Four Challenges for Better Biocatalysts
Abstract
:1. Introduction
2. Challenge 1: Understand Protein Folding
3. Challenge 2: Understand the Hydrophobic Effect
4. Challenge 3: Understand the Complex Effects of Organic Solvents on Biomolecules
5. Challenge 4: Understand Catalysis
6. Conclusions
Funding
Conflicts of Interest
References
- Anatas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998. [Google Scholar]
- Kumar, A.; Dhar, K.; Kanwar, S.S.; Arora, P.K. Lipase catalysis in organic solvents: Advantages and applications. Biol. Proced. Online 2016, 18, 2. [Google Scholar] [CrossRef]
- Borrelli, G.M.; Trono, D. Recombinant Lipases and Phospholipases and Their Use as Biocatalysts for Industrial Applications. Int. J. Mol. Sci. 2015, 16, 20774–20840. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Zhang, J.; Wu, D.; Xing, Z.; Zhou, Y.; Shi, W.; Li, Q. Chemoenzymatic synthesis of polymeric materials using lipases as catalysts: A review. Biotechnol. Adv. 2014, 32, 642–651. [Google Scholar] [CrossRef] [PubMed]
- Rodgers, C.J.; Blanford, C.F.; Giddens, S.R.; Skamnioti, P.; Armstrong, F.A.; Gurr, S.J. Designer laccases: A vogue for high-potential fungal enzymes? Trends Biotechnol. 2010, 28, 63–72. [Google Scholar] [CrossRef]
- Rodriguez Couto, S.; Toca Herrera, J.L. Industrial and biotechnological applications of laccases: A review. Biotechnol. Adv. 2006, 24, 500–513. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Ranjan, R.; Kapardar, R.K.; Grover, A. ‘Unculturable’bacterial diversity: An untapped resource. Curr. Sci. 2005, 3, 72–77. [Google Scholar]
- Schmidt, F.R. Optimization and scale up of industrial fermentation processes. Appl. Microbiol. Biotechnol. 2005, 68, 425–435. [Google Scholar] [CrossRef]
- Anfinsen, C.B. Principles that govern the folding of protein chains. Science 1973, 181, 223–230. [Google Scholar] [CrossRef]
- Ellis, R.J. Protein folding: Importance of the Anfinsen cage. Curr. Biol. 2003, 13, R881–R883. [Google Scholar] [CrossRef]
- Wang, W.; Malcolm, B.A. Two-stage PCR protocol allowing introduction of multiple mutations, deletions and insertions using QuikChange Site-Directed Mutagenesis. BioTechniques 1999, 26, 680–682. [Google Scholar] [CrossRef]
- Shimada, A. PCR-based site-directed mutagenesis. Methods Mol. Biol. 1996, 57, 157–165. [Google Scholar] [CrossRef]
- Carter, P. Site-directed mutagenesis. Biochem J. 1986, 237, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Timson, D.J.; Reece, R.J. Sugar recognition by human galactokinase. BMC Biochem. 2003, 4, 16. [Google Scholar] [CrossRef] [PubMed]
- Sung, M.; Dalbey, R.E. Identification of potential active-site residues in the Escherichia coli leader peptidase. J. Biol. Chem. 1992, 267, 13154–13159. [Google Scholar]
- Duval, N.; Bon, S.; Silman, I.; Sussman, J.; Massoulie, J. Site-directed mutagenesis of active-site-related residues in Torpedo acetylcholinesterase. Presence of a glutamic acid in the catalytic triad. FEBS Lett. 1992, 309, 421–423. [Google Scholar] [CrossRef]
- Fersht, A. Structure and Mechanism in Protein Science: A Guide to Enzyme Catalysis and Protein Folding; W. H. Freeman, Johns Hopkins Libraries: Baltimore, NY, USA, 1999. [Google Scholar]
- Moult, J.; Fidelis, K.; Kryshtafovych, A.; Schwede, T.; Tramontano, A. Critical assessment of methods of protein structure prediction (CASP)-Round XII. Proteins 2018, 86, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, F.; Bigelow, C.C. Estimation of the free energy of stabilization of ribonuclease A, lysozyme, α-lactalbumin, and myoglobin. J. Biol. Chem. 1982, 257, 12935–12938. [Google Scholar]
- Klibanov, A.M. Improving enzymes by using them in organic solvents. Nature 2001, 409, 241–246. [Google Scholar] [CrossRef]
- Stevenson, A.; Burkhardt, J.; Cockell, C.S.; Cray, J.A.; Dijksterhuis, J.; Fox-Powell, M.; Kee, T.P.; Kminek, G.; McGenity, T.J.; Timmis, K.N.; et al. Multiplication of microbes below 0.690 water activity: Implications for terrestrial and extraterrestrial life. Env. Microbiol. 2015, 17, 257–277. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, A.; Cray, J.A.; Williams, J.P.; Santos, R.; Sahay, R.; Neuenkirchen, N.; McClure, C.D.; Grant, I.R.; Houghton, J.D.; Quinn, J.P.; et al. Is there a common water-activity limit for the three domains of life? ISME J. 2015, 9, 1333–1351. [Google Scholar] [CrossRef] [PubMed]
