Supplementation of Oilseeds to an Herbage Diet High in Condensed Tannins Affects Methane Production with Minimal Impact on Ruminal Fermentation in Continuous Culture
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Experimental Design, and Diets
2.2. Continuous Culture System
2.3. Methane Quantification
2.4. Nutrient Analyses
2.5. Statistical Analyses
3. Results
3.1. Diet Composition and Digestibilities
3.2. Methane Production, VFAs, and pH
4. Discussion
4.1. Importance of Diet Composition and Digestibilities
4.2. Effects on Enteric Methane Production, VFAs, Fermentor pH, and N Metabolism
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Khan, M.Y.; Khan, F.; Haque, N. Global warming and stratospheric ozone layer depletion by greenhouse gases with special reference to methane production from Indian livestock. Anim. Nutr. Feed Technol. 2011, 1, 79–96. [Google Scholar]
- West, J.J.; Fiore, A.M. Management of Tropospheric Ozone by Reducing Methane Emissions. Environ. Sci. Technol. 2005, 39, 4685–4691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yusuf, R.O.; Noor, Z.Z.; Abba, A.H.; Hassan, M.A.A.; Din, M.F.M. Greenhouse gas emissions: Quantifying me-thane emissions from livestock. Am. J. Eng. Appl. Sci. 2012, 5, 1–8. [Google Scholar]
- Archibeque, S.; Haugen-Kozyra, K.; Johnson, K.; Kebreab, E.; Powers-Schilling, W. Near-Term Options for Reducing Greenhouse Gas Emissions from Livestock Systems in the United States: Beef, Dairy, and Swine Production Systems; Nicholas Institute for Environmental Policy Solutions, Duke University: Durham, NC, USA, 2012. [Google Scholar]
- Key, N.; Sneeringer, S. Climate change policy and the adoption of methane digesters on livestock operations. Econ. Res. Serv. USDA 2011. [Google Scholar] [CrossRef] [Green Version]
- Rochfort, S.; Parker, A.; Dunshea, F.R. Plant bioactives for ruminant health and productivity. Phytochemistry 2008, 69, 299–322. [Google Scholar] [CrossRef] [Green Version]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- Cappucci, A.; Mantino, A.; Buccioni, A.; Casarosa, L.; Conte, G.; Serra, A.; Mannelli, F.; Luciano, G.; Foggi, G.; Mele, M. Diets supplemented with condensed and hydrolysable tannins affected rumen fatty acid profile and plasmalogen lipids, ammonia and methane production in an in vitro study. Ital. J. Anim. Sci. 2021, 20, 935–946. [Google Scholar] [CrossRef]
- Athanasiadou, S.; Kyriazakis, I.; Jackson, F.; Coop, R.L. Direct anthelmintic effects of condensed tannins towards different gastrointestinal nematodes of sheep: In vitro and in vivo studies. Veter. Parasitol. 2001, 99, 205–219. [Google Scholar] [CrossRef]
- Min, B.R.; Pinchak, W.E.; Anderson, R.C.; Fulford, J.D.; Puchala, R. Effects of condensed tannins supplementation level on weight gain and in vitro and in vivo bloat precursors in steers grazing winter wheat1. J. Anim. Sci. 2006, 84, 2546–2554. [Google Scholar] [CrossRef] [Green Version]
- Roca-Fernández, A.I.; Dillard, S.L.; Soder, K.J. Ruminal fermentation and enteric methane production of legumes containing condensed tannins fed in continuous culture. J. Dairy Sci. 2020, 103, 7028–7038. [Google Scholar] [CrossRef]
- Li, Y.; Iwaasa, A.D.; Wang, Y.; Jin, L.; Han, G.; Zhao, M. Condensed tannins concentration of selected prairie legume forages as affected by phenological stages during two consecutive growth seasons in western Canada. Can. J. Plant Sci. 2014, 94, 817–826. [Google Scholar] [CrossRef] [Green Version]
- Naumann, H.D.; Tedeschi, L.O.; Zeller, W.E.; Huntley, N.F. The role of condensed tannins in ruminant animal production: Advances, limitations and future directions. Rev. Bras. Zootec. 2017, 46, 929–949. [Google Scholar] [CrossRef] [Green Version]
- Bateman Ii, H.G.; Jenkins, T.C. Influence of Soybean Oil in High Fiber Diets Fed to Nonlactating Cows on Ruminal Unsaturated Fatty Acids and Nutrient Digestibility. J. Dairy Sci. 1998, 81, 2451–2458. [Google Scholar] [CrossRef]
- Kliem, K.E.; Humphries, D.J.; Kirton, P.; Givens, D.I.; Reynolds, C.K. Differential effects of oilseed supplements on methane production and milk fatty acid concentrations in dairy cows. Animals 2019, 13, 309–317. [Google Scholar] [CrossRef]
- Eugène, M.; Massé, D.; Chiquette, J.; Benchaar, C. Meta-analysis on the effects of lipid supplementation on methane production in lactating dairy cows. Can. J. Anim. Sci. 2008, 88, 331–337. [Google Scholar] [CrossRef]
- Rasmussen, J.; Harrison, A. The Benefits of Supplementary Fat in Feed Rations for Ruminants with Particular Focus on Reducing Levels of Methane Production. ISRN Veter-Sci. 2011, 2011, 613172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adejoro, F.A.; Hassen, A.; Akanmu, A.M. Effect of lipid-encapsulated acacia tannin extract on feed intake, nutrient digestibility, and methane emission in sheep. Animals 2019, 9, 863. [Google Scholar] [CrossRef] [Green Version]
- Soder, K.J.; Brito, A.F.; Rubano, M.D. Short communication: Effect of oilseed supplementation of an herbage diet on ruminal fermentation in continuous culture. J. Dairy Sci. 2013, 96, 2551–2556. [Google Scholar] [CrossRef] [PubMed]
- Beauchemin, K.A.; McGinn, S.M.; Benchaar, C.; Holtshausen, L. Crushed sunflower, flax, or canola seeds in lactating dairy cow diets: Effects on methane production, rumen fermentation, and milk production. J. Dairy Sci. 2009, 92, 2118–2127. [Google Scholar] [CrossRef]
- Vastolo, A.; Calabrò, S.; Pacifico, S.; Koura, B.I.; Cutrignelli, M.I. Chemical and nutritional characteristics of Cannabis sativa L. co-products. J. Anim. Physiol. Anim. Nutr. 2021, 105, 1–9. [Google Scholar] [CrossRef]
- Dillard, S.L.; Roca-Fernández, A.I.; Rubano, M.D.; Soder, K.J. Evaluation of a single-flow continuous culture fermenter system for determination of ruminal fermentation and enteric methane production. J. Anim. Physiol. Anim. Nutr. 2019, 103, 1313–1324. [Google Scholar] [CrossRef] [PubMed]
- Erwin, E.S.; Marco, G.J.; Emery, E.M. Volatile Fatty Acid Analyses of Blood and Rumen Fluid by Gas Chromatography. J. Dairy Sci. 1961, 44, 1768–1771. [Google Scholar] [CrossRef]
- Chaney, A.L.; Marbach, E.P. Modified Reagents for Determination of Urea and Ammonia. Clin. Chem. 1962, 8, 130–132. [Google Scholar] [CrossRef] [PubMed]
- AOAC International. Official Methods of Analysis, 18th ed.; AOAC International: Gaithersburg, MD, USA, 2006. [Google Scholar]
- Coblentz, W.K.; Abdelgadir, I.E.; Cochran, R.C.; Fritz, J.O.; Fick, W.H.; Olson, K.C.; Turner, J.E. Degradability of Forage Proteins by In Situ and In Vitro Enzymatic Methods. J. Dairy Sci. 1999, 82, 343–354. [Google Scholar] [CrossRef]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fiber in feeds with refluxing in beakers or crucibles: Collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar]
- Weiss, W.P. Predicting Energy Values of Feeds. J. Dairy Sci. 1993, 76, 1802–1811. [Google Scholar] [CrossRef]
- Grabber, J.H.; Zeller, W.E.; Mueller-Harvey, I. Acetone Enhances the Direct Analysis of Procyanidin- and Prodelphinidin-Based Condensed Tannins in Lotus Species by the Butanol–HCl–Iron Assay. J. Agric. Food Chem. 2013, 61, 2669–2678. [Google Scholar] [CrossRef]
- Liu, Y.; Jaworski, N.W.; Rojas, O.J.; Stein, H.H. Energy concentration and amino acid digestibility in high protein canola meal, conventional canola meal, and in soybean meal fed to growing pigs. Anim. Feed Sci. Technol. 2016, 212, 52–62. [Google Scholar] [CrossRef]
- Terrill, T.H.; Windham, W.R.; Evans, J.J.; Hoveland, C.S. Condensed tannin concentration in sericea lespedeza as influenced by preservation method. Crop Sci. 1990, 30, 219–224. [Google Scholar] [CrossRef]
- Salem, H.B.; Makkar, H.P.S.; Nefzaoui, A.; Hassayoun, L.; Abidi, S. Benefit from the association of small amounts of tannin-rich shrub foliage (Acacia cyanophylla Lindl.) with soya bean meal given as supplements to Barbarine sheep fed on oaten hay. Anim. Feed Sci. Technol. 2005, 122, 173–186. [Google Scholar] [CrossRef]
- Florou-Paneri, P.; Christaki, E.; Giannenas, I.; Bonos, E.; Skoufos, I.; Tsinas, A.; Tzora, A.; Peng, J. Alternative protein sources to soybean meal in pig diets. J. Food Agric. Environ. 2014, 12, 655–660. [Google Scholar]
- Giger-Reverdin, S.; Morand-Fehr, P.; Tran, G. Literature survey of the influence of dietary fat composition on methane production in dairy cattle. Livest. Prod. Sci. 2003, 82, 73–79. [Google Scholar] [CrossRef]
- Khorasani, G.R.; Robinson, P.H.; De Boer, G.; Kennelly, J.J. Influence of Canola Fat on Yield, Fat Percentage, Fatty Acid Profile, and Nitrogen Fractions in Holstein Milk. J. Dairy Sci. 1991, 74, 1904–1911. [Google Scholar] [CrossRef]
- Clapperton, J.L.; Czerkawski, J.W. Methane production and soluble carbohydrates in the rumen of sheep in relation to the time of feeding and the effects of short-term intraruminal infusions of unsaturated fatty acids. Br. J. Nutr. 1969, 23, 813–826. [Google Scholar] [CrossRef] [PubMed]
- Czerkawski, J.W. Fate of metabolic hydrogen in the rumen. Proc. Nutr. Soc. 1972, 31, 141–146. [Google Scholar] [CrossRef] [Green Version]
- Komkris, T.; Stanley, R.W.; Morita, K. Effect of Feeds Containing Molasses Fed Separately and Together with Roughage on Digestibility of Rations, Volatile Fatty Acids Produced in the Rumen, Milk Production, and Milk Constituents. J. Dairy Sci. 1965, 48, 714–719. [Google Scholar] [CrossRef]
- Storry, J.E.; Hall, A.J.; Johnson, V.W. The effects of increasing amounts of dietary tallow on milk-fat secretion in the cow. J. Dairy Res. 1973, 40, 293–299. [Google Scholar] [CrossRef]
- Palmquist, D.L.; Conrad, H.R. High Fat Rations for Dairy Cows. Effects on Feed Intake, Milk and Fat Production, and Plasma Metabolites. J. Dairy Sci. 1978, 61, 890–901. [Google Scholar] [CrossRef]
- Paula, E.M.; Monteiro, H.F.; da Silva, L.G.; Benedeti, P.D.B.; Daniel, J.L.P.; Shenkoru, T.; Broderick, G.A.; Faciola, A.P. Effects of replacing soybean meal with canola meal differing in rumen-undegradable protein content on ruminal fermentation and gas production kinetics using 2 in vitro systems. J. Dairy Sci. 2017, 100, 5281–5292. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk, J.; Ørskov, E.R.; Robinson, J.J.; Stewart, C.S. Effect of fat supplementation on voluntary food intake and rumen metabolism in sheep. Br. J. Nutr. 1977, 37, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Hernandez-Urdaneta, A.; Coppock, C.E.; McDowell, R.E.; Gianola, D.; Smith, N.E. Changes in Forage-Concentrate Ratio of Complete Feeds for Dairy Cows. J. Dairy Sci. 1976, 59, 695–707. [Google Scholar] [CrossRef]
- Sutton, J.D.; Dhanoa, M.S.; Morant, S.V.; France, J.; Napper, D.J.; Schuller, E. Rates of Production of Acetate, Propionate, and Butyrate in the Rumen of Lactating Dairy Cows Given Normal and Low-Roughage Diets. J. Dairy Sci. 2003, 86, 3620–3633. [Google Scholar] [CrossRef] [Green Version]
- Kolver, E.S.; De Veth, M.J. Prediction of Ruminal pH from Pasture-Based Diets. J. Dairy Sci. 2002, 85, 1255–1266. [Google Scholar] [CrossRef]
- Grieshop, C.M.; Kadzere, C.T.; Clapper, G.M.; Flickinger, E.A.; Bauer, L.L.; Frazier, R.L.; Fahey, G.C. Chemical and Nutritional Characteristics of United States Soybeans and Soybean Meals. J. Agric. Food Chem. 2003, 51, 7684–7691. [Google Scholar] [CrossRef] [PubMed]
- Weaver, D.B.; Rodriguez-Kabana, R.; Cosper, B.H.; Akridge, R.L. Stonewall—A New Soybean Variety for Alabama; Alabama Agricultural Experiment Station, Auburn University: Auburn, AL, USA, 1989; Circular 295. [Google Scholar]
- Calsamiglia, S.; Stern, M.D.; Firkins, J.L. Effects of protein source on nitrogen metabolism in continuous culture and intestinal digestion in vitro. J. Anim. Sci. 1995, 73, 1819–1827. [Google Scholar] [CrossRef] [PubMed]
- Brito, A.; Broderick, G. Effects of Different Protein Supplements on Milk Production and Nutrient Utilization in Lactating Dairy Cows. J. Dairy Sci. 2007, 90, 1816–1827. [Google Scholar] [CrossRef] [PubMed]
Forage | Diets 1 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Item | Unit | Orchardgrass | Sericea Lespedeza | Canola | Soybean | Sunflower | CAN | SOY | SUN | MIX |
CP | g/kg DM | 348 | 178 | 246 | 406 | 139 | 261 | 277 | 251 | 263 |
RDP | g/kg CP | 810 | 323 | 651 | 807 | 750 | 574 | 589 | 584 | 581 |
aNDF | g/kg DM | 412 | 460 | 416 | 172 | 283 | 434 | 410 | 421 | 421 |
ADF | g/kg DM | 222 | 324 | 290 | 153 | 243 | 275 | 261 | 270 | 268 |
Lignin | g/kg DM | 65 | 100 | 78 | 22 | 94 | 82 | 76 | 84 | 81 |
NFC 2 | g/kg DM | 118 | 271 | - | 154 | 139 | 175 | 190 | 189 | 175 |
NEL | Mcal/kg DM | 1.5 | 1.3 | 3.6 | 3.2 | 2.6 | 1.7 | 1.6 | 1.5 | 1.6 |
Crude Fat | g/kg DM | 50 | 29 | 437 | 210 | 404 | 79 | 57 | 76 | 70 |
CT 3 | g/kg DM | 3.7 | 149.2 | 0.8 | 0.3 | 0.3 | 68.9 | 68.9 | 68.9 | 68.9 |
Parameter | Diet 1 | SEM | p-Value | |||
---|---|---|---|---|---|---|
CAN | SOY | SUN | MIX | |||
Apparent Digestibility | ||||||
OM | 0.39 | 0.41 | 0.40 | 0.37 | 0.044 | >0.10 |
DM | 0.39 | 0.42 | 0.41 | 0.39 | 0.033 | >0.10 |
aNDF | 0.52 | 0.60 | 0.453 | 0.54 | 0.032 | >0.10 |
ADF | 0.31 | 0.52 | 0.37 | 0.43 | 0.067 | >0.10 |
True Digestibility | ||||||
OM | 0.81 | 0.81 | 0.78 | 0.84 | 0.039 | >0.10 |
DM | 0.65 | 0.67 | 0.63 | 0.68 | 0.032 | >0.10 |
Diet 1 | |||||||
---|---|---|---|---|---|---|---|
Item | Unit | CAN | SOY | SUN | MIX | SEM | p-Value |
CH4 production | |||||||
Total CH4 | mg/d | 17.9 c | 84.3 a | 27.4 b | 13.4 c | 4.41 | 0.01 |
CH4/g OM | mg/g | 0.2 b | 1.1 a | 0.4 b | 0.2 b | 0.79 | 0.01 |
CH4/g aNDF | mg/g | 0.5 b | 2.5 a | 0.8 b | 0.4 b | 1.84 | 0.01 |
CH4/g digestible OM | mg/g | 0.4 b | 1.6 a | 0.6 b | 0.3 b | 1.02 | 0.01 |
CH4/g digestible aNDF | mg/g | 1.2 b | 4.1 a | 2.3 ab | 0.7 b | 2.29 | 0.02 |
VFA | |||||||
Total | mmol/L | 38.33 b | 46.04 a | 37.52 b | 38.73 b | 1.056 | <0.001 |
Acetate (A) | mol/100 mol | 66.7 c | 68.1 a | 67.3 b | 66.4 c | 0.20 | <0.001 |
Propionate (P) | mol/100 mol | 22.8 a | 21.5 c | 22.3 b | 22.8 a | 0.18 | <0.001 |
Butyrate (B) | mol/100 mol | 8.7 b | 8.7 b | 8.8 b | 9.1 a | 0.12 | 0.01 |
Isobutyrate | mol/100 mol | 0.3 a | 0.4 a | 0.3 b | 0.2 c | 0.038 | 0.01 |
Valerate (V) | mol/100 mol | 1.5 a | 1.3 c | 1.4 b | 1.5 a | 0.029 | <0.001 |
A/P | mol/100 mol | 2.93 c | 3.18 a | 3.02 b | 2.92 c | 0.032 | < 0.001 |
(A + B)/P | mol/100 mol | 3.31 c | 3.59 a | 3.42 b | 3.32 c | 0.036 | <0.001 |
(A + B)/(P + V) | mol/100 mol | 3.12 c | 3.38 a | 3.22 b | 3.11 c | 0.031 | <0.001 |
pH | |||||||
Mean pH | 6.96 b | 6.83 c | 6.95 b | 7.01 a | 0.022 | <0.001 | |
Max pH | 7.50 a | 7.33 b | 7.52 a | 7.53 a | 0.035 | <0.001 | |
Min pH | 6.70 b | 6.58 c | 6.67 b | 6.77 a | 0.015 | <0.001 | |
Nitrogen metabolism | |||||||
N intake | g/d | 4.21 c | 4.42 a | 4.07 d | 4.24 b | 0.01 | <0.001 |
NH3-N | mg/dL | 17.3 | 18.4 | 17.4 | 16.6 | 1.13 | >0.10 |
N flows | |||||||
Total N | g/d | 2.6 | 2.4 | 2.5 | 2.3 | 0.26 | >0.10 |
NH3-N | g/d | 0.74 | 0.78 | 0.74 | 0.71 | 0.034 | >0.10 |
Non-NH3-N | g/d | 1.8 | 1.6 | 1.7 | 1.6 | 0.28 | >0.10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Billman, E.D.; Dillard, S.L.; Roca-Fernández, A.I.; Soder, K.J. Supplementation of Oilseeds to an Herbage Diet High in Condensed Tannins Affects Methane Production with Minimal Impact on Ruminal Fermentation in Continuous Culture. Fermentation 2022, 8, 109. https://doi.org/10.3390/fermentation8030109
Billman ED, Dillard SL, Roca-Fernández AI, Soder KJ. Supplementation of Oilseeds to an Herbage Diet High in Condensed Tannins Affects Methane Production with Minimal Impact on Ruminal Fermentation in Continuous Culture. Fermentation. 2022; 8(3):109. https://doi.org/10.3390/fermentation8030109
Chicago/Turabian StyleBillman, Eric D., S. Leanne Dillard, Ana Isabel Roca-Fernández, and Kathy J. Soder. 2022. "Supplementation of Oilseeds to an Herbage Diet High in Condensed Tannins Affects Methane Production with Minimal Impact on Ruminal Fermentation in Continuous Culture" Fermentation 8, no. 3: 109. https://doi.org/10.3390/fermentation8030109
APA StyleBillman, E. D., Dillard, S. L., Roca-Fernández, A. I., & Soder, K. J. (2022). Supplementation of Oilseeds to an Herbage Diet High in Condensed Tannins Affects Methane Production with Minimal Impact on Ruminal Fermentation in Continuous Culture. Fermentation, 8(3), 109. https://doi.org/10.3390/fermentation8030109