The Application of State-of-the-Art Analytic Tools (Biosensors and Spectroscopy) in Beverage and Food Fermentation Process Monitoring
Abstract
1. Introduction
Background
2. Data Mining and Analysis
2.1. Univariate Analysis Limitations
2.2. Chemometrics
3. Applications
3.1. Biosensors
3.2. Ultrasound
3.3. Spectroscopy
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Castro-Puyana, M.; Pérez-Míguez, R.; Montero, L.; Herrero, M. Application of mass spectrometry-based metabolomics approaches for food safety, quality and traceability. TrAC Trends Anal. Chem. 2017, 93, 102–118. [Google Scholar] [CrossRef]
- Daniel, C. Infrared methods for high throughput screening of metabolites: Food and medical applications. Comb. Chem. High Throughput Screen. 2011, 14, 125–131. [Google Scholar]
- Cozzolino, D.; Cynkar, W.U.; Shah, N.; Smith, P. Multivariate data analysis applied to spectroscopy: Potential application to juice and fruit quality. Food Res. Int. 2011, 44, 1888–1896. [Google Scholar] [CrossRef]
- Cozzolino, D.; Cynkar, W.; Shah, N.; Smith, P. Technical solutions for analysis of grape juice, must, and wine: The role of infrared spectroscopy and chemometrics. Anal. Bioanal. Chem. 2011, 401, 1475–1484. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Dambergs, R.G.; Janik, L.; Cynkar, W.U.; Gishen, M. Analysis of grapes and wine by near infrared spectroscopy. J. Near Infrared Spectrosc. 2006, 14, 279–289. [Google Scholar] [CrossRef]
- Cortés, V.; Rodríguez, A.; Blasco, J.; Rey, B.; Besada, C.; Cubero, S.; Salvador, A.; Talens, P.; Aleixos, N. Prediction of the level of astringency in persimmon using visible and near-infrared spectroscopy. J. Food Eng. 2017, 204, 27–37. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, X.; Zhang, Z.; Zhu, R. Data fusion of near-infrared and mid-infrared spectra for identification of rhubarb. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 171, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Chapman, J.; Power, A.; Roberts, J.; Cozzolino, D. Origin and regionality of wines—The role of molecular spectroscopy. Food Anal. Methods 2017. [Google Scholar] [CrossRef]
- Schalk, R.; Geoerg, D.; Staubach, J.; Raedle, M.; Methner, F.-J.; Beuermann, T. Evaluation of a newly developed mid-infrared sensor for real-time monitoring of yeast fermentations. J. Biosci. Bioeng. 2017, 123, 651–657. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, I.; Groschner, K. Modification of the association between alcohol drinking and non-hdl cholesterol by gender. Clin. Chim. Acta 2009, 404, 154–159. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, A.A.; Salem, H.; Hegazy, M.; Ali, O. Evaluating the efficiency of spectral resolution of univariate methods manipulating ratio spectra and comparing to multivariate methods: An application to ternary mixture in common cold preparation. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 137, 1363–1373. [Google Scholar] [CrossRef] [PubMed]
- Silva, A.P.; Jager, G.; Voss, H.-P.; van Zyl, H.; Hogg, T.; Pintado, M.; de Graaf, C. What’s in a name? The effect of congruent and incongruent product names on liking and emotions when consuming beer or non-alcoholic beer in a bar. Food Qual. Preference 2017, 55, 58–66. [Google Scholar] [CrossRef]
- Cozzolino, D.; Ares, G. The use of correlation, association and regression to analyse processes and products. In Mathematical and Statistical Methods in Food Science and Technology; John Wiley & Sons, Ltd.: San Francisco, CA, USA, 2013; pp. 19–30. [Google Scholar]
- Gishen, M.; Dambergs, R.G.; Cozzolino, D. Grape and wine analysis—Enhancing the power of spectroscopy with chemometrics. Aust. J. Grape Wine Res. 2005, 11, 296–305. [Google Scholar] [CrossRef]
- Esbensen, K.H. Multivariate Data Analysis in Practice; CAMO Process, AS: Oslo, Norway, 2002. [Google Scholar]
- Martens, H.; Naes, T. Multivariate Calibration; John Wiley & Sons Ltd.: New York, NY, USA, 1996. [Google Scholar]
