez, D.; Urueña, A.; Piñero, R.; Barrio, A.; Tamminen, T. Determination of hemicellulose, cellulose, and Lignin Content in Different Types of Biomasses by Thermogravimetric Analysis and Pseudocomponent Kinetic Model. Processes 2020, 8, 1048. [Google Scholar] [CrossRef]
- Xu, F.; Sun, J.X.; Sun, R.; Fowler, P.; Baird, M.S. Comparative study of organosolv lignins from wheat straw. Ind. Crop. Prod. 2006, 23, 180–193. [Google Scholar] [CrossRef]
- Florian, T.D.M.; Villani, N.; Aguedo, M.; Jacquet, N.; Thomas, H.G.; Gerin, P.; Magali, D.; Richel, A. Chemical composition analysis and structural features of banana rachis lignin extracted by two organosolv methods. Ind. Crop. Prod. 2019, 132, 269–274. [Google Scholar] [CrossRef]
- Del Buono, D.; Luzi, F.; Puglia, D. Lignin nanoparticles: A promising tool to improve maize physiological, biochemical, and chemical traits. Nanomaterials 2021, 11, 846. [Google Scholar] [CrossRef]
- Pe, J.A.; Mun, J.S.; Mun, S.P. Thermal Characterization of Kraft Lignin Prepared from Mixed Hardwoods. BioResources 2023, 18, 926–936. [Google Scholar] [CrossRef]
- Köhnke, J.; Gierlinger, N.; Mateu, B.P.; Unterweger, C.; Solt, P.; Mahler, A.K.; Schwaiger, E.; Liebner, F.; Gindl-Altmutter, W. Comparison of four technical lignins as a resource for electrically conductive carbon particles. BioResources 2019, 14, 1091–1109. [Google Scholar] [CrossRef]
- Abu-Dief, A.M.; Abdel-Fatah, S.M. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef Univ. J. Basic Appl. Sci. 2018, 7, 55–67. [Google Scholar] [CrossRef]
- Zhou, N.; Thilakarathna, W.P.D.W.; He, Q.S. A Review: Depolymerization of Lignin to Generate High-Value Bio-Products: Opportunities, Challenges, and Prospects. Front. Energy Res. 2022, 9, 758744. [Google Scholar] [CrossRef]
- Hilbig, J.; Alves, V.R.; Müller, C.M.O.; Micke, G.A.; Vitali, L.; Pedrosa, R.C.; Block, J.M. Ultrasonic-assisted extraction combined with sample preparation and analysis using LC-ESI-MS/MS allowed the identification of 24 new phenolic compounds in pecan nut shell [Carya illinoinensis (Wangenh) C. Koch] extracts. Food Res. Int. 2018, 106, 549–557. [Google Scholar] [CrossRef]
- Jardim, J.M.; Hart, P.W.; Lucia, L.; Jameel, H. Insights into the potential of hardwood kraft lignin to be a green platform material for emergence of the biorefinery. Polymers 2020, 12, 1795. [Google Scholar] [CrossRef]
- Boarino, A.; Klok, H.A. Opportunities and Challenges for Lignin Valorization in Food Packaging, Antimicrobial, and Agricultural Applications. Biomacromolecules 2022, 24, 1065–1077. [Google Scholar] [CrossRef]
- Ruwoldt, J. A Critical Review of the Physicochemical Properties of Lignosulfonates: Chemical Structure and Behavior in Aqueous Solution, at Surfaces and Interfaces. Surfaces 2020, 3, 622–648. [Google Scholar] [CrossRef]
- Vasile, C.; Baican, M. Lignins as Promising Renewable Biopolymers and Bioactive Compounds for High-Performance Materials. Polymers 2023, 15, 3177. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Mosier, N.; Ladisch, M. Valorization of Lignin from Aqueous-Based Lignocellulosic Biorefineries. In Trends in Biotechnology; Elsevier: Amsterdam, The Netherlands, 2024; pp. 1–15. [Google Scholar] [CrossRef]
- Eraghi Kazzaz, A.; Hosseinpour Feizi, Z.; Fatehi, P. Grafting strategies for hydroxy groups of lignin for producing materials. Green Chem. 2019, 21, 5714–5752. [Google Scholar] [CrossRef]
- Da Cunha, K.P.V.; Do Nascimento, C.W.A. Silicon effects on metal tolerance and structural changes in Maize (Zea mays L.) grown on a cadmium and zinc enriched soil. Water. Air. Soil Pollut. 2009, 197, 323–330. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in plant science: A global perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef]
- Gebremikael, M.; Vandendaele, R.; Alarcon, M.; Torregrosa, R.; De Neve, S. The effect of lignin application on plant growth and soil biological quality. EGU Gen. Assem. 2020, 2020, EGU2020-19535. [Google Scholar]
- Kevers, C.; Soteras, G.; Baccou, J.C.; Gaspar, T. Lignosulfonates: Novel promoting additives for plant tissue cultures. Vitr. Cell. Dev. Biol. Plant 1999, 35, 413–416. [Google Scholar] [CrossRef]
- Docquier, S.; Kevers, C.; Lambé, P.; Gaspar, T.; Dommes, J. Beneficial use of lignosulfonates in in vitro plant cultures: Stimulation of growth, of multiplication and of rooting. Plant Cell Tissue Organ Cult. 2007, 90, 285–291. [Google Scholar] [CrossRef]
- Tarrés, Q.; Aguado, R.; Domínguez-Robles, J.; Larrañeta, E.; Delgado-Aguilar, M. Valorization of Kraft Lignin from Black Liquor in the Production of Composite Materials with Poly(caprolactone) and Natural Stone Groundwood Fibers. Polymers 2022, 14, 5178. [Google Scholar] [CrossRef]
- Savy, D.; Cozzolino, V.; Nebbioso, A.; Drosos, M.; Nuzzo, A.; Mazzei, P.; Piccolo, A. Humic-like bioactivity on emergence and early growth of maize (Zea mays L.) of water-soluble lignins isolated from biomass for energy. Plant Soil 2016, 402, 221–233. [Google Scholar] [CrossRef]
- Kok, A.D.X.; Wan Abdullah, W.M.A.N.; Tang, C.N.; Low, L.Y.; Yuswan, M.H.; Ong-Abdullah, J.; Tan, N.P.; Lai, K.S. Sodium lignosulfonate improves shoot growth of Oryza sativa via enhancement of photosynthetic activity and reduced accumulation of reactive oxygen species. Sci. Rep. 2021, 11, 13226. [Google Scholar] [CrossRef]
- Savy, D.; Cozzolino, V. Novel fertilising products from lignin and its derivatives to enhance plant development and increase the sustainability of crop production. J. Clean. Prod. 2022, 366, 132832. [Google Scholar] [CrossRef]
- Ertani, A.; Francioso, O.; Nardi, S. Mini review: Fruit residues as plant biostimulants for bio-based product recovery. AIMS Agric. Food 2017, 2, 251–257. [Google Scholar] [CrossRef]
Variable | (%) | Molecule | (%) |
---|---|---|---|
Humidity | 10.2 | Hemicellulose | 19.2 |
Volatile material | 60.7 | Cellulose | 20.1 |
Ashes | 29.1 | Lignin | 15.6 |
Treatment | Compound Sheet | Leaf Area | Stem Diameter | Height |
---|---|---|---|---|
control | 32.2 c | 36.16 a | 0.77 a | 23.04 c |
lignin 10 | 36.4 bc | 26.55 a | 0.78 a | 31.10 a |
lignin 50 | 40.6 ab | 17.52 a | 0.79 a | 30.20 a |
lignina 100 | 44.6 a | 18.25 a | 0.79 a | 27.10 b |
Treatment | FWL | FWS | FWR | DWL | DWS | DWR | DWT | FWT |
---|---|---|---|---|---|---|---|---|
Control | 24.67 a | 35.54 c | 3.80 b | 3.19 a | 2.78 b | 1.34 a | 64.00 b | 7.31 a |
lignin 10 | 24.14 a | 41.21 ab | 8.95 a | 3.03 a | 3.05 ab | 1.16 a | 74.29 a | 7.24 a |
lignin 50 | 24.33 a | 44.38 a | 7.97 a | 2.94 a | 3.36 a | 1.25 a | 76.67 a | 7.54 a |
lignina 100 | 25.51 a | 39.43 bc | 8.49 a | 3.08 a | 3.04 ab | 1.22 a | 73.44 a | 7.35 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Díaz-Elizondo, J.A.; Ayala-Velazco, A.; Benavides-Mendoza, A.; Enriquez-Medrano, F.J.; Medrano-Macías, J. Obtaining Lignin from Nutshells under Mild Extraction Conditions and Its Use as a Biostimulant in Tomato Seedlings. Horticulturae 2024, 10, 1079. https://doi.org/10.3390/horticulturae10101079
Díaz-Elizondo JA, Ayala-Velazco A, Benavides-Mendoza A, Enriquez-Medrano FJ, Medrano-Macías J. Obtaining Lignin from Nutshells under Mild Extraction Conditions and Its Use as a Biostimulant in Tomato Seedlings. Horticulturae. 2024; 10(10):1079. https://doi.org/10.3390/horticulturae10101079
Chicago/Turabian StyleDíaz-Elizondo, José Alejandro, Azrrael Ayala-Velazco, Adalberto Benavides-Mendoza, Francisco Javier Enriquez-Medrano, and Julia Medrano-Macías. 2024. "Obtaining Lignin from Nutshells under Mild Extraction Conditions and Its Use as a Biostimulant in Tomato Seedlings" Horticulturae 10, no. 10: 1079. https://doi.org/10.3390/horticulturae10101079
APA StyleDíaz-Elizondo, J. A., Ayala-Velazco, A., Benavides-Mendoza, A., Enriquez-Medrano, F. J., & Medrano-Macías, J. (2024). Obtaining Lignin from Nutshells under Mild Extraction Conditions and Its Use as a Biostimulant in Tomato Seedlings. Horticulturae, 10(10), 1079. https://doi.org/10.3390/horticulturae10101079