Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Enzymes and Chemicals
2.2. Biotransformation
2.3. HPLC Analysis
2.4. Purification and Identification of the Biotransformation Metabolites
2.5. Determination of Solubility and Stability
3. Results and Discussion
3.1. Biotransformation of 8-OHDe by DgAS over 24 h
3.2. Purification and Identification of the Biotransformation Products
3.3. Characterization of the 8-OHDe Diglucosides
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, T.S. Isolation, bioactivity, and production of ortho-hydroxydaidzein and ortho-hydroxygenistein. Int. J. Mol. Sci. 2014, 15, 5699–5716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.S.; Ding, H.Y.; Yen, J.H.; Chen, S.F.; Lee, K.H.; Wu, M.J. Anti-inflammatory activity of 8-hydroxydaidzein in LPS-stimulated BV2 microglial cells via activation of Nrf2-antioxidant and attenuation of Akt/NF-kappaB-inflammatory signaling pathways, as well as inhibition of COX-2 activity. J. Agric. Food Chem. 2018, 66, 5790–5801. [Google Scholar] [CrossRef]
- Kim, E.; Kang, Y.G.; Kim, J.H.; Kim, Y.J.; Lee, T.R.; Lee, J.; Kim, D.; Cho, J.Y. The antioxidant and anti-inflammatory activities of 8-hydroxydaidzein (8-HD) in activated macrophage-like RAW264.7 cells. Int. J. Mol. Sci. 2018, 19, 1828. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.G.; Kim, Y.A.; Kim, J.E.; Baek, S.; Lee, S.Y.; Lee, C.C.; Chen, H.; Kim, J.R.; Kwon, J.Y.; Bode, A.M.; et al. PKCiota is a target of 7,8,4′-trihydroxyisoflavone for the suppression of UVB-induced MMP-1 expression. Exp. Dermatol. 2018, 27, 449–452. [Google Scholar] [CrossRef] [Green Version]
- Ko, Y.H.; Kim, S.K.; Kwon, S.H.; Seo, J.Y.; Lee, B.R.; Kim, Y.J.; Hur, K.H.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. 7,8,4′-trihydroxyisoflavone, a metabolized product of daidzein, attenuates 6-hydroxydopamine-induced neurotoxicity in SH-SY5Y cells. Biomol. Ther. 2019, 27, 363–372. [Google Scholar] [CrossRef]
- Ko, Y.H.; Kwon, S.H.; Ma, S.X.; Seo, J.Y.; Lee, B.R.; Kim, K.; Kim, S.Y.; Lee, S.Y.; Jang, C.G. The memory-enhancing effects of 7,8,4′-trihydroxyisoflavone, a major metabolite of daidzein, are associated with activation of the cholinergic system and BDNF signaling pathway in mice. Brain Res. Bull. 2018, 142, 197–206. [Google Scholar] [CrossRef]
- Wu, S.C.; Chang, C.W.; Lin, C.W.; Hsu, Y.C. Production of 8-hydroxydaidzein polyphenol using biotransformation by Aspergillus oryzae. Food Sci. Technol. Res. 2015, 21, 557–562. [Google Scholar] [CrossRef] [Green Version]
- Seo, M.H.; Kim, B.N.; Kim, K.R.; Lee, K.W.; Lee, C.H.; Oh, D.K. Production of 8-hydroxydaidzein from soybean extract by Aspergillus oryzae KACC 40247. Biosci. Biotechnol. Biochem. 2013, 77, 1245–1250. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.S. 8-Hydroxydaidzein is unstable in alkaline solutions. J. Cosmet. Sci. 2009, 60, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, J.; Xie, Y. Improvement strategies for the oral bioavailability of poorly water-soluble flavonoids: An overview. Int. J. Pharm. 2019, 570, 118642. [Google Scholar] [CrossRef] [PubMed]
- Hofer, B. Recent developments in the enzymatic O-glycosylation of flavonoids. Appl. Microbiol. Biotechnol. 2016, 100, 4269–4281. [Google Scholar] [CrossRef]
- Chiang, C.M.; Wang, T.Y.; Yang, S.Y.; Wu, J.Y.; Chang, T.S. Production of new isoflavone glucosides from glycosylation of 8-hydroxydaidzein by glycosyltransferase from Bacillus subtilis ATCC 6633. Catalysts 2018, 8, 387. [Google Scholar] [CrossRef] [Green Version]
- Chang, T.S.; Wang, T.Y.; Yang, S.Y.; Kao, Y.H.; Wu, J.Y.; Chiang, C.M. Potential industrial production of a well-soluble, alkaline-stable, and anti-inflammatory isoflavone glucoside from 8-hydroxydaidzein glucosylated by recombinant amylosucrase of Deinococcus geothermalis. Molecules 2019, 24, 2236. [Google Scholar] [CrossRef] [Green Version]
- Moulis, C.; Guieysse, D.; Morel, S.; Severac, E.; Remaud-Simeon, M. Natural and engineered transglycosylases: Green tools for the enzyme-based synthesis of glycoproducts. Curr. Opin. Chem. Biol. 2021, 61, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Seo, D.H.; Yoo, S.H.; Choi, S.J.; Kim, Y.R.; Park, C.S. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase. Food Sci. Biotechnol. 2020, 29, 1–16. [Google Scholar] [CrossRef]
- Rha, C.S.; Kim, E.R.; Kim, Y.J.; Jung, Y.S.; Kim, D.O.; Park, C.S. Simple and efficient production of highly soluble daidzin glycosides by amylosucrase from Deinococcus geothermalis. J. Agric. Food Chem. 2019, 67, 12824–12832. [Google Scholar] [CrossRef]
- Rha, C.S.; Kim, H.G.; Baek, N.I.; Kim, D.O.; Park, C.S. Using amylosucrase for the controlled synthesis of novel isoquercitrin glycosides with different glycosidic linkages. J. Agric. Food Chem. 2020, 68, 13798–13805. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Xu, W.; Zhang, W.L.; Zhang, T.; Guang, C.E.; Mu, W.M. Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnol. Adv. 2018, 36, 1540–1552. [Google Scholar] [CrossRef]
- Huang, G.; Lv, M.; Hu, J.; Huang, K.; Xu, H. Glycosylation and activities of natural products. Mini-Rev. Med. Chem. 2016, 16, 1013–1016. [Google Scholar] [CrossRef]
- Fu, J.; Wu, Z.; Zhang, L. Clinical applications of the naturally occurring or synthetic glycosylated low molecular weight drugs. Prog. Mol. Biol. Transl. Sci. 2019, 163, 487–522. [Google Scholar] [CrossRef] [PubMed]
- Sordon, S.; Poplonski, J.; Milczarek, M.; Stachowicz, M.; Tronina, T.; Kucharska, A.Z.; Wietrzyk, J.; Huszcza, E. Structure-antioxidant-antiproliferative activity relationships of natural C7 and C7-C8 hydroxylated flavones and flavanones. Antioxidants 2019, 8, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Treml, J.; Smejkal, K. Flavonoids as potent scavengers of hydroxyl radicals. Compr. Rev. Food Sci. Food Saf. 2016, 15, 720–738. [Google Scholar] [CrossRef] [PubMed]
- Jang, D.; Jung, Y.S.; Seong, H.; Kim, M.S.; Rha, C.S.; Nam, T.G.; Han, N.S.; Kim, D.O. Stability of enzyme-modified flavonoid C- and O-glycosides from common buckwheat sprout extracts during in vitro digestion and colonic fermentation. J. Agric. Food Chem. 2021, 69, 5764–5773. [Google Scholar] [CrossRef] [PubMed]
- Hein, E.M.; Rose, K.; Slot, G.V.; Friedrich, A.W.; Humpf, H.U. Deconjugation and degradation of flavonol glycosides by pig cecal microbiota characterized by fluorescence in situ hybridization (FISH). J. Agric. Food Chem. 2008, 56, 2281–2290. [Google Scholar] [CrossRef] [PubMed]
Compound | Compound (1) 8-OHDe-7-O-[α-Glucopyranosyl-(1→6)-α-Glucopyranoside] | Compound (2) 8-OHDe-7,4′-O-α-Diglucopyranoside | ||||
---|---|---|---|---|---|---|
Position | δC | δH (J in Hz) | HMBC | δC | δH (J in Hz) | HMBC |
Isoflavone moiety | ||||||
2 | 153.1 | 8.39, s | 154.0 | 8.43, s | ||
3 | 123.0 | H-2, H-2′(6′) | 125.8 | H-2, H-3′(5′) | ||
4 | 175.4 | H-2, H-5 | 175.6 | H-2, H-5 | ||
5 | 113.2 | 7.46, d (8.7) | 114.1 | 7.47, d (8.9) | ||
6 | 115.3 | 7.33, d (8.8) | H-5 | 114.7 | 7.36, d (8.9) | H-5, |
7 | 148.8 | H-5, H-6, Glc1-H-1″ | 148.8 | H-5, H-6, Glc1-H-1″ | ||
8 | 138.2 | H-5 | 137.2 | H-5, H-6 | ||
8a | 146.3 | H-2, H-5 | 146.4 | H-2, H-5, H-6 | ||
4a | 120.3 | H-6 | 120.0 | H-6, | ||
1′ | 122.6 | H-2, H-3′(5′) | 123.0 | H-2, H-2′(6′), H-3′(5′) | ||
2′(6′) | 130.1 | 7.40, m | H-2′(6′), H-3′(5′) | 130.3 | 7.50, d (8.6) | H-2′(6′), H-3′(5′) |
3′(5′) | 114.9 | 6.81, m | H-2′(6′), H-3′(5′) | 116.9 | 7.14, d (8.7) | H-2′(6′), H-3′(5′) |
4′ | 157.1 | 9.46 OH | H-2′(6′), H-3′(5′) | 157.1 | - | H-2′(6′), H-3′(5′), Glc2-H-1‴ |
Glucose moiety 1 | ||||||
1” | 100.8 | 5.32, d (3.5) | 99.9 | 5.46, d (3.5) | ||
2” | 72.1 | 3.37, m | H-1″, H-3″, H-4″ | 72.1 | 3.39, m | H-1″, H-3″ |
3” | 73.2 | 3.73, m | H-1″, H-2″, H-4″ | 73.3 | 3.74, m | H-1″, H-2″, H-4″ |
4” | 70.1 | 3.23, m | H-3″, H-5″, H-6″ | 70.0 | 3.21, m | H-3″, H-5″, H-6″ |
5” | 72.2 | 3.77, m | H-1″, H-3″, H-6″ | 74.2 | 3.48, m | H-1″, H-6″ |
6” | 66.1 | 3.73, m 3.59, m | H-4″, H-5″, Glc2-H-1‴ | 60.9 | 3.56, m 3.48, m | H-4″, H-5″ |
Glucose moiety 2 | ||||||
1‴ | 98.2 | 4.65, d (3.5) | Glc1-H-6″ | 98.1 | 5.42, d (3.5) | |
2‴ | 71.9 | 3.18, m | H-1‴, H-3‴ | 71.8 | 3.39, m | H-1‴, H-3‴ |
3‴ | 73.2 | 3.43, m | H-1‴, H-2‴, H-4‴ | 73.3 | 3.64, m | H-1‴, H-2‴, H-4‴ |
4‴ | 70.1 | 3.11, m | H-3‴, H-5‴, H-6‴ | 70.1 | 3.21, m | H-3‴, H-5‴, H-6‴ |
5‴ | 72.4 | 3.49, m | H-1‴, H-3‴, H-6‴ | 73.9 | 3.48, m | H-1‴ |
6‴ | 60.8 | 3.60, m 3.48, m | H-4‴, H-5‴ | 60.8 | 3.60, m 3.48, m | H-4‴, H-5‴ |
Compound | Aqueous Solubility (mg/L) | Stability in Alkaline Solution 2 |
---|---|---|
8-OHDe | 14.2 ± 5.4 (1-fold) 1 | 10.9 ± 3.7 |
8-OHDe-7-G | 125.4 ± 3.6 (8.8-fold) 1 | 94.6 ± 3.2 3 |
8-OHDe-7-G2 (1) | >10,000 (>704.2-fold) 1 | 94.4 ± 3.6 |
8-OHDe-7-G-4′-G (2) | 65,598.4 (4619.6-fold) 1 | 92.8 ± 5.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiang, C.-M.; Wang, T.-Y.; Wu, J.-Y.; Zhang, Y.-R.; Lin, S.-Y.; Chang, T.-S. Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase. Fermentation 2021, 7, 232. https://doi.org/10.3390/fermentation7040232
Chiang C-M, Wang T-Y, Wu J-Y, Zhang Y-R, Lin S-Y, Chang T-S. Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase. Fermentation. 2021; 7(4):232. https://doi.org/10.3390/fermentation7040232
Chicago/Turabian StyleChiang, Chien-Min, Tzi-Yuan Wang, Jiumn-Yih Wu, Yun-Rong Zhang, Shu-Yuan Lin, and Te-Sheng Chang. 2021. "Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase" Fermentation 7, no. 4: 232. https://doi.org/10.3390/fermentation7040232
APA StyleChiang, C. -M., Wang, T. -Y., Wu, J. -Y., Zhang, Y. -R., Lin, S. -Y., & Chang, T. -S. (2021). Production of New Isoflavone Diglucosides from Glycosylation of 8-Hydroxydaidzein by Deinococcus geothermalis Amylosucrase. Fermentation, 7(4), 232. https://doi.org/10.3390/fermentation7040232