- Cozzolino, D.; Cynkar, W.U.; Dambergs, R.G.; Shah, N.; Smith, P. A brief introduction to multivariate methods in grape and wine analysis. Int. J. Wine Res. 2009, 1, 123–130. [Google Scholar] [CrossRef]
- Brereton, R.G. Introduction to multivariate calibration in analytical chemistry. Analyst 2000, 125, 2125–2154. [Google Scholar] [CrossRef]
- Brereton, R.G. Experimental design. In Applied Chemometrics for Scientists; John Wiley & Sons, Ltd.: San Francisco, CA, USA, 2007; pp. 9–62. [Google Scholar]
- Siebert, K.J. Chemometrics in brewing—A review. J. Am. Soc. Brew. Chem. 2001, 59, 147–156. [Google Scholar]
- Munck, L.; Nørgaard, L.; Engelsen, S.B.; Bro, R.; Andersson, C.A. Chemometrics in food science—A demonstration of the feasibility of a highly exploratory, inductive evaluation strategy of fundamental scientific significance. Chemom. Intell. Lab. Syst. 1998, 44, 31–60. [Google Scholar] [CrossRef]
- Geladi, P. Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochim. Acta Part B Atomic Spectrosc. 2003, 58, 767–782. [Google Scholar] [CrossRef]
- Wold, S. Chemometrics; what do we mean with it, and what do we want from it? Chemom. Intell. Lab. Syst. 1995, 30, 109–115. [Google Scholar] [CrossRef]
- Corrêa, S.C.; Pinheiro, A.C.M.; Siqueira, H.E.; Carvalho, E.M.; Nunes, C.A.; Vilas Boas, E.V.d.B. Prediction of the sensory acceptance of fruits by physical and physical–chemical parameters using multivariate models. LWT—Food Sci. Technol. 2014, 59, 666–672. [Google Scholar] [CrossRef]
- Amiry, S.; Esmaiili, M.; Alizadeh, M. Classification of adulterated honeys by multivariate analysis. Food Chem. 2017, 224, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Deng, B.-C.; Yun, Y.-H.; Liang, Y.-Z. Model population analysis in chemometrics. Chemom. Intell. Lab. Syst. 2015, 149, 166–176. [Google Scholar] [CrossRef]
- Scallan, E.; Hoekstra, R.M.; Angulo, F.J.; Tauxe, R.V.; Widdowson, M.-A.; Roy, S.L.; Jones, J.L.; Griffin, P.M. Foodborne illness acquired in the united states—Major pathogens. Emerg. Infect. Dis. 2011, 17, 7. [Google Scholar] [CrossRef] [PubMed]
- Ojha, K.S.; Mason, T.J.; O’Donnell, C.P.; Kerry, J.P.; Tiwari, B.K. Ultrasound technology for food fermentation applications. Ultrason. Sonochem. 2017, 34, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.; Vicente, A. Environmental impact of novel thermal and non-thermal technologies in food processing. Food Res. Int. 2010, 43, 1936–1943. [Google Scholar] [CrossRef]
- Loutfi, A.; Coradeschi, S.; Mani, G.K.; Shankar, P.; Rayappan, J.B.B. Electronic noses for food quality: A review. J. Food Eng. 2015, 144, 103–111. [Google Scholar] [CrossRef]
- Blanco Romía, M.; Alcalà Bernàrdez, M. Chapter 3—Multivariate Calibration for Quantitative Analysis A2-Sun, Da-Wen. In Infrared Spectroscopy for Food Quality Analysis and Contro; Academic Press: San Diego, CA, USA, 2009; pp. 51–82. [Google Scholar]
- Blanco, M.; Villarroya, I. NIR Spectroscopy: A rapid-response analytical tool. TrAC Trends Anal. Chem. 2002, 21, 240–250. [Google Scholar] [CrossRef]
- Næs, T.; Isaksson, T.; Fearn, T. A User-Friendly Guide to Multivariate Calibration and Classification; NIR Publications: Chichester, UK, 2002. [Google Scholar]
- Murray, I.; Cowe, I. Sample preparation In Near Infrared Spectroscopy in Agriculture. In Agronomy; Roberts, C.A., Workman, J., Reeves, J.B., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2004; pp. 75–115. [Google Scholar]
- Murray, I. Forage analysis by near infrared spectroscopy. In Sward Management Handbook; Davies, A., Baker, R.D., Grant, S.A., Laidlaw, A.S., Eds.; British Grassland Society: Kenilworth, UK, 1993; pp. 285–312. [Google Scholar]
- Mark, H. Statistics in Spectroscopy, 2nd ed.; Elsevier: London, UK, 2003. [Google Scholar]
- Mark, H. Principles and Practice of Spectroscopic Calibration; John Wiley & Sons Ltd.: Toronto, ON, Canada, 1991. [Google Scholar]
