Nutritional Composition and Health-Promoting Properties of Amasi: A South African Fermented Milk Product
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Samples
2.2. Laboratory Processing of Amasi
2.3. Total Phenolic Content (TPC)
2.4. Total Flavonoid Content (TFC)
2.5. ABTS Assay (2,2-Azinobis (3-Ethyl-Benzothiazone-6-Sulphonic Acid))
2.6. DPPH (2,2-Diphenyl-1-Picrylhydrazyl)
2.7. Untargeted Phenolic Compounds Determination with Ultra-High-Performance Liquid Chromatography (UHPLC)/Quadrupole-Time of Flight Mass Spectrometry (QTOF-MS)
2.8. Chemical Compositions
2.9. Amino Acid Composition
2.10. Mineral Composition
2.11. Fatty Acid
2.12. Statistical Analysis
3. Results and Discussion
3.1. Chemical Composition
3.2. Amino Acid
3.3. Total Phenolic Content, Total Flavonoid Content, and Antioxidant Assay
3.4. Untargeted Phenolic Compounds
3.5. Mineral Compositions
3.6. Fatty Acids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jatmiko, Y.D.; Howarth, G.S.; Barton, M.D. Naturally fermented milk and its therapeutic potential in the treatment of inflammatory intestinal disorders. AIP Conf. Proc. 2018, 2019, 060009. [Google Scholar]
- Gran, H.M.; Gadaga, H.T.; Narvhus, J.A. Utilization of various starter cultures in the production of amasi, a Zimbabwean naturally fermented raw milk product. Int. J. Food Microbiol. 2003, 88, 19–28. [Google Scholar] [CrossRef]
- Moonga, H.B. Product Optimization of Zambian Traditionally Fermented Milk—Mabisi. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2019. [Google Scholar]
- Maleke, M.; Adefisoye, M.; Doorsamy, W.; Adebo, O.A. Processing, nutritional composition and microbiology of amasi: A Southern African fermented milk product. Sci. Afr. 2021, 12, e00795. [Google Scholar] [CrossRef]
- Agyei, D.; Owusu, K.J.; Akabanda, F.; Akomea, F.S. Indigenous African fermented dairy products: Processing technology, microbiology and health benefits. Crit. Rev. Food Sci. Nutr. 2019, 60, 991–1006. [Google Scholar] [CrossRef]
- Todorov, S.D.; Nyati, H.; Meincken, M.; Dicks, L.M.T. Partial characterization of bacteriocin AMA-K, produced by Lactobacillus plantarum AMA-K isolated from naturally fermented milk from Zimbabwe. Food Control 2007, 18, 656–664. [Google Scholar] [CrossRef]
- Kayitesi, E.; Behera, S.K.; Panda, S.K.; Dlamini, B.; Mulaba-Bafubiandi, A.F. Amasi and Mageu Expedition from Ethnic Southern African Foods to Cosmopolitan Markets, Fermented Food—Part II: Technological Interventions; CRC Press: New York, NY, USA, 2017; pp. 385–388. [Google Scholar]
- Ebringer, L.; Ferenčík, M.; Krajčovič, J. Beneficial health effects of milk and fermented dairy products. Folia Microbiol. 2008, 53, 378–394. [Google Scholar] [CrossRef]
- Moonga, H.B.; Schoustra, S.E.; Linnemann, A.; Kuntashula, E.; Shindano, J.; Smid, E.J. The art of mabisi production: Traditional fermented milk. PLoS ONE 2019, 14, e0213541. [Google Scholar] [CrossRef]