- Stevenson, A.; Hamill, P.G.; Medina, A.; Kminek, G.; Rummel, J.D.; Dijksterhuis, J.; Timson, D.J.; Magan, N.; Leong, S.L.; Hallsworth, J.E. Glycerol enhances fungal germination at the water-activity limit for life. Environ. Microbiol. 2017, 19, 947–967. [Google Scholar] [CrossRef]
- Stevenson, A.; Hamill, P.G.; O’Kane, C.J.; Kminek, G.; Rummel, J.D.; Voytek, M.A.; Dijksterhuis, J.; Hallsworth, J.E. Aspergillus penicillioides differentiation and cell division at 0.585 water activity. Environ. Microbiol. 2017, 19, 687–697. [Google Scholar] [CrossRef]
- Bhaganna, P.; Volkers, R.J.; Bell, A.N.; Kluge, K.; Timson, D.J.; McGrath, J.W.; Ruijssenaars, H.J.; Hallsworth, J.E. Hydrophobic substances induce water stress in microbial cells. Microb. Biotechnol. 2010, 3, 701–716. [Google Scholar] [CrossRef] [Green Version]
- Hallsworth, J.E. Ethanol-induced water stress in yeast. J. Ferment. Bioeng. 1998, 85, 125–137. [Google Scholar] [CrossRef]
- McCammick, E.M.; Gomase, V.S.; McGenity, T.J.; Timson, D.J.; Hallsworth, J.E. Water-Hydrophobic Compound Interactions with the Microbial Cell. In Handbook of Hydrocarbon and Lipid Microbiology; Timmis, K.N., Ed.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 1451–1466. [Google Scholar] [CrossRef]
- Salvi, G.; De Los Rios, P.; Vendruscolo, M. Effective interactions between chaotropic agents and proteins. Proteins 2005, 61, 492–499. [Google Scholar] [CrossRef]
- Moelbert, S.; Normand, B.; De Los Rios, P. Kosmotropes and chaotropes: Modelling preferential exclusion, binding and aggregate stability. Biophys Chem. 2004, 112, 45–57. [Google Scholar] [CrossRef]
- Bennion, B.J.; Daggett, V. The molecular basis for the chemical denaturation of proteins by urea. Proc. Natl. Acad. Sci. USA 2003, 100, 5142–5147. [Google Scholar] [CrossRef] [Green Version]
- Hallsworth, J.E.; Heim, S.; Timmis, K.N. Chaotropic solutes cause water stress in Pseudomonas putida. Environ. Microbiol. 2003, 5, 1270–1280. [Google Scholar] [CrossRef]
- Aviram, I. The interaction of chaotropic anions with acid ferricytochrome c. J. Biol. Chem. 1973, 248, 1894–1896. [Google Scholar]
- Miyawaki, O.; Tatsuno, M. Thermodynamic analysis of alcohol effect on thermal stability of proteins. J. Biosci. Bioeng. 2011, 111, 198–203. [Google Scholar] [CrossRef]
- Cray, J.A.; Russell, J.T.; Timson, D.J.; Singhal, R.S.; Hallsworth, J.E. A universal measure of chaotropicity and kosmotropicity. Environ. Microbiol. 2013, 15, 287–296. [Google Scholar] [CrossRef]
- Ball, P.; Hallsworth, J.E. Water structure and chaotropicity: Their uses, abuses and biological implications. Phys. Chem. Chem. Phys. 2015, 17, 8297–8305. [Google Scholar] [CrossRef]
- Radzicka, A.; Wolfenden, R. A proficient enzyme. Science 1995, 267, 90–93. [Google Scholar] [CrossRef]
- Herschlag, D.; Natarajan, A. Fundamental challenges in mechanistic enzymology: Progress toward understanding the rate enhancements of enzymes. Biochemistry 2013, 52, 2050–2067. [Google Scholar] [CrossRef]
- Goodey, N.M.; Benkovic, S.J. Allosteric regulation and catalysis emerge via a common route. Nat. Chem. Biol. 2008, 4, 474–482. [Google Scholar] [CrossRef]
- Timson, D.J. GHMP kinases - structures, mechanisms and potential for therpeutically relevant inhibition. Curr. Enzym. Inhib. 2007, 3, 77–94. [Google Scholar] [CrossRef]
- Herdendorf, T.J.; Miziorko, H.M. Phosphomevalonate kinase: Functional investigation of the recombinant human enzyme. Biochemistry (John Wiley & Sons) 2006, 45, 3235–3242. [Google Scholar] [CrossRef]
- Fu, Z.; Wang, M.; Potter, D.; Miziorko, H.M.; Kim, J.J. The structure of a binary complex between a mammalian mevalonate kinase and ATP: Insights into the reaction mechanism and human inherited disease. J. Biol. Chem. 2002, 277, 18134–18142. [Google Scholar] [CrossRef]
- Reinhardt, L.A.; Thoden, J.B.; Peters, G.S.; Holden, H.M.; Cleland, W.W. pH-rate profiles support a general base mechanism for galactokinase (Lactococcus lactis). FEBS Lett. 2013, 587, 2876–2881. [Google Scholar] [CrossRef]
- Roy, S.; Vivoli Vega, M.; Harmer, N. Carbohydrate Kinases: A Conserved Mechanism Across Differing Folds. Catalysts 2019, 9, 29. [Google Scholar] [CrossRef]
- Huang, M.; Li, X.; Zou, J.W.; Timson, D.J. Role of Arg228 in the Phosphorylation of Galactokinase: The Mechanism of GHMP Kinases by Quantum Mechanics/Molecular Mechanics Studies. Biochemistry 2013, 52, 4858–4868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Wei, K.; Li, X.; McClory, J.; Hu, G.; Zou, J.W.; Timson, D. Phosphorylation Mechanism of Phosphomevalonate Kinase: Implications for Rational Engineering of Isoprenoid Biosynthetic Pathway Enzymes. J. Phys. Chem. B 2016, 120, 10714–10722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McClory, J.; Lin, J.T.; Timson, D.J.; Zhang, J.; Huang, M. Catalytic mechanism of mevalonate kinase revisited, a QM/MM study. Org. Biomol. Chem. 2019, 17, 2423–2431. [Google Scholar] [CrossRef] [PubMed]
- Kries, H.; Blomberg, R.; Hilvert, D. De novo enzymes by computational design. Curr. Opin. Chem. Biol. 2013, 17, 221–228. [Google Scholar] [CrossRef]
- Hilvert, D. Design of protein catalysts. Annu. Rev. Biochem. 2013, 82, 447–470. [Google Scholar] [CrossRef]
- Lang, K.; Chin, J.W. Cellular incorporation of unnatural amino acids and bioorthogonal labeling of proteins. Chem. Rev. 2014, 114, 4764–4806. [Google Scholar] [CrossRef] [PubMed]
Green Chemistry Principle | How Biocatalysts can Address this Principle |
---|---|
Prevention of waste | Biocatalysts will help eliminate organic solvents, reducing the need to dispose of these environmentally damaging substances. |
Atom economy | No effect if catalysing the same reaction already used. |
Less hazardous materials | Biocatalysis will help eliminate the use of heavy metal catalysts or organic solvents. Natural redox reagents (e.g., NAD(P)+) have low toxicity. Cells and enzymes are biodegradable and thus unlikely to pose a long-term threat to the environment. |
Safer chemicals | This depends on the choice of reaction and so biocatalysis can make little direct contribution. |
Safer solvents and auxiliary chemicals | Biocatalysis will often use water as a solvent. |
Energy efficiency | Biocatalysis is likely to operate in a relatively low temperature range (30–60 °C). They are unlikely to require high pressures. |
Renewable feedstocks | Limited contribution. However, naturally occurring redox cofactors, etc., could be used and produced by fermentation of microbes. |
Reduce derivatives, e.g., “blocking groups” | These are unlikely to be necessary in biocatalysis due to the site- and stereoselectivity of enzymes. |
Catalysis | Enzymes offer impressive rate enhancements, often much greater than catalysts currently in use. |
Products, etc., should be degradable | This depends on the choice of reaction and so biocatalysis can make little direct contribution. |
Real time analysis to prevent pollution | This depends on the design of the process. However, there is no fundamental reason why it cannot be applied in biocatalytic processes. |
Inherently safer chemistry | Biocatalysis allows the elimination of high temperatures and pressures. It moves reactions away from organic solvents towards working in aqueous solutions. All this is inherently safer. |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timson, D.J. Four Challenges for Better Biocatalysts. Fermentation 2019, 5, 39. https://doi.org/10.3390/fermentation5020039
Timson DJ. Four Challenges for Better Biocatalysts. Fermentation. 2019; 5(2):39. https://doi.org/10.3390/fermentation5020039
Chicago/Turabian StyleTimson, David J. 2019. "Four Challenges for Better Biocatalysts" Fermentation 5, no. 2: 39. https://doi.org/10.3390/fermentation5020039
APA StyleTimson, D. J. (2019). Four Challenges for Better Biocatalysts. Fermentation, 5(2), 39. https://doi.org/10.3390/fermentation5020039