- Haaland, D.M.; Thomas, E.V. Partial least-squares methods for spectral analysis. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal. Chem. 1988, 60, 193–1198. [Google Scholar] [CrossRef]
- Geladi, P.; Kowalski, B.R. Partial least-squares regression: A tutorial. Anal. Chim. Acta 1986, 185, 1–17. [Google Scholar] [CrossRef]
- Harris, D.C. Quantitative Chemical Analysis, 4th ed.; W.H. Freeman and Company: New York, NY, USA, 1995. [Google Scholar]
- Jurado, J.M.; Alcázar, A.; Muñiz-Valencia, R.; Ceballos-Magaña, S.G.; Raposo, F. Some practical considerations for linearity assessment of calibration curves as function of concentration levels according to the fitness-for-purpose approach. Talanta 2017, 172, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Bettencourt da Silva, R.J.N. Spreadsheet for designing valid least-squares calibrations: A tutorial. Talanta 2016, 148, 177–190. [Google Scholar] [CrossRef] [PubMed]
- Roger, J.M.; Palagos, B.; Bertrand, D.; Fernandez-Ahumada, E. CovSel: Variable selection for highly multivariate and multi-response calibration. Chemom. Intell. Lab. Syst. 2011, 106, 216–223. [Google Scholar] [CrossRef]
- Clementi, S.; Cruciani, G.; Curti, G. Some applications of the partial least-squares method. Anal. Chim. Acta 1986, 191, 149–160. [Google Scholar] [CrossRef]
- Zhang, N.; Liu, X.; Jin, X.; Li, C.; Wu, X.; Yang, S.; Ning, J.; Yanne, P. Determination of total iron-reactive phenolics, anthocyanins and tannins in wine grapes of skins and seeds based on near-infrared hyperspectral imaging. Food Chem. 2017, 237, 811–817. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Liu, L.; Hou, J. A multivariate statistical combination forecasting method for product quality evaluation. Inf. Sci. 2016, 355, 229–236. [Google Scholar] [CrossRef]
- Spiegelberg, J.; Rusz, J. Can we use PCA to detect small signals in noisy data? Ultramicroscopy 2017, 172, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Nouri, M.; Gomez, C.; Gorretta, N.; Roger, J.M. Clay content mapping from airborne hyperspectral Vis-NIR data by transferring a laboratory regression model. Geoderma 2017, 298, 54–66. [Google Scholar] [CrossRef]
- Jensen, A.L.; Kjelgaard-Hansen, M. Method comparison in the clinical laboratory. Vet. Clin. Pathol. 2003, 35, 276–286. [Google Scholar] [CrossRef]
- Norris, K.H.; Ritchie, G.E. Assuring specificity for a multivariate near-infrared (NIR) calibration: The example of the Chambersburg Shoot-out 2002 data set. J. Pharm. Biomed. Anal. 2008, 48, 1037–1041. [Google Scholar] [CrossRef] [PubMed]
- Williams, P.C. Implementation of Near-Infrared technology, in Near Infrared Technology in the Agricultural and Food Industries; Williams, P.C., Norris, K.H., Eds.; American Association of Cereal Chemists: St. Paul, MN, USA, 2001; pp. 145–169. [Google Scholar]
- Fearn, T. Validation. NIR News 1997, 8, 7–8. [Google Scholar] [CrossRef]
- Fearn, T. Assessing Calibrations: SEP, RPD, RER and R2. NIR News 2002, 13, 12–13. [Google Scholar] [CrossRef]
- Nicolaï, B.M.; Beullens, K.; Bobelyn, E.; Peirs, A.; Saeys, W.; Theron, K.I.; Lammertyn, J. Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: A review. Postharvest Biol. Technol. 2007, 46, 99–118. [Google Scholar] [CrossRef]
- Karoui, R.; Downey, G.; Blecker, C. Mid-Infrared Spectroscopy Coupled with Chemometrics: A Tool for the Analysis of Intact Food Systems and the Exploration of Their Molecular Structure-Quality Relationships—A Review. Chem. Rev. 2010, 110, 6144–6168. [Google Scholar] [CrossRef] [PubMed]
- Savitzky, A.; Golay, M.J.E. Smoothing and Differentiation of Data by Simplified Least Squares Procedures. Anal. Chem. 1964, 36, 1627–1639. [Google Scholar] [CrossRef]
- Duckworth, J. Mathematical data processing. In Near Infrared Spectroscopy in Agriculture; Roberts, C.A., Workman, J., Reeved, J.B., Eds.; American Society of Agronomy, Crop Science Society of America, Soil Science Society of America: Madison, WI, USA, 2004; pp. 115–135. [Google Scholar]