- Maleke, M.S.; Doorsamy, W.; Abrahams, A.M.; Adefisoye, M.A.; Masenya, K.; Adebo, O.A. Influence of fermentation conditions (temperature and time) on the physicochemical properties and bacteria microbiota of amasi. Fermentation 2022, 8, 57. [Google Scholar] [CrossRef]
- Oyedeji, A.B.; Mellem, J.J.; Ijabadeniyi, O.A. Improvement of some quality attributes of soymilk through optimization of selected soybean sprouting parameters using response surface methodology. CyTA—J. Food 2018, 16, 230–237. [Google Scholar] [CrossRef]
- Amin, I.; Norazaidah, Y.; Hainida, K.E. Antioxidant activity and phenolic content of raw and blanched Amaranthus species. Food Chem. 2006, 94, 47–52. [Google Scholar] [CrossRef]
- Ar-Farsi, M.A.; Lee, C.Y. Optimization of phenolics and dietary fibre extraction from date seeds. J. Food Sci. Technol. 2013, 108, 977–985. [Google Scholar]
- Awika, J.M.; Rooney, L.W.; Wu, X.; Prior, R.L.; Cisneros-Zevallos, L. Screening methods to measure antioxidant activity of sorghum (Sorghum bicolor) and sorghum products. J. Agric. Food Chem. 2003, 51, 6657–6662. [Google Scholar] [CrossRef]
- Magalhaes, S.C.Q.; Taveira, M.; Cabrita, A.R.J.; Fonseca, A.J.M.; Valentao, P.; Andrade, P.B. European marketable grain legume seeds: Further insight into phenolic compounds profiles. Food Chem. 2017, 215, 177–184. [Google Scholar] [CrossRef]
- Association of Analytical Communities (AOAC). Official Methods of Analysis of AOAC International, 18th ed.; AOAC: Washington, DC, USA, 2010. [Google Scholar]
- Adebiyi, J.A.; Obadina, O.A.; Adebo, O.A.; Kayitesi, E. Comparison of nutritional quality and sensory acceptability of biscuits obtained from native, fermented and malted pearl millet (Pennisetum glaucum) flour. Food Chem. 2017, 232, 210–217. [Google Scholar] [CrossRef]
- Moreno-Fernández, J.; Díaz-Castro, J.; Alférez, M.J.; Hijano, S.; Nestares, T.; López-Aliaga, I. Production and chemical composition of two dehydrated fermented dairy products based on cow or goat milk. J. Dairy Res. 2016, 83, 81–88. [Google Scholar] [CrossRef]
- Chileshe, J.; van den Heuvel, J.; Handema, R.; Zwaan, B.J.; Talsma, E.F.; Schoustra, S. Nutritional composition and microbial communities of two non-alcoholic traditional fermented beverages from Zambia: A study of mabisi and munkoyo. Nutrients 2020, 12, 1628. [Google Scholar] [CrossRef]
- Okeke, S.K.; Abullahi, O.I.; Makun, H.A.; Okeke, U.K. Physico-chemical and nutritional qualities of dairy cattle products. Glob. J. Life Sci. Biol. Res. 2016, 2, 8–13. [Google Scholar]
- Obi, C.N.; Ikenebomeh, M.J. Studies on the microbiology and nutritional qualities of a Nigerian fermented milk product (nono). Int. J. Dairy Sci. 2007, 2, 95–99. [Google Scholar]
- Sarkiyayi, S.; Shehu, M. Effects of boiling and fermentation on the nutrient composition of cow milk in Kaduna Metropolis. Res. J. Chem. Sci. 2011, 2231, 606X. [Google Scholar]
- Barłowska, J.; Szwajkowska, M.; Litwi, N.Z.; Król, J. Nutritional value and technological suitability of milk from various animal species used for dairy production. Comp. Rev. Food Sci. Food Saf. 2011, 10, 291–302. [Google Scholar] [CrossRef]
- Fagbemigun, O.; Rösch, N.; Sung, C.G. Nutritional and sensory qualities of indigenous and starter culture fermented milk from Nigeria. Int. J. Sci. Technoledge 2021, 9. [Google Scholar] [CrossRef]
- Sanni, A.I.; Lönner, C. Identification of yeasts isolated from Nigerian traditional alcoholic beverages. Food Microbiol. 1993, 10, 517–523. [Google Scholar] [CrossRef]
- Vieira, C.P.; Álvares, T.S.; Gomes, L.S.; Torres, A.G.; Paschoalin, V.M.F.; Conte-Junior, C.A. Kefir grains change fatty acid profile of milk during fermentation and storage. PLoS ONE 2015, 10, e0139910. [Google Scholar]
- Hou, Y.; Yin, Y.; Wu, G. Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp. Biol. Med. 2015, 240, 997–1007. [Google Scholar] [CrossRef]
- Akabanda, F.; Kwarteng, J.O.; Deborah, K.T.; Parkouda, C.; Jespersen, L. The use of lactic acid bacteria starter culture in the production of nunu, a spontaneously fermented milk product in Ghana. Int. J. Food Sci. 2014, 2014, 721067. [Google Scholar] [CrossRef]
- Kakimov, A.; Kakimova, Z.; Mirasheva, G.; Bepeyeva, A.; Toleubekova, S.; Jumazhanova, M.; Zhumadilova, G.; Yessimbekov, Z. Amino acid composition of sour-milk drink with encapsulated probiotics. Annu. Res. Rev. Biol. 2017, 1–7. [Google Scholar] [CrossRef]
- Duan, Y.; Li, F.; Li, Y.; Tang, Y.; Kong, X.; Feng, Z.; Anthony, T.G.; Watford, M.; Hou, Y.; Wu, G. The role of leucine and its metabolites in protein and energy metabolism. Amino Acids 2016, 48, 41–51. [Google Scholar] [CrossRef]
- Sadat, L.; Cakir-Kiefer, C.; Negue, M.N.; Gaillard, J.; Girardet, J.M.; Miclo, M. Isolation and identification of antioxidant peptides from bovine α-lactalbumin. Int. Dairy J. 2011, 21, 214–221. [Google Scholar] [CrossRef]
- Taskin, B.; Bagdathoglu, N. Influence of conventional fermentation on antioxidant activity and phenolic contents of two common dairy products: Yogurt and kefir. Turk. J. Agric.—Food Sci. Technol. 2020, 8, 1277–1282. [Google Scholar]
- Khan, I.T.; Nadeem, M.; Imran, M.; Khalique, A. Impact of post fermentation cooling patterns on fatty acid profile, lipid oxidation and antioxidant features of cow and buffalo milk set yoghurt. Lipids Health Dis. 2020, 19, 1–12. [Google Scholar] [CrossRef]
- Yirmibeşoğlu, S.S.S.; Oztürk, B.E.T. Comparing microbiological profiles, bioactivities, and physicochemical and sensory properties of donkey milk kefir and cow milk kefir. Turk. J. Vet. Anim. Sci. 2020, 44, 774–781. [Google Scholar] [CrossRef]
- Songisepp, E.; Kulisaar, T.; Hutt, P.; Elias, P.; Brilene, T.; Zilmer, M.; Mikelsaar, M. A new probiotic cheese with antioxidative and antimicrobial activity. J. Dairy Sci. 2004, 87, 17–23. [Google Scholar] [CrossRef]
- Adebo, O.A.; Medina-Meza, I.E. Impact of fermentation on the phenolic compounds and antioxidant activity of whole cereal grains: A mini review. Molecules 2020, 25, 927. [Google Scholar] [CrossRef] [PubMed]
- Saharan, K.; Khetarpaul, N.; Bishnoi, S. Antinutrients and protein digestibility of fababean and ricebean as affected by soaking, dehulling and germination. J. Food Sci. Technol. 2002, 39, 418–422. [Google Scholar]
- Adebo, O.A.; Kayitesi, E.; Tugizimana, F.; Njobeh, P.B. Differential metabolic signatures in naturally and lactic acid bacteria (LAB) fermented ting (a Southern African food) with different tannin content, as revealed by gas chromatography mass spectrometry (GC-MS) based metabolomics. Food Res. Int. 2019, 121, 326–335. [Google Scholar] [CrossRef]
- Cissé, H.; Muandze-Nzambe, J.U.; Somda, N.S.; Sawadogo, A.; Drabo, S.M.; Tapsoba, F.; Zongo, C.; Traoré, Y.; Savadogo, A. Assessment of safety and quality of fermented milk of camels, cows, and goats sold and consumed in five localities of Burkina Faso. Vet. World 2019, 12, 295. [Google Scholar] [CrossRef]
- Wang, H.; Wang, C.; Wang, M.; Guo, M. Chemical, physiochemical, and microstructural properties, and probiotic survivability of fermented goat milk using polymerized whey protein and starter culture Kefir Mild 01. J. Food Sci. 2017, 82, 2650–2658. [Google Scholar] [CrossRef]
- FAO; WHO. Limit Test for Heavy Metals in Food Additive Specifications. Explanatory Note: Joint FAO/WHO Expert Committee on Food Additives, 59th Meeting; The Food and Agriculture Organization (FAO): Rome, Italy, 2002. [Google Scholar]
- Elbagermi, M.A.; Edwards, H.G.M.; Alajtal, A.I. Monitoring of heavy metal content in fruits & vegetables collected from production and market sites in the Misurata area of Libya. Int. Sch. Res. Netw. 2012, 2012, 827645. [Google Scholar]
- Burger, L. Amasi’s sweet success: Processing. Dairy Mail 2010, 17, 90–95. [Google Scholar]
- Manzo, N.; Pizzolongo, F.; Montefusco, I.; Aponte, M.; Blaiotta, G.; Romano, R. The effects of probiotics and prebiotics on the fatty acid profile and conjugated linoleic acid content of fermented cow milk. Int. J. Food Sci. Nutr. 2015, 66, 254–259. [Google Scholar] [CrossRef] [Green Version]
- Sumarmono, J.; Sulistyowati, M. Fatty acids profiles of fresh milk, yogurt and concentrated yogurt from peranakan etawah goat milk. Proc. Food Sci. 2015, 3, 216–222. [Google Scholar] [CrossRef]
- Şenel, E.; Atamer, M.; Gürsoy, A.; Öztekin, F.S. Changes in some properties of strained (Süzme) goat’s yoghurt during storage. Small Rumin. Res. 2011, 99, 171–177. [Google Scholar] [CrossRef]
Sample | Moisture % | Ash % | Fat % |
---|---|---|---|
RM | 2.24 ± 0 a | 4.32 ± 0.01 b | 8.00 ± 1.41 b |
OP25 | 4.10 ± 0 c | 5.35 ± 0.03 c | 6.50 ± 0.71 b |
OP32 | 2.27 ± 0.02 a | 4.00 ± 0 a | 2.50 ± 0.71 a |
SC25 | 3.37 ± 0.04 b | 5.99 ± 0.01 e | 8.00 ± 0 b |
SC32 | 5.50 ± 0 d | 5.69 ± 0.03 d | 13.00 ± 1.41 c |
Amino Acid (g/100 g) | RM | OP25 | OP32 | SC25 | SC32 |
---|---|---|---|---|---|
Essential | |||||
Histidine | 0.24 ± 0.08 b | 0.39 ± 0.04 c | 0.67 ± 0.09 d | 0.28 ± 0.05 b | 0.16 ± 0.02 a |
Isoleucine | 1.37 ± 0.12 b | 1.12 ± 0.02 a | 1.59 ± 0.06 d | 1.42 ± 0.09 c | 1.43 ± 0.11 c |
Leucine | 2.14 ± 0.14 b | 1.86 ± 0.09 a | 2.49 ± 0.03 d | 2.23 ± 0.06 c | 2.26 ± 0.11 c |
Lysine | 2.12 ± 0.08 c | 1.78 ± 0.05 a | 2.50 ± 0.07 e | 2.04 ± 0.02 b | 2.31 ± 0.11 d |
Methionine | 0.40 ± 0.03 a | 0.49 ± 0.08 b | 0.59 ± 0.04 c | 0.56 ± 0.05 c | 0.47 ± 0.08 b |
Phenylalanine | 1.12 ± 0.11 b | 0.92 ± 0.06 a | 1.34 ± 0.12 d | 1.16 ± 0.04 c | 1.19 ± 0.08 c |
Threonine | 1.15 ± 0.08 b | 1.02 ± 0.05 a | 1.43 ± 0.11 d | 1.24 ± 0.07 c | 1.23 ± 0.10 c |
Valine | 1.64 ± 0.06 b | 1.36 ± 0.03 a | 1.95 ± 0.11 d | 1.73 ± 0.04 c | 1.71 ± 0.09 c |
Non-essential | |||||
Alanine | 0.76 ± 0.03 a | 0.79 ± 0.06 a | 0.99 ± 0.08 c | 0.85 ± 0.12 b | 0.82 ± 0.07 b |
Arginine | 1.10 ± 0.02 b | 0.96 ± 0.05 a | 1.40 ± 0.01 d | 1.19 ± 0.04 c | 1.17 ± 0.08 c |
Aspartic acid | 1.91 ± 0.05 b | 1.72 ± 0.03 a | 2.43 ± 0.10 d | 2.03 ± 0.06 c | 2.03 ± 0.04 c |
Glutamic acid | 5.12 ± 0.01 b | 4.46 ± 0.04 a | 6.30 ± 0.02 e | 5.58 ± 0.01 d | 5.35 ± 0.07 c |
Glycine | 0.52 ± 0.04 b | 0.47 ± 0.08 a | 0.66 ± 0.05 d | 0.56 ± 0.10 c | 0.53 ± 0.06 b |
HO-Proline | ND | ND | ND | ND | 0.01 ± 0 |
Proline | 2.03 ± 0.04 b | 1.72 ± 0.10 a | 2.58 ± 0.07 e | 2.22 ± 0.09 d | 2.09 ± 0.11 c |
Serine | 1.36 ± 0.04 b | 1.25 ± 0.06 a | 1.78 ± 0.10 e | 1.56 ± 0.03 d | 1.49 ± 0.08 c |
Tyrosine | 0.69 ± 0.06 d | 0.31 ± 0.02 a | 0.42 ± 0.10 b | 0.63 ± 0.04 c | 0.71 ± 0.07 e |
Sample Concentration µg/g | |||||||||
---|---|---|---|---|---|---|---|---|---|
Rt (min) | m/z | Compound Name | MF | Polyphenol Class | RM | OP25 | OP32 | SC25 | SC32 |
6.62 | 205.06 | Scoparone | C11H10O4 | Coumarins | 287.71 ± 0.11 c | 212.64 ± 0.13 b | 89.89 ± 0.09 a | 319.52 ± 0.11 d | 316.83 ± 0.08 d |
7.60 | 353.10 | Chlorogenic acid | C16H18O9 | Quinic acids | 0.50 ± 0.06 a | ND | 0.67 ± 0.08 a | ND | 1.32 ± 0.08 b |
8.20 | 357.13 | Gardenin B | C19H18O7 | 8-O-methylated flavonoids | 145.23 ± 0.12 d | 0.4 ± 0.08 a | ND | 86.34 ± 0.10 b | 129.31 ± 0.16 c |
8.78 | 263.17 | Subaphylline | C14H20N2O3 | Hydroxycinnamic acids | ND | 70.78 ± 0.10 c | 56.28 ± 0.09 b | 12.53 ± 0.11 a | 12.01 ± 0.13 a |
Minerals (mg/kg) | RM | OP25 | OP32 | SC32 | SC25 |
---|---|---|---|---|---|
Ca | 74.19 ± 2.07 a | 71.88 ± 0.38 a | 86.67 ± 1.70 c | 82.17 ± 2.66 b | 82.12 ± 1.50 b |
Cu | 0.01 ± 0 a | 0.01 ± 0 a | 0.01 ± 0 a | 0.01 ± 0 a | 0.01 ± 0 a |
Fe | 0.04 ± 0.02 ab | 0.04 ± 0.01 ab | 0.05 ± 0.02 b | 0.02 ± 0 a | 0.02 ± 0 ab |
