Screening of Lactic Acid Bacteria Suitable for the Fermentation of Shenheling Slimming Beverages Based on the Activity Inhibition of Energy Digestive Enzymes and a Sensory Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation and Fermentation of SHLE
2.3. Determination of Live Bacterial Count, pH and Titratable Acidity
2.4. Determination of Total Polysaccharide Content (TPSC)
2.5. Determination of Total Flavonoid Content (TFC)
2.6. Determination of Total Polyphenol Content (TPC)
2.7. Determination of Pancreatic Lipase Activity Inhibition
2.8. Determination of α-Glucosidase Activity Inhibition
2.9. Sensory Evaluation
2.10. Statistical Analysis
3. Results
3.1. Growth of Strains in SHLE
3.2. Changes in pH, Titratable Acidity and Viable Count during SHLE Fermentation
3.3. Effects of LAB Fermentation on the Components of SHLE
3.4. Effects of LAB Fermentation on the Inhibition of the Energy Digestive Enzyme Activity of SHLE
3.5. Effects of Different LAB Fermentations on the Flavor of SHLE
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neeland, I.J.; Poirier, P.; Despres, J.P. Cardiovascular and Metabolic Heterogeneity of Obesity: Clinical Challenges and Implications for Management. Circulation 2018, 137, 1391–1406. [Google Scholar] [CrossRef]
- Zhou, Y.; Chi, J.; Lv, W.; Wang, Y. Obesity and diabetes as high-risk factors for severe coronavirus disease 2019 (COVID-19). Diabetes Metab. Res. Rev. 2021, 37, e3377. [Google Scholar] [CrossRef]
- Caci, G.; Albini, A.; Malerba, M.; Noonan, D.M.; Pochetti, P.; Polosa, R. COVID-19 and Obesity: Dangerous Liaisons. J. Clin. Med. 2020, 9, 2511. [Google Scholar] [CrossRef]
- Marrelli, M.; Loizzo, M.R.; Nicoletti, M.; Menichini, F.; Conforti, F. In vitro investigation of the potential health benefits of wild Mediterranean dietary plants as anti-obesity agents with alpha-amylase and pancreatic lipase inhibitory activities. J. Sci. Food Agric. 2014, 94, 2217–2224. [Google Scholar] [CrossRef]
- Krentz, A.J.; Fujioka, K.; Hompesch, M. Evolution of pharmacological obesity treatments: Focus on adverse side-effect profiles. Diabetes Obes. Metab. 2016, 18, 558–570. [Google Scholar] [CrossRef]
- de la Garza, A.L.; Milagro, F.I.; Boque, N.; Campion, J.; Martinez, J.A. Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Med. 2011, 77, 773–785. [Google Scholar] [CrossRef] [PubMed]
- Scotti, L.; Monteiro, A.F.M.; de Oliveira Viana, J.; Mendonca Junior, F.J.B.; Ishiki, H.M.; Tchouboun, E.N.; Santos, R.; Scotti, M.T. Multi-Target Drugs Against Metabolic Disorders. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 402–418. [Google Scholar] [CrossRef]
- Rodgers, R.J.; Tschop, M.H.; Wilding, J.P. Anti-obesity drugs: Past, present and future. Dis. Model. Mech. 2012, 5, 621–626. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.B.; Daily, J.W. Anti-Obesity Effects of Chang-Chul-Eui-Ee-In-Tang (sic) in Female Rats with Diet-Induced Obesity. Chin. J. Integr. Med. 2011, 17, 925–932. [Google Scholar] [CrossRef]
- Yu, X.; Xu, L.; Zhou, Q.; Wu, S.; Tian, J.; Piao, C.; Guo, H.; Zhang, J.; Li, L.; Wu, S.; et al. The Efficacy and Safety of the Chinese Herbal Formula, JTTZ, for the Treatment of Type 2 Diabetes with Obesity and Hyperlipidemia: A Multicenter Randomized, Positive-Controlled, Open-Label Clinical Trial. Int. J. Endocrinol. 2018, 2018, 9519231. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Chang, B.; Chen, X.Y.; Zhou, S.P.; Zhen, Z.; Zhang, L.L.; Sun, X.; Zhou, Y.; Xie, W.Q.; Liu, H.F.; et al. Chinese herbal medicine for obesity: A randomized, double-blinded, multicenter, prospective trial. Am. J. Chin. Med. 2014, 42, 1345–1356. [Google Scholar] [CrossRef] [PubMed]
- Azushima, K.; Tamura, K.; Haku, S.; Wakui, H.; Kanaoka, T.; Ohsawa, M.; Uneda, K.; Kobayashi, R.; Ohki, K.; Dejima, T.; et al. Effects of the oriental herbal medicine Bofu-tsusho-san in obesity hypertension: A multicenter, randomized, parallel-group controlled trial (ATH-D-14-01021.R2). Atherosclerosis 2015, 240, 297–304. [Google Scholar] [CrossRef]
- Hioki, C.; Yoshimoto, K.; Yoshida, T. Efficacy of bofu-tsusho-san, an oriental herbal medicine, in obese Japanese women with impaired glucose tolerance. Clin. Exp. Pharmacol. Physiol. 2004, 31, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Cheon, C.; Song, Y.-K.; Ko, S.-G. Efficacy and safety of Euiiyin-tang in Korean women with obesity: A randomized, double-blind, placebo-controlled, multicenter trial. Complement. Ther. Med. 2020, 51, 102423. [Google Scholar] [CrossRef] [PubMed]
- Lenon, G.B.; Li, K.X.; Chang, Y.-H.; Yang, A.W.; Da Costa, C.; Li, C.G.; Cohen, M.; Mann, N.; Xue, C.C.L. Efficacy and Safety of a Chinese Herbal Medicine Formula (RCM-104) in the Management of Simple Obesity: A Randomized, Placebo-Controlled Clinical Trial. Evid.-Based Complement. Altern. Med. 2012, 2012, 435702. [Google Scholar] [CrossRef] [PubMed]
- Ignjatovic, V.; Ogru, E.; Heffernan, M.; Libinaki, R.; Lim, Y.; Ng, F. Studies on the use of "Slimax", a Chinese herbal mixture, in the treatment of human obesity. Pharm. Biol. 2000, 38, 30–35. [Google Scholar] [CrossRef]
- 2022 Consumer Trends: People Will Still Turn to Dietary Supplements, Nutrition for Preventative Health in 2022. Available online: https://www.nutritionaloutlook.com/view/2022-consumer-trends-people-will-still-turn-to-dietary-supplements-nutrition-for-preventative-health-in-2022 (accessed on 14 April 2022).
- Gil-Rodriguez, A.M.; Beresford, T.P. Lipase inhibitory activity of skim milk fermented with different strains of lactic acid bacteria. J. Funct. Foods 2019, 60, 103413. [Google Scholar] [CrossRef]
- Jeong, Y.; Kim, H.; Lee, J.Y.; Won, G.; Choi, S.-I.; Kim, G.-H.; Kang, C.-H. The Antioxidant, Anti-Diabetic, and Anti-Adipogenesis Potential and Probiotic Properties of Lactic Acid Bacteria Isolated from Human and Fermented Foods. Fermentation 2021, 7, 123. [Google Scholar] [CrossRef]
- Yi, S.A.; Lee, J.; Park, S.K.; Kim, J.Y.; Park, J.W.; Lee, M.G.; Nam, K.H.; Park, J.H.; Oh, H.; Kim, S.; et al. Fermented ginseng extract, BST204, disturbs adipogenesis of mesenchymal stem cells through inhibition of S6 kinase 1 signaling. J. Ginseng. Res. 2020, 44, 58–66. [Google Scholar] [CrossRef]
- Pan, Y.; Tan, J.; Long, X.; Yi, R.; Zhao, X.; Park, K.-Y. Anti-obesity effect of fermented lemon peel on high-fat diet-induced obese mice by modulating the inflammatory response. J. Funct. Foods 2022, 46, e14200. [Google Scholar] [CrossRef]
- Vandevijvere, S.; Jaacks, L.M.; Monteiro, C.A.; Moubarac, J.C.; Girling-Butcher, M.; Lee, A.C.; Pan, A.; Bentham, J.; Swinburn, B. Global trends in ultraprocessed food and drink product sales and their association with adult body mass index trajectories. Obes. Rev. 2019, 20 (Suppl. 2), 10–19. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, N.D.; Khan, T.A.; Wang, L.; Zhang, R.; Chiavaroli, L.; Au-Yeung, F.; Lee, J.J.; Noronha, J.C.; Comelli, E.M.; Blanco Mejia, S.; et al. Association of Low- and No-Calorie Sweetened Beverages as a Replacement for Sugar-Sweetened Beverages With Body Weight and Cardiometabolic Risk: A Systematic Review and Meta-analysis. JAMA Netw. Open 2022, 5, e222092. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Singh, A.; Kitts, D.D.; Pratap-Singh, A. Lactic acid fermentation: A novel approach to eliminate unpleasant aroma in pea protein isolates. LWT 2021, 150, 111927. [Google Scholar] [CrossRef]
- Lee, H.-Y.; Lee, G.-H.; Hoang, T.-H.; Kim, Y.-M.; Jang, G.-H.; Seok, C.-H.; Gwak, Y.-G.-S.; Lim, J.; Kim, J.; Chae, H.-J. GABA and Fermented Curcuma longa L. Extract Enriched with GABA Ameliorate Obesity through Nox4-IRE1 alpha Sulfonation-RIDD-SIRT1 Decay Axis in High-Fat Diet-Induced Obese Mice. Nutrients 2022, 14, 1680. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Kim, O.-K.; Yoon, H.-G.; Park, J.; You, Y.; Kim, K.; Lee, Y.-H.; Choi, K.-C.; Lee, J.; Jun, W. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats. Food Nutr. Res. 2016, 60, 30428. [Google Scholar] [CrossRef]
- Hardiwati, K.T.; Lay, B.W. Curcuminoid cider fermented from Curcuma xanthorrhiza curcuminoids attenuates gene expression related to obesity-induced inflammation in hypercholesterolaemic rats. Int. Food Res. J. 2019, 26, 859–867. [Google Scholar]
- Yan, X.-T.; Zhang, W.; Zhang, Y.; Zhang, Z.; Chen, D.; Wang, W.; Ma, W.; Qu, H.; Qian, J.-Y.; Gu, R. In Vitro Anti-Obesity Effect of Shenheling Extract (SHLE) Fermented with Lactobacillus fermentum grx08. Foods 2022, 11, 1221. [Google Scholar] [CrossRef]
- Nazeam, J.A.; Gad, H.A.; Esmat, A.; El-Hefnawy, H.M.; Singab, A.B. Aloe arborescens Polysaccharides: In Vitro Immunomodulation and Potential Cytotoxic Activity. J. Med. Food 2017, 20, 491–501. [Google Scholar] [CrossRef]
- Chen, S.; Li, X.; Liu, X.; Wang, N.; An, Q.; Ye, X.M.; Zhao, Z.T.; Zhao, M.; Han, Y.; Ouyang, K.H.; et al. Investigation of Chemical Composition, Antioxidant Activity, and the Effects of Alfalfa Flavonoids on Growth Performance. Oxid. Med. Cell Longev. 2020, 2020, 8569237. [Google Scholar] [CrossRef]
- Derakhshan, Z.; Ferrante, M.; Tadi, M.; Ansari, F.; Heydari, A.; Hosseini, M.S.; Conti, G.O.; Sadrabad, E.K. Antioxidant activity and total phenolic content of ethanolic extract of pomegranate peels, juice and seeds. Food Chem. Toxicol. 2018, 114, 108–111. [Google Scholar] [CrossRef]
- Kim, Y.S.; Lee, Y.M.; Kim, H.; Kim, J.; Jang, D.S.; Kim, J.H.; Kim, J.S. Anti-obesity effect of Morus bombycis root extract: Anti-lipase activity and lipolytic effect. J. Ethnopharmacol. 2010, 130, 621–624. [Google Scholar] [CrossRef]
- Silva, C.P.; Sampaio, G.R.; Freitas, R.; Torres, E. Polyphenols from guarana after in vitro digestion: Evaluation of bioacessibility and inhibition of activity of carbohydrate-hydrolyzing enzymes. Food Chem. 2018, 267, 405–409. [Google Scholar] [CrossRef]
- Choi, Y.; Bose, S.; Shin, N.R.; Song, E.-J.; Nam, Y.-D.; Kim, H. Lactate-Fortified Puerariae Radix Fermented by Bifidobacterium breve Improved Diet-Induced Metabolic Dysregulation via Alteration of Gut Microbial Communities. Nutrients 2020, 12, 276. [Google Scholar] [CrossRef]
- Liao, W.; Liu, S.; Chen, Y.; Kong, Y.; Wang, D.; Wang, Y.; Ling, T.; Xie, Z.; Khalilova, I.; Huang, J. Effects of Keemun and Dianhong Black Tea in Alleviating Excess Lipid Accumulation in the Liver of Obese Mice: A Comparative Study. Front. Nutr. 2022, 9, 849582. [Google Scholar] [CrossRef]
- Hong, H.; Lim, J.M.; Kothari, D.; Kwon, S.H.; Kwon, H.C.; Han, S.-G.; Kim, S.-K. Antioxidant Properties and Diet-Related alpha-Glucosidase and Lipase Inhibitory Activities of Yogurt Supplemented with Safflower (Carthamus tinctorius L.) Petal Extract. Food Sci. Anim. Resour. 2021, 41, 122–134. [Google Scholar] [CrossRef] [PubMed]
- Noureen, H.; Alam, S.; Al Ayoubi, S.; Qayyum, A.; Sadiqi, S.; Atiq, S.; Naz, A.; Bibi, Y.; Ahmed, W.; Khan, M.M.; et al. Mechanism of rice bran lipase inhibition through fermentation activity of probiotic bacteria. Saudi J. Biol. Sci. 2021, 28, 5841–5848. [Google Scholar] [CrossRef]
- Buchholz, T.; Melzig, M.F. Polyphenolic Compounds as Pancreatic Lipase Inhibitors. Planta Med. 2015, 81, 771–783. [Google Scholar] [CrossRef]
- Xu, C.; Ji, G.E. Bioconversion of flavones during fermentation in milk containing Scutellaria baicalensis extract by Lactobacillus brevis. J. Microbiol. Biotechnol. 2013, 23, 1422–1427. [Google Scholar] [CrossRef]
- Herath, W.; Mikell, J.R.; Hale, A.L.; Ferreira, D.; Khan, I.A. Microbial Metabolism. Part 6. Metabolites of 3- and 7-Hydroxyflavones. Chem. Pharm. Bull. 2006, 54, 320–324. [Google Scholar] [CrossRef] [PubMed]
- Pennacchio, A.; Rossi, M.; Raia, C.A. Synthesis of cinnamyl alcohol from cinnamaldehyde with Bacillus stearothermophilus alcohol dehydrogenase as the isolated enzyme and in recombinant E. coli cells. Appl. Biochem. Biotechnol. 2013, 170, 1482–1490. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.T.; Nguyen, H.V.H. Effects of Fermentation Conditions Using Lactobacillus plantarum on the Charantin, Stigmasterol Glucoside and beta-sitosterol Glucoside Contents of Bitter Gourd (Momordica charantia L.) Juice. Plant Foods Hum. Nutr. 2020, 75, 656–658. [Google Scholar] [CrossRef]
- Ye, J.-H.; Ye, Y.; Yin, J.-F.; Jin, J.; Liang, Y.-R.; Liu, R.-Y.; Tang, P.; Xu, Y.-Q. Bitterness and astringency of tea leaves and products: Formation mechanism and reducing strategies. Trends Food Sci. Technol. 2022, 123, 130–143. [Google Scholar] [CrossRef]
- Kim, B.-G.; Choi, S.-Y.; Suh, H.J.; Park, H.J. Bitterness Reduction and Enzymatic Transformation of Ginsenosides from Korean Red Ginseng (Panax Ginseng) Extract. J. Food Biochem. 2011, 35, 1267–1282. [Google Scholar] [CrossRef]
- Mazlan, F.A.; Annuar, M.S.; Sharifuddin, Y. Biotransformation of Momordica charantia fresh juice by Lactobacillus plantarum BET003 and its putative anti-diabetic potential. PeerJ 2015, 3, e1376. [Google Scholar] [CrossRef] [Green Version]
Latin Scientific Name | Herbal Medicine | Chinese Name | Plant Part | Weight (g) |
---|---|---|---|---|
Panax ginseng C. A. Meyer | Ginseng | Renshen | Root | 10 |
Nelumbo nucifera Gaertn. | Lotus leaf | Heye | Leaf | 6 |
Poria cocos (Schw.) Wolf. | Poria cocos | Fuling | Dry sclerotia | 10 |
Vigna umbellata (Thunb.) Ohwi et Ohashi | Rice bean | Chixiaodou | Seed | 10 |
Citrus sinensis (Linn.) Osbeck | Tangerine peel | Chenpi | Pericarp | 3 |
Cinnamomum cassia Presl | Cassia | Rougui | Cortex | 1 |
No. | Species and Strain Names | Short Name |
---|---|---|
1 | Lactobacillus plantarum S7 | S7 |
2 | Lactobacillus plantarum 67 | 67 |
3 | Lactobacillus plantarum P11 | P11 |
4 | Lactobacillus rhamnosus hsryfm1301 | 1301 |
5 | Lactobacillus rhamnosus grx10 | grx10 |
6 | Lactobacillus rhamnosus LV108 | LV108 |
7 | Lactobacillus paracasei M64 | M64 |
8 | Lactobacillus fermentum M91 | M91 |
9 | Lactobacillus fermentum grx08 | grx08 |
10 | Leuconostoc K1A1 | K1A1 |
11 | Lactobacillus casei grx12 | grx12 |
12 | Lactobacillus acidophilus grx95 | grx95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, X.; Zhang, Z.; Lv, T.; Wang, J.; Yin, X.; Lian, X.; Chen, D.; Wang, W.; Wang, Y.; Gu, R. Screening of Lactic Acid Bacteria Suitable for the Fermentation of Shenheling Slimming Beverages Based on the Activity Inhibition of Energy Digestive Enzymes and a Sensory Evaluation. Fermentation 2022, 8, 482. https://doi.org/10.3390/fermentation8100482
Yan X, Zhang Z, Lv T, Wang J, Yin X, Lian X, Chen D, Wang W, Wang Y, Gu R. Screening of Lactic Acid Bacteria Suitable for the Fermentation of Shenheling Slimming Beverages Based on the Activity Inhibition of Energy Digestive Enzymes and a Sensory Evaluation. Fermentation. 2022; 8(10):482. https://doi.org/10.3390/fermentation8100482
Chicago/Turabian StyleYan, Xiantao, Ziqi Zhang, Tian Lv, Jiating Wang, Xun Yin, Xinyue Lian, Dawei Chen, Wenqiong Wang, Yubao Wang, and Ruixia Gu. 2022. "Screening of Lactic Acid Bacteria Suitable for the Fermentation of Shenheling Slimming Beverages Based on the Activity Inhibition of Energy Digestive Enzymes and a Sensory Evaluation" Fermentation 8, no. 10: 482. https://doi.org/10.3390/fermentation8100482
APA StyleYan, X., Zhang, Z., Lv, T., Wang, J., Yin, X., Lian, X., Chen, D., Wang, W., Wang, Y., & Gu, R. (2022). Screening of Lactic Acid Bacteria Suitable for the Fermentation of Shenheling Slimming Beverages Based on the Activity Inhibition of Energy Digestive Enzymes and a Sensory Evaluation. Fermentation, 8(10), 482. https://doi.org/10.3390/fermentation8100482