Microbiological Characterization of Greek Galotyri Cheese PDO Products Relative to Whether They Are Marketed Fresh or Ripened
Abstract
:1. Introduction
2. Materials and Methods
2.1. Commercial Galotyri PDO Cheese Samples
2.2. Cheese Analyses
2.3. Isolation and Biochemical Characterization of the Cheese LAB Biota
2.4. Statistical Analyses
3. Results
3.1. Differences in the Preservation Potential and Retail Shelf Life between the Two Galotyri PDO Cheese Brand Products Relating to Ripening
3.2. Microbiological Attributes and pH Values of Retail Galotyri PDO Cheese Samples
3.3. Basic Phenotypic Characterization and Batch-Dependent Distribution of the Galotyri Cheese Isolates
3.4. Biochemical Identification and Brand-Dependent or Batch-Dependent Distribution of the LAB Species Identified in the Retail Galotyri PDO Cheese Samples
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dias, C.; Mendes, L. Protected Designation of Origin (PDO), Protected Geographical Indication (PGI) and Traditional Speciality Guaranteed (TSG): A bibliometric analysis. Food Res. Int. 2018, 103, 492–508. [Google Scholar] [CrossRef] [PubMed]
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. Microbiological characteristics of Greek traditional cheeses. Small Rum. Res. 2011, 101, 17–32. [Google Scholar] [CrossRef]
- Pirisi, A.; Comunian, R.; Urgeghe, P.P.; Scintu, M.F. Sheep’s and goat’s dairy products in Italy: Technological, chemical, microbiological, and sensory aspects. Small Rum. Res. 2011, 101, 102–112. [Google Scholar] [CrossRef]
- Montel, M.C.; Buchin, S.; Mallet, A.; Delbés-Paus, C.; Vuitton, D.A.; Desmasures, N.; Berthier, F. Traditional cheeses: Rich and diverse microbiota with associated benefits. Int. J. Food Microbiol. 2014, 177, 136–154. [Google Scholar] [CrossRef]
- Teneva-Angelova, T.; Balabanova, T.; Boyanova, P.; Beshkova, D. Traditional Balkan fermented milk products. Eng. Life Sci. 2018, 18, 807–819. [Google Scholar] [CrossRef]
- Guinee, T.P.; Pudja, P.D.; Farkye, N.Y. Fresh acid-curd cheese varieties. In Cheese: Chemistry, Physics and Microbiology (Major Cheese Groups), 1st ed.; Fox, P.F., Ed.; Springer: Boston, MA, USA, 1993; Volume 2, pp. 363–419. [Google Scholar]
- Salameh, C.; Banon, S.; Hosri, C.; Scher, J. An overview of recent studies on the main traditional fermented milks and white cheeses in the Mediterranean region. Food Rev. Int. 2016, 32, 256–279. [Google Scholar] [CrossRef]
- Anonymous. Cheeses of protected denomination of origin. In Hellenic Code of Food and Beverages, 3rd ed.; Ministry of Finance, National Publishing Office: Athens, Greece, 2014; pp. 14–59. [Google Scholar]
- Hatzikamari, M.; Litopoulou-Tzanetaki, E.; Tzanetakis, N. Microbiological characteristics of Anevato: A traditional Greek cheese. J. Appl. Microbiol. 1999, 87, 595–601. [Google Scholar] [CrossRef]
- Asteri, I.A.; Robertson, N.; Kagkli, D.M.; Andrews, P.; Nychas, G.; Coolbear, T.; Holland, R.; Crow, V.; Tsakalidou, E. Technological and flavor potential of cultures isolated from traditional Greek cheeses–A pool of novel species and starters. Int. Dairy J. 2009, 19, 595–604. [Google Scholar] [CrossRef]
- Litopoulou-Tzanetaki, E.; Tzanetakis, N. The microfloras of traditional Greek cheeses. Microbiol. Spectr. 2014, 2, CM-0009-2012. [Google Scholar] [CrossRef]
- Zoumpopoulou, G.; Tzouvanou, A.; Mavrogonatou, E.; Alexandraki, V.; Georgalaki, M.; Anastasiou, R.; Papadelli, M.; Manolopoulou, E.; Kazou, M.; Kletsas, D.; et al. Probiotic features of lactic acid bacteria isolated from a diverse pool of traditional Greek dairy products regarding specific strain-host interactions. Prob. Antimicrob. Prot. 2018, 10, 313–322. [Google Scholar] [CrossRef]
- Anonymous. Recognition of a Protected Denomination of Origin (P.D.O.) for Galotyri cheese. In Newspaper of the Government of the Republic of Greece; Ministry of Finance, National Publishing Office: Athens, Greece, 1994; pp. 51–62. [Google Scholar]
- Samelis, J.; Kakouri, A. Microbial and safety qualities of PDO Galotyri cheese manufactured at the industrial or artisan scale in Epirus, Greece. Ital. J. Food Sci. 2007, 19, 91–99. [Google Scholar]
- Samelis, J.; Kakouri, A. Major technological differences between an industrial-type and five artisan-type Greek PDO Galotyri market cheeses as revealed by great variations in their lactic acid microbiota. AIMS Agric. Food 2019, 4, 685–710. [Google Scholar] [CrossRef]
- Michailidou, S.; Pavlou, E.; Pasentsis, K.; Rhoades, J.; Likotrafiti, E.; Agririou, A. Microbial profiles of Greek PDO cheeses assessed with amplicon metabarcoding. Food Microbiol. 2021, 99, 103836. [Google Scholar] [CrossRef]
- Rhoades, J.; Anastasiou, I.; Michailidou, S.; Koinidis, A.; Doulgerakis, C.; Alexa, E.A.; Alvarez-Ordonez, A.; Argiriou, A.; Likotrafiti, E. Microbiological analysis of Greek Protected Designation of Origin cheeses and characterization of the isolated lactic acid bacteria. Int. Dairy J. 2021, 123, 105183. [Google Scholar] [CrossRef]
- Samelis, J.; Doulgeraki, A.I.; Bikouli, V.; Pappas, D.; Kakouri, A. Microbiological and metagenomic characterization of a retail delicatessen Galotyri-like fresh acid-curd cheese product. Fermentation 2021, 7, 67. [Google Scholar] [CrossRef]
- Nacef, M.; Lelièvre-Desmas, M.; Drider, D.; Flahaut, C.; Chollet, S. Artisanal and industrial Maroilles cheeses: Are they different? Comparison using sensory, physico-chemical and microbiological approaches. Int. Dairy J. 2019, 89, 42–52. [Google Scholar] [CrossRef]
- Mc Sweeney, P.L.H. Biochemistry of cheese ripening. Int. J. Dairy Technol. 2004, 57, 127–144. [Google Scholar] [CrossRef]
- Beresford, T.P.; Fitzsimons, N.A.; Brennan, N.L.; Cogan, T.M. Recent advances in cheese microbiology. Int. Dairy. J. 2001, 11, 259–274. [Google Scholar] [CrossRef]
- Rogga, K.J.; Samelis, J.; Kakouri, A.; Katsiari, M.C.; Savvaidis, I.N.; Kontominas, M.G. Survival of Listeria monocytogenes in Galotyri, a traditional Greek soft acid-curd cheese, stored aerobically at 4 and 12 °C. Int. Dairy J. 2005, 15, 59–67. [Google Scholar] [CrossRef]
- Hammes, W.P.; Hertel, C. Genus I Lactobacillus Beijernick 1901, 212AL. In Bergey’s Manual of Systematic Bacteriology, the Firmicutes, 2nd ed.; Whitman, W.B., Ed.; Springer: New York, NY, USA, 2009; Volume 3, pp. 465–511. [Google Scholar]
- Holzapfel, W.H.; Franz, C.M.A.P.; Ludwig, W.; Dicks, L.M.T. Genus III Pediococcus Claussen 1903, 68AL. In Bergey’s Manual of Systematic Bacteriology, the Firmicutes, 2nd ed.; Whitman, W.B., Ed.; Springer: New York, NY, USA, 2009; Volume 3, pp. 513–520. [Google Scholar]
- Holzapfel, W.H.; Bjorkroth, J.A.; Dicks, L.M.T. Genus I Leuconostoc van Tieghem 1878, 198AL. In Bergey’s Manual of Systematic Bacteriology, the Firmicutes, 2nd ed.; Whitman, W.B., Ed.; Springer: New York, NY, USA, 2009; Volume 3, pp. 624–635. [Google Scholar]
- Whiley, R.A.; Hardie, J.M. Genus I Streptococcus Rosenbach 1884, 22AL. In Bergey’s Manual of Systematic Bacteriology, the Firmicutes, 2nd ed.; Whitman, W.B., Ed.; Springer: New York, NY, USA, 2009; Volume 3, pp. 655–711. [Google Scholar]
- Teuber, M. Genus II Lactococcus Schleifer, Kraus, Dvorak, Kilpper-Bälz, Collins, Fischer 1986, 354VP. In Bergey’s Manual of Systematic Bacteriology, the Firmicutes, 2nd ed.; Whitman, W.B., Ed.; Springer: New York, NY, USA, 2009; Volume 3, pp. 711–722. [Google Scholar]
- Manero, A.; Blanch, A.R. Identification of Enterococcus spp. with a biochemical key. Appl. Environ. Microbiol. 1999, 65, 4425–4430. [Google Scholar] [CrossRef]
- Parapouli, M.; Delbés-Paus, C.; Kakouri, A.; Koukkou, A.-I.; Montel, M.C.; Samelis, J. Characterization of a wild, novel nisin A-producing Lactococcus strain with an L. lactis subsp. cremorisgenotype and an L. lactis subsp. lactis phenotype isolated from Greek raw milk. Appl. Environ. Microbiol. 2013, 79, 3476–3484. [Google Scholar] [CrossRef] [Green Version]
- Vandera, E.; Kakouri, A.; Koukkou, A.I.; Samelis, J. Major ecological shifts within the dominant nonstarter lactic acid bacteria in mature Greek Graviera cheese as affected by the starter culture type. Int. J. Food Microbiol. 2019, 290, 15–26. [Google Scholar] [CrossRef]
- Vandera, E.; Parapouli, M.; Kakouri, A.; Koukkou, A.I.; Hatziloukas, E.; Samelis, J. Structural enterocin gene profiles and mode of antilisterial activity in synthetic liquid media and skim milk of autochthonous Enterococcus spp. isolates from artisan Greek Graviera and Galotyri cheeses. Food Microbiol. 2020, 86, 103335. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.; Harris, H.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- European Commission. Commission Regulation (EC) No 2073/2005. Microbiological criteria for foodstuffs. November 15, 2005. Off. J. Eur. Union 2005, L338, 1–26. [Google Scholar]
- Torriani, S.; Felis, G.E.; Dellaglio, F. Differentiation of Lactobacillusplantarum, L. pentosus, and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primers. Appl. Environ. Microbiol. 2001, 67, 3450–3454. [Google Scholar] [CrossRef] [PubMed]
- Aryana, K.J.; Olson, D.W. A 100-year review: Yogurt and other cultured dairy products. J. Dairy Sci. 2017, 100, 9987–10013. [Google Scholar] [CrossRef]
- Maragkoudakis, P.A.; Miaris, C.; Rojez, P.; Manalis, N.; Magkanari, F.; Kalantzopulos, G.; Tsakalidou, E. Production of traditional Greek yogurt using Lactobacillus strains with probiotic potential as starter adjuncts. Int. Dairy J. 2006, 16, 52–60. [Google Scholar] [CrossRef]
- Ivanov, I.; Petrov, K.; Lozanov, V.; Hristov, I.; Wu, Z.; Liu, Z.; Petrova, P. Bioactive compounds produced by the accompanying microflora in Bulgarian yogurt. Processes 2021, 9, 114. [Google Scholar] [CrossRef]
- Tamine, A.Y.; Robinson, R.K. Microbiology of yoghurt starter cultures. In Yoghurt Science and Technology, 1st ed.; Tamine, A.Y., Robinson, R.K., Eds.; Pergamon Press: Oxford, UK, 1985; pp. 276–294. [Google Scholar]
- Xanthopoulos, V.; Hatzikamari, M.; Adamidis, T.; Tsakalidou, E.; Tzanetakis, N.; Litopoulou-Tzanetaki, E. Heterogeneity of Lactobacillus plantarum isolates from Feta cheese throughout ripening. J. Appl. Microbiol. 2000, 88, 1056–1064. [Google Scholar] [CrossRef]
- Manolopoulou, E.; Sarantinopoulos, P.; Zoidou, E.; Aktypis, A.; Moschopoulou, E.; Kandarakis, I.G.; Anifantakis, M.E. Evolution of microbial populations during traditional Feta cheese manufacture and ripening. Int. J. Food Microbiol. 2003, 82, 153–161. [Google Scholar] [CrossRef]
- Papadopoulou, O.S.; Argyri, A.A.; Varzakis, E.E.; Tassou, C.C.; Chorianopoulos, N.G. Greek functional Feta cheese: Enhancing quality and safety using a Lactobacillus plantarum strain with probiotic potential. Food Microbiol. 2018, 74, 21–33. [Google Scholar] [CrossRef]
- Tzora, A.; Nelli, A.; Voidarou, C.; Fthenakis, G.; Rozos, G.; Theodorides, G.; Bonos, E.; Skoufos, I. Microbiota “fingerprint” of Greek Feta cheese through ripening. Appl. Sci. 2021, 11, 5631. [Google Scholar] [CrossRef]
- Papadimitriou, K.; Anastasiou, R.; Georgalaki, M.; Bounenni, R.; Paximadaki, A.; Charmpi, C.; Alexandraki, V.; Kazou, M.; Tsakalidou, E. Comparison of the microbiome of artisanal homemade and industrial Feta cheese through amplicon sequencing and shortgun metagenomics. Microorganisms 2022, 10, 1073. [Google Scholar] [CrossRef]
- Spyrelli, E.D.; Stamatiou, A.; Tassou, C.C.; Nychas, G.J.E.; Doulgeraki, A.I. Microbiological and metagenomic analysis to assess the effect of container material on the microbiota of Feta cheese during ripening. Fermentation 2020, 6, 12. [Google Scholar] [CrossRef]
- De Ruyter, P.G.G.A.; Kuipers, O.P.; Meijer, W.C.; de Vos, W.M. Food-grade controlled lysis of Lactococcus lactis for accelerated cheese ripening. Nat. Biotechnol. 1997, 15, 976–979. [Google Scholar] [CrossRef]
- Lortal, S.; Chapot-Chartier, M.P. Role, mechanisms and control of lactic acid bacteria lysis in cheese. Int. Dairy J. 2005, 15, 857–871. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, L.; Qiao, N.; Xiao, Y.; Tian, F.; Zhao, J.; Zhang, H.; Chen, W.; Zhai, Q. Latilactobacilluscurvatus: A candidate probiotic with excellent fermentation properties and health benefits. Foods 2020, 9, 1366. [Google Scholar] [CrossRef]
- Tzanetakis, N.; Litopoulou-Tzanetaki, E.; Manolkidis, K. Microbiology of Kopanisti, a traditional Greek cheese. Food Microbiol. 1987, 4, 251–256. [Google Scholar] [CrossRef]
- Hemme, D.; Foucaud-Scheunemann, C. Leuconostoc, characteristics, use in dairy technology and prospects in functional foods. Int. Dairy J. 2004, 14, 467–494. [Google Scholar] [CrossRef]
- Leroy, F.; De Vuyst, L. Lactic acid bacteria as functional starter cultures for food fermentation industry. Trends Food Sci. Technol. 2004, 15, 67–78. [Google Scholar] [CrossRef]
- Sameli, N.; Skandamis, P.N.; Samelis, J. Application of Enterococcus faecium KE82, an enterocin A-B-P-producing strain, as an adjunct culture enhances inactivation of Listeria monocytogenes during traditional protected designation of origin Galotyri processing. J. Food Prot. 2021, 84, 87–98. [Google Scholar] [CrossRef] [PubMed]
- Henri-Dubernet, S.; Desmasures, N.; Guéguen, M. Diversity and dynamics of lactobacilli populations during ripening of RDO Camembert cheese. Can. J. Microbiol. 2008, 54, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Baruzzi, F.; Morea, M.; Matarante, A.; Cocconcelli, P.S. Changes in the Lactobacillus community during Ricotta forte cheese natural fermentation. J. Appl. Microbiol. 2000, 89, 807–814. [Google Scholar] [CrossRef]
- Jokovic, N.; Nikolic, M.; Begovic, J.; Jovcic, B.; Savic, D.; Topisirovic, L. A survey of the lactic acid bacteria isolated from Serbian artisanal dairy product kajmak. Int. J. Food Microbiol. 2008, 127, 305–311. [Google Scholar] [CrossRef]
- Uchida, K.; Hirata, M.; Motoshima, H.; Urashima, T.; Arai, I. Microbiota of ‘airag’,’tarag’and other kinds of fermented dairy products from nomad in Mongolia. Anim. Sci. J. 2007, 78, 650–658. [Google Scholar] [CrossRef]
- Yu, J.; Wang, W.H.; Menghe, B.L.G.; Jiri, M.T.; Wang, H.M.; Liu, W.J.; Bao, Q.H.; Lu, Q.; Zhang, J.C.; Wang, F. Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J. Dairy Sci. 2011, 94, 3229–3241. [Google Scholar] [CrossRef]
- Akhmetsadykova, S.; Baubekova, A.; Konuspayeva, G.; Konuspayeva, N.; Loiseau, G. Microflora identification of fresh and fermented camel milk from Kazakhstan. Emir. J. Food Agric. 2014, 26, 327–332. [Google Scholar] [CrossRef]
- Jin, Y.; Luo, B.; Cai, J.; Yang, B.; Zhang, Y.; Tian, F.; Ni, Y. Evaluation of indigenous lactic acid bacteria of raw mare milk from pastoral areas in Xinjiang, China, for potential use in probiotic fermented dairy products. J. Dairy Sci. 2021, 104, 5166–5184. [Google Scholar] [CrossRef]
- Nalepa, B.; Ciesielski, S.; Aljewicz, M. The microbiota of Edam cheeses determined by cultivation and high-throughput sequencing of the 16S rRNA amplicon. Appl. Sci. 2020, 10, 4063. [Google Scholar] [CrossRef]
- Cardinali, F.; Ferrocino, I.; Milanović, V.; Belleggia, L.; Corvaglia, M.R.; Garofalo, C.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Cocolin, L. Microbial communities and volatile profile of Queijo de Azeitão PDO cheese, a traditional Mediterranean thistle-curdled cheese from Portugal. Food Res. Int. 2021, 147, 110537. [Google Scholar] [CrossRef]
- Şengül, M. Microbiological characterization of Civil cheese, a traditional Turkish cheese: Microbiological quality, isolation and identification of its indigenous lactobacilli. World J. Microbiol. Biotechnol. 2006, 22, 613–618. [Google Scholar] [CrossRef]
- Dewan, S.; Tamang, J.P. Dominant lactic acid bacteria and their technological properties isolated from the Himalayan ethnic fermented milk products. Antonie Van Leeuwenhoek 2007, 92, 92–343. [Google Scholar] [CrossRef]
- Didienne, R.; Defargues, C.; Callon, C.; Meylheuc, T.; Hulin, S.; Montel, M.-C. Characteristics of microbial biofilm on wooden vats (‘gerles’) in PDO Salers cheese. Int. J. Food Microbiol. 2012, 156, 91–101. [Google Scholar] [CrossRef]
- Carpino, S.; Randazzo, C.L.; Pino, A.; Russo, N.; Rapisarda, T.; Belvedere, G.; Caggia, C. Influence of PDO Ragusano cheese biofilm microbiota on flavour compounds formation. Food Microbiol. 2017, 61, 126–135. [Google Scholar] [CrossRef]
- Ntougias, S.; Tsiamis, G.; Soultani, D.; Melidis, P. Dominance of rumen microorganisms during cheese whey acidification: Acidogenesis can be governed by a rare Selenomonaslacticifex-type fermentation. Appl. Microbiol. Biotechnol. 2015, 99, 9309–9318. [Google Scholar] [CrossRef]
- Verce, M.; De Vuyst, L.; Weckx, S. Shotgun metagenomics of a water kefir fermentation ecosystem reveals a novel Oenococcusspecies. Front. Microbiol. 2019, 10, 479. [Google Scholar] [CrossRef]
- Coton, M.; Berthier, F.; Coton, E. Rapid identification of the three major species of dairy obligate heterofermenters Lactobacillus brevis, Lactobacillus fermentum and Lactobacillus parabuchneri by species-specific duplex PCR. FEMS Microbiol. Lett. 2008, 284, 150–157. [Google Scholar] [CrossRef]
- Zhang, B.; Tan, Z.; Wang, Y.; Li, Z.; Jiao, Z.; Huang, Q. Dynamic changes of the microbial communities during the preparation of traditional Tibetan Qula cheese. Dairy Sci. Technol. 2015, 95, 167–180. [Google Scholar] [CrossRef]
- Agostini, C.; Eckert, C.; Vincenzi, A.; Machado, B.L.; Jordon, B.C.; Kipper, J.P.; Dullius, A.; Dullius, C.H.; Lehn, D.N.; Sperotto, R.A. Characterization of technological and probiotic properties of indigenous Lactobacillus spp. from south Brazil. 3 Biotech 2018, 8, 451. [Google Scholar] [CrossRef]
- Sánchez-Juanes, F.; Teixeira-Martín, V.; González-Buitrago, J.M.; Velázquez, E.; Flores-Félix, J.D. Identification of species and subspecies of lactic acid bacteria present in Spanish cheeses type “Torta” by MALDI-TOF MS and pheS gene analyses. Microorganisms 2020, 8, 301. [Google Scholar] [CrossRef] [PubMed]
- Zadeh, S.R.; Eskandari, M.H.; Shekarforoush, S.S.; Hosseini, A. Phenotypic and genotypic diversity of dominant lactic acid bacteria isolated from traditional yoghurts produced by tribes of Iran. Iran. J. Vet. Res. 2014, 15, 347. [Google Scholar]
- Yazdi, M.K.S.; Davoodabadi, A.; Zarin, H.R.K.; Ebrahimi, M.T.; Dallal, M.M.S. Characterisation and probiotic potential of lactic acid bacteria isolated from Iranian traditional yogurts. Ital. J. Anim. Sci. 2017, 16, 185–188. [Google Scholar] [CrossRef] [Green Version]
- El-Baradei, G.; Delacroix-Buchet, A.; Ogier, J.-C. Biodiversity of bacterial ecosystems in traditional Egyptian Domiati cheese. Appl. Environ. Microbiol. 2007, 73, 1248–1255. [Google Scholar] [CrossRef]
- Barouei, J.; Karbassi, A.; Ghoddusi, H.B.; Mortazavi, A.; Ramezani, R.; Moussavi, M. Impact of native Lactobacillus paracasei subsp. paracasei and Pediococcus spp. as adjunct cultures on sensory quality of Iranian white brined cheese. Int. J. Dairy Technol. 2011, 64, 526–535. [Google Scholar]
- Şengül, M.; Çakmakci, S. Characterization of natural isolates of lactic acid bacteria from Erzincan (Savak) Tulum cheese. Milchwiss.-Milk Sci. Int. 2003, 58, 510–513. [Google Scholar]
- Partovi, R.; Gandomi, H.; Basti, A.A.; Noori, N.; Borujeni, G.N.; Kargozari, M. Microbiological and chemical properties of Siahmazgi cheese, an Iranian artisanal cheese: Isolation and identification of dominant lactic acid bacteria. J. Food Process. Preserv. 2015, 39, 871–880. [Google Scholar] [CrossRef]
Cheese Brand | Cheese Batch | Production Date | Packaging Date | Sell-by Date | Ripening Duration (Days) | ShelfLife (Days) b | Cheese Age on Sell-by Date (Days) | Analysis Date | Cheese Age at Analysis (Days) |
---|---|---|---|---|---|---|---|---|---|
Brand-Z | Z-A | 31 December 2017 | 26 January 2018 | 20 April 2018 | 26 | 84 | 110 | 27 February 2018 | 58 |
Z-B | 16 January 2018 | 15 March 2018 | 31 May 2018 | 58 | 77 | 135 | 27 March 2018 | 70 | |
Brand-K | K-A | 24 February 2018 | ND | 10 March 2018 | None | 14 | 14 | 1 March 2018 | 5 |
K-B | 16 March 2018 | ND | 8 April 2018 | None | 23 | 23 | 27 March 2018 | 11 |
Microbial Group | Enumeration Agar Medium/ Incubation Conditions | Brand-Z (Ripened Cheese) | Brand-K (Fresh Cheese) | Brand-Z (n = 4) | Brand-K (n = 4) | ||
---|---|---|---|---|---|---|---|
Batch Z-A (n = 2) | Batch Z-B (n = 2) | Batch K-A (n = 2) | Batch K-B (n = 2) | Batch Z-A + Z-B | Batch K-A + K-B | ||
Total viable cheese biota counts | Milk Plate Count agar (MPCA)/37 °C; 48–72 h; aerobically | 8.27 ± 0.05 | 7.24 ± 0.12 | 9.29 ± 0.04 | 9.01 ± 0.07 | 7.75 ± 0.60 a | 9.15 ± 0.17 b |
Total mesophilic LAB | MRS agar/30 °C; 72 h; aerobically | 6.36 ± 0.08 | 5.95 ± 0.13 | 6.36 ± 0.08 | 6.53 ± 0.06 | 6.15 ± 0.25 a | 6.44 ± 0.11 a |
Total thermophilic LAB | MRS agar/45 °C; 48 h;anaerobically (in Gas-Pack jars) | 5.40 ± 0.05 | 4.90 ± 0.00 | 8.90 ± 0.25 | 8.50 ± 0.25 | 5.15 ± 0.35 a | 8.70 ± 0.30 b |
Total mesophilic dairy LAB (presumptive lactococci) | M17 agar/22 °C; 72 h; aerobically | 6.07 ± 0.19 | 7.05 ± 0.04 | 7.21 ± 0.04 | 6.54 ± 0.08 | 6.56 ± 0.58 a | 6.87 ± 0.39 a |
Total thermophilic dairy LAB (presumptive streptococci) | M17 agar/42 °C; 48 h; aerobically | 5.15 ± 0.11 | 6.74 ± 0.44 | 8.61 ± 0.02 | 8.30 ± 0.01 | 5.95 ± 1.12 a | 8.45 ± 0.18 b |
Enterococci | Slanetz and Bartley (SB) agar/37 °C; 48 h; aerobically | 3.23 ± 0.16 | 5.11 ± 0.04 | 2.87 ± 0.12 | <2.00 | 4.17 ± 1.09 b | 2.48 ± 0.67 a |
Enterococci plus kanamycin-resistant and aesculin-positive lactobacilli | Kanamycin Aesculin Azide (KAA) agar/37 °C; 48–72 h; aerobically | 3.26 ± 0.04 | 5.00 ± 0.13 | 5.23 ± 0.05 | 5.58 ± 0.06 | 4.13 ± 1.01 a | 5.40 ± 0.21 b |
Total staphylococci | Baird-Parker agar with egg yolk tellurite/37 °C; 48 h; aerobically | <2.00 | 3.46 ± 0.14 | 2.30 ± 0.42 | <2.00 | 2.73 ± 0.85 a | 2.15 ± 0.30 a |
Coagulase-positive staphylococci | Baird-Parker agar with RFP/ 37 °C; 18–24 h; aerobically | <2.00 | 2.93 ± 0.21 | <2.00 | <2.00 | 2.47 ± 0.55 b | <2.00 a |
Coliforms | Violet Red Bile (VRB) agar/37 °C; 24 h; double-layered | <1.00 | 1.30 ± 0.42 | <1.00 | <1.00 | 1.15 ± 0.30 b | <1.00 a |
Pseudomonad-like bacteria | Cephalothin-Fucidin-Cetrimide (CFC) agar; 25 °C; 48 h; aerobically | <2.00 | <2.00 | <2.00 | <2.00 | <2.00 a | <2.00 a |
Yeasts | Rose Bengal Chloramphenicol (RBC) agar/25 °C; 5 d; aerobically | 5.84 ± 0.16 | 6.27 ± 0.08 | 6.78 ± 0.11 | 6.18 ± 0.07 | 6.05 ± 0.27 a | 6.48 ± 0.35 a |
Cheese pH | 3.80 ± 0.08 | 4.02 ± 0.15 | 3.90 ± 0.08 | 4.08 ± 0.09 | 3.91 ± 0.16 a | 3.99 ± 0.12 a |
LAB Group | Basic Differentiating Characteristics | Cheese Batch | Brand-Z Isolates | Brand-K Isolates | Total Isolates | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MA | CO2 | NH3 | 15 °C | 45 °C | 6.5% | KAA | Z-A | Z-B | K-A | K-B | Z-A + Z-B | K-A + K-B | ||
Mesophilic lactobacilli | R | − | − | + | − | + | V | 4 | 0 | 9 | 13 | 4 (6.7) | 22 (32.8) | 26 (20.5) |
Thermophilic lactobacilli | R | − | − | − | + | − | − | 6 | 1 | 6 | 5 | 7 (11.6) | 11 (16.4) | 18 (14.2) |
Mesophilic cocci (lactococci, pediococci) | C/LC | − | V | + | − | (+)/+d | − | 0 | 1 | 1 | 0 | 1 (1.7) | 1 (1.5) | 2 (1.6) |
Thermophilic cocci (streptococci) | LC | − | − | − | + | − | − | 1 | 11 | 10 | 11 | 12 (20.0) | 21 (31.3) | 33 (26.0) |
Enterococci | C | − | + | + | + | ++ | ++ | 5 | 5 | 5 | 0 | 10 (16.7) | 5 (7.5) | 15 (11.8) |
Leuconostoc-like (gas-forming) bacteria | CB | + | − | + | - | +/(+) | − | 0 | 2 | 1 | 0 | 2 (3.3) | 1 (1.5) | 3 (2.3) |
Gas-forming lactobacilli | R | (+)/+d | V | + | − | − | − | 4 | 1 | 0 | 0 | 5 (8.3) | 0 (0.0) | 5 (3.9) |
Total LAB isolates | 20 | 21 | 32 | 29 | 41 (68.3) | 61 (91.0) | 102 (80.3) | |||||||
Non-LAB isolates (catalase-positive) | C | − | NT | NT | − | + | NT | 0 | 1 | 0 | 1 | 1 (1.7) | 1 (1.5) | 2 (1.6) |
Yeast isolates | Y | V | NT | + | + | NT | NT | 10 | 8 | 4 | 1 | 18 (30.0) | 5 (7.5) | 23 (18.1) |
Total isolates | 30 | 30 | 36 | 31 | 60 | 67 | 127 |
LAB Genus/Subgenus | Growth/Isolation Agar Medium | ||||||
---|---|---|---|---|---|---|---|
MPCA/ 37 °C | M17/ 22 °C | M17/ 42 °C | MRS/ 30 °C | MRS/ 45 °C | SB/ 37 °C | Total Isolates | |
Mesophilic lactobacilli | − | 8 | − | 8 | − | 10 | 26 |
Thermophilic lactobacilli | 5 | − | − | 1 | 12 | − | 18 |
Mesophilic cocci (lactococci, pediococci) | − | 1 | − | 1 | − | − | 2 |
Thermophilic cocci (streptococci) | 16 | 1 | 16 | − | − | − | 33 |
Enterococci | − | − | − | − | − | 15 | 15 |
Leuconostoc-like (gas-forming) bacteria | − | 1 | − | 2 | − | − | 3 |
Heterofermentative (gas-forming) lactobacilli | − | − | − | 5 | − | − | 5 |
Total LAB isolates | 21 | 11 | 16 | 17 | 12 | 25 | 102 |
Non-LAB isolates (catalase-positive cocci) | − | 2 | − | − | − | − | 2 |
Yeast isolates | − | 7 | 4 | 3 | 9 | − | 23 |
Total isolates | 21 | 20 | 20 | 20 | 21 | 25 | 127 |
Biochemical Test | LAB Group (Subgroups/Biotypes) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Mesophilic Lactobacilli | Gas-Forming Lactobacilli | Leuconostoc-Like Bacteria | Lactococcus | Pediococcus | ||||||
A1 | A2 | A3 | B1 | B2 | B3 | C1 | C2 | D1 | E1 | |
CO2 from glucose | − | − | − | + | + | (+)d | + | + | − | − |
ΝH3 from arginine | − | − | − | (+)/− | − | − | − | − | + | − |
Growth in: | ||||||||||
2% salt | + | + | + | + | + | + | + | + | + | + |
4% salt | + | + | + | 1/2 | − | (+)d | + | + | + | + |
6.5% salt | + | + | + | − | − | − | + | (+) | (+) | +d |
8.0% salt | + | 4/5 | − | − | − | − | − | − | − | − |
10.0% salt | 5/18 | − | − | − | − | − | − | − | − | − |
Slime | − | − | − | − | − | − | − | + | − | − |
Acetoin | − | 4/5 | − | − | − | − | − | − | − | − |
Acid from: | ||||||||||
Maltose | + | + | + | + | + | +d | + | + | + | (+) |
Mannitol | + | + | + | (+) | − | − | − | − | − | − |
Lactose | + | + | + | + | + | +d | + | + | + | + |
Ribose | + | + | + | + | + | + | 1/2 | + | + | − |
L-arabinose | 1/18 | − | − | + | + | + | 1/2 | - | − | − |
Xylose | − | − | − | + | + | − | + | + | − | − |
Raffinose | 1/18 | − | − | + | − | − | − | + | − | − |
Melibiose | + | − | − | + | − | − | 1/2 | + | − | − |
Sucrose | + | + | − | − | − | − | + | + | + | − |
Cellobiose | + | + | + | − | − | − | − | + | + | + |
Trehalose | + | + | − | − | − | − | + | + | + | + |
Galactose | + | + | + | + | + | + | + | + | + | + |
Sorbitol | 17/18 | + | − | (+) | − | − | − | + | − | − |
Melezitose | + | + | − | − | − | − | − | − | − | − |
Total isolates | 18 | 5 | 3 | 2 | 1 | 2 | 2 | 1 | 1 | 1 |
Biochemical Test | LAB Group (Subgroups/Biotypes) | ||||||
---|---|---|---|---|---|---|---|
Thermophilic Lactobacilli | Thermophilic Cocci (Streptococci) | Enterococci | |||||
F1 | F2 | F3 | G1 | G2 | H1 | H2 | |
CO2 from glucose | − | − | − | − | − | − | − |
ΝH3 from arginine | − | − | − | − | − | + | + |
Growth in: | |||||||
2% salt | +/+d | +d | − | + | + | + | + |
4% salt | − | − | − | 4/28 | 2/5 | + | + |
6.5% salt | − | − | − | − | − | + | + |
8.0% salt | − | − | − | − | − | 8/11 | + |
10.0% salt | − | − | − | − | − | − | − |
Slime from sucrose | − | − | − | − | − | − | − |
Acetoin from glucose | −/(+) | − | − | 5/28 | +/++ | (+) | − |
Acid from of: | |||||||
Maltose | − | + | + | 1/28 | 4/5 | + | + |
Mannitol | − | + | + | − | 4/5 | + | + |
Lactose | + | + | + | + | + | + | + |
Ribose | − | + | − | − | 3/5 | + | + |
L-arabinose | − | − | − | − | 3/5 | + | − |
Xylose | − | − | − | − | − | − | − |
Raffinose | − | − | + | − | − | − | − |
Melibiose | − | − | + | − | NT | + | + |
Sucrose | − | + | + | + | + | 9/11 | + |
Cellobiose | − | + | - | − | NT | + | + |
Trehalose | − | + | + | 1/28 | 4/5 | + | + |
Galactose | − | + | + | 8/28 | + | + | + |
Sorbitol | − | − | − | − | 2/5 | 1/11 | + |
Melezitose | − | − | − | NT | NT | − | + |
Total isolates | 16 | 1 | 1 | 28 | 5 | 11 | 4 |
LAB Species Identified | Total Isolates | Ripened Galotyri PDO (Brand-Z) Cheese Batches | Fresh Galotyri PDO (Brand-K) Cheese Batches | Biochemical Subgroup in Table 5 or Table 6: LAB Isolate Code 1 | ||
---|---|---|---|---|---|---|
Batch Z-A | Batch Z-B | Batch K-A | Batch K-B | |||
Starter LAB isolates | 46 | 7 | 6 | 17 | 16 | |
Streptococcus thermophilus | 28 | 1 | 6 | 10 | 11 | G1:Z25, Z49, Z54-Z56, Z59, Z60, K21-K30, K51-K60, K58B |
Lactobacillus delbrueckii subsp. bulgaricus | 16 | 6 | − | 5 | 5 | F1:Z6, Z26-Z30, K6, K6B, K7, K8, K10, K36-K40 |
Lb. delbrueckiisubsp. lactis | 1 | − | − | 1 | − | F2:K9 |
Lactococcus lactis | 1 | − | − | 1 | − | D1: K17 |
Nonstarter LAB isolates | 56 | 13 | 15 | 15 | 13 | |
Unidentified thermophilic Streptococcus spp. | 5 | − | 5 | − | − | G2: Z51, Z52, Z53, Z57, Z58 |
Unidentified thermophilic Lactobacillus sp. | 1 | − | 1 | − | − | F3: Z35 |
Lactiplantiibacillus plantarum group | 18 | − | − | 8 | 10 | A1: K2, K4, K11-K15, K16, K31, K41-K48, K50 |
Lacticaseibacillus paracasei | 5 | 4 | − | 1 | − | A2:Z3, Z16, Z18, Z20, K3 |
Latilactobacillus curvatus (atypical biotype) | 3 | − | − | − | 3 | A3: K32, K33, K34 |
Lentilactobacillus diolivorans (or atypical L. hilgardii) | 2 | 2 | − | − | − | B1:Z2, Z5 |
Lentilactobacillus diolivorans | 1 | 1 | − | − | − | B2: Z1 |
Lentilactobacillus kefiri | 2 | 1 | 1 | − | − | B3: Z4, Z34 |
Leuconostoc mesenteroides | 3 | − | 2 | 1 | − | C1+C2: Z31, Z50, K5 |
Pediococcus inopinatus/parvulus | 1 | − | 1 | − | − | E1: Z32 |
Enterococcus faecium | 11 | 4 | 2 | 5 | − | H1: Z12-Z15, Z41, Z44, K11B-K15B |
Enterococcus faecalis | 4 | 1 | 3 | − | − | H2: Z11, Z42, Z43, Z45 |
Total isolates | 102 | 20 | 21 | 32 | 29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samelis, J.; Kakouri, A. Microbiological Characterization of Greek Galotyri Cheese PDO Products Relative to Whether They Are Marketed Fresh or Ripened. Fermentation 2022, 8, 492. https://doi.org/10.3390/fermentation8100492
Samelis J, Kakouri A. Microbiological Characterization of Greek Galotyri Cheese PDO Products Relative to Whether They Are Marketed Fresh or Ripened. Fermentation. 2022; 8(10):492. https://doi.org/10.3390/fermentation8100492
Chicago/Turabian StyleSamelis, John, and Athanasia Kakouri. 2022. "Microbiological Characterization of Greek Galotyri Cheese PDO Products Relative to Whether They Are Marketed Fresh or Ripened" Fermentation 8, no. 10: 492. https://doi.org/10.3390/fermentation8100492
APA StyleSamelis, J., & Kakouri, A. (2022). Microbiological Characterization of Greek Galotyri Cheese PDO Products Relative to Whether They Are Marketed Fresh or Ripened. Fermentation, 8(10), 492. https://doi.org/10.3390/fermentation8100492