K | 115.07 ± 1.71 b | 110.18 ± 1.46 a | 134.46 ± 1.74 d | 130.39 ± 1.72 c | 129.56 ± 0.66 c |
P | 61.96 ± 0.81 a | 61.17 ± 0.84 a | 74.35 ± 0.90 c | 69.86 ± 0.45 b | 70.74 ± 0.35 b |
Mg | 8.10 ± 0.16 b | 7.65 ± 0.01 a | 9.33 ± 0.15 d | 9.05 ± 0.10 c | 9.15 ± 0.02 cd |
Mn | ND | ND | ND | 0.01 ± 0 a | 0.01 ± 0 a |
Na | 28.57 ± 0.52 b | 27.27 ± 0.39 a | 33.57 ± 0.36 c | 37.70 ± 0.33 d | 38.09 ± 0.18 d |
Se | ND | ND | 0.02 ± 0.01 a | 0.01 ± 0 a | 0.02 ± 0.01 a |
Zn | 0.18 ± 0.01 a | 0.19 ± 0.02 a | 0.20 ± 0 a | 0.20 ± 0 a | 0.20 ± 0.01 a |
Fatty Acids (mg/g) | RM | OP25 | OP32 | SC25 | SC32 |
---|---|---|---|---|---|
C6 | 0.82 ± 0.07 c | 0.58 ± 0.02 ab | 0.53 ± 0.01 ab | 0.60 ± 0 b | 0.50 ± 0.05 a |
C8 | 0.39 ± 0.04 c | 0.28 ± 0 ab | 0.27 ± 0.01 ab | 0.30 ± 0 b | 0.25 ± 0.01 a |
C10 | 0.78 ± 0.07 c | 0.62 ± 0 ab | 0.55 ± 0.01 a | 0.69 ± 0.02 b | 0.58 ± 0 a |
C12 | 0.74 ± 0.07 b | 0.59 ± 0.05 a | 0.52 ± 0.09 a | 0.68 ± 0.01 b | 0.58 ± 0 a |
C13 | 0.03 ± 0 c | 0.02 ± 0 b | 0.02 ± 0 a | 0.04 ± 0 d | 0.02 ± 0 b |
C14 | 3.68 ± 0.31 d | 2.9 ± 0.02 c | 2.48 ± 0.03 b | 3.03 ± 0.05 c | 1.80 ± 0.01 a |
C14: 1 | 0.32 ± 0.03 d | 0.21 ± 0 b | 0.20 ± 0 b | 0.26 ± 0 c | 0.15 ± 0 a |
C15 | 0.40 ± 0.03 c | 0.35 ± 0 b | 0.25 ± 0.01 a | 0.42 ± 0.01 c | 0.26 ± 0 a |
C16 | 10.48 ± 0.87 d | 7.48 ± 0.08 bc | 7.24 ± 0.07 b | 8.47 ± 0.13 c | 5.30 ± 0.06 a |
C16: 1 | 0.52 ± 0.03 e | 0.24 ± 0 a | 0.35 ± 0 c | 0.45 ± 0.01 d | 0.27 ± 0 b |
C18 | 5.65 ± 0.46 e | 4.66 ± 0.06 d | 3.69 ± 0.04 c | 3.13 ± 0.04 b | 1.95 ± 0.01 a |
C18: 1 | 4.25 ± 0.09 d | 3.93 ± 0.11 c | 1.98 ± 0.01 b | 0.21 ± 0.01 a | 0.08 ± 0 a |
C18: 2 (c) | 0.72 ± 0.04 c | 0.26 ± 0 a | 0.49 ± 0 b | 0.47 ± 0.01 b | 0.29 ± 0 a |
C20: 1 | 0.11 ± 0.01 c | 0.13 ± 0 d | 0.04 ± 0 b | ND | ND |
C20: 3n6 | 0.04 ± 0 d | 0.02 ± 0 ab | 0.03 ± 0 bc | 0.03 ± 0 c | 0.02 ± 0 a |
C20: 4n6 | 0.05 ± 0 c | 0.02 ± 0 a | 0.03 ± 0 a | 0.06 ± 0 d | 0.04 ± 0 b |
C20 5n3 | 0.02 ± 0 b | 0.02 ± 0 c | 0.02 ± 0 c | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleke, M.S.; Adebo, O.A. Nutritional Composition and Health-Promoting Properties of Amasi: A South African Fermented Milk Product. Fermentation 2022, 8, 493. https://doi.org/10.3390/fermentation8100493
Maleke MS, Adebo OA. Nutritional Composition and Health-Promoting Properties of Amasi: A South African Fermented Milk Product. Fermentation. 2022; 8(10):493. https://doi.org/10.3390/fermentation8100493
Chicago/Turabian StyleMaleke, Mpho Sebabiki, and Oluwafemi Ayodeji Adebo. 2022. "Nutritional Composition and Health-Promoting Properties of Amasi: A South African Fermented Milk Product" Fermentation 8, no. 10: 493. https://doi.org/10.3390/fermentation8100493
APA StyleMaleke, M. S., & Adebo, O. A. (2022). Nutritional Composition and Health-Promoting Properties of Amasi: A South African Fermented Milk Product. Fermentation, 8(10), 493. https://doi.org/10.3390/fermentation8100493