- Dhanoa, M.S.; Lister, S.J.; Sanderson, R.; Barnes, R.J. The link between multiplicative scatter correction (msc) and standard normal variate (snv) transformations of NIR spectra. J. Near Infrared Spectrosc. 1994, 2, 43–47. [Google Scholar] [CrossRef]
- Perez, S.; Fabregas, E. Amperometric bienzymatic biosensor for l-lactate analysis in wine and beer samples. Analyst 2012, 137, 3854–3861. [Google Scholar] [CrossRef] [PubMed]
- Thakur, M.S.; Ragavan, K.V. Biosensors in food processing. J. Food Sci. Technol. 2013, 50, 625–641. [Google Scholar] [CrossRef] [PubMed]
- Chandra, S.; Siraj, S.; Wong, D.K.Y. Recent advances in biosensing for neurotransmitters and disease biomarkers using microelectrodes. ChemElectroChem 2017, 4, 822–833. [Google Scholar] [CrossRef]
- Pandurić, N.; Šalić, A.; Zelić, B. Fully integrated biotransformation of fumaric acid by permeabilized baker’s yeast cells with in situ separation of L-malic acid using ultrafiltration, acidification and electrodialysis. Biochem. Eng. J. 2017, 125, 221–229. [Google Scholar] [CrossRef]
- Simó, G.; Vila-Crespo, J.; Fernández-Fernández, E.; Ruipérez, V.; Rodríguez-Nogales, J.M. Highly efficient malolactic fermentation of red wine using encapsulated bacteria in a robust biocomposite of silica-alginate. J. Agric. Food Chem. 2017, 65, 5188–5197. [Google Scholar] [CrossRef] [PubMed]
- Mira de Orduña, R.; Patchett, M.L.; Liu, S.-Q.; Pilone, G.J. Growth and arginine metabolism of the wine lactic acid bacteria lactobacillus buchneri andoenococcus oeni at different ph values and arginine concentrations. Appl. Environ. Microbiol. 2001, 67, 1657–1662. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, F.; Botrè, F.; Favero, G. Peroxidase based biosensors for the selective determination of d,L-lactic acid and L-malic acid in wines. Microchem. J. 2007, 87, 81–86. [Google Scholar] [CrossRef]
- Giménez-Gómez, P.; Gutiérrez-Capitán, M.; Capdevila, F.; Puig-Pujol, A.; Fernández-Sánchez, C.; Jiménez-Jorquera, C. Robust l-malate bienzymatic biosensor to enable the on-site monitoring of malolactic fermentation of red wines. Anal. Chim. Acta 2017, 954, 105–113. [Google Scholar] [CrossRef] [PubMed]
- Vargas, E.; Ruiz, M.A.; Ferrero, F.J.; Campuzano, S.; Ruiz-Valdepeñas Montiel, V.; Reviejo, A.J.; Pingarrón, J.M. Automatic bionalyzer using an integrated amperometric biosensor for the determination of L-malic acid in wines. Talanta 2016, 158, 6–13. [Google Scholar] [CrossRef] [PubMed]
- Molinero-Abad, B.; Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Malate quinone oxidoreductase biosensors based on tetrathiafulvalene and gold nanoparticles modified screen-printed carbon electrodes for malic acid determination in wine. Sens. Actuators B Chem. 2014, 202, 971–975. [Google Scholar] [CrossRef]
- Molinero-Abad, B.; Alonso-Lomillo, M.A.; Domínguez-Renedo, O.; Arcos-Martínez, M.J. Simultaneous amperometric determination of malic and gluconic acids in wine using screen-printed carbon electrodes. Sens. Actuators B Chem. 2015, 211, 250–254. [Google Scholar] [CrossRef]
- Shkotova, L.V.; Piechniakova, N.Y.; Kukla, O.L.; Dzyadevych, S.V. Thin-film amperometric multibiosensor for simultaneous determination of lactate and glucose in wine. Food Chem. 2016, 197, 972–978. [Google Scholar] [CrossRef] [PubMed]
- Cinti, S.; Basso, M.; Moscone, D.; Arduini, F. A paper-based nanomodified electrochemical biosensor for ethanol detection in beers. Anal. Chim. Acta 2017, 960, 123–130. [Google Scholar] [CrossRef] [PubMed]
- Gracin, L.; Jambrak, A.R.; Juretić, H.; Dobrović, S.; Barukčić, I.; Grozdanović, M.; Smoljanić, G. Influence of high power ultrasound on brettanomyces and lactic acid bacteria in wine in continuous flow treatment. Appl. Acoust. 2016, 103, 143–147. [Google Scholar] [CrossRef]
- Nguyen, T.M.P.; Lee, Y.K.; Zhou, W. Effect of high intensity ultrasound on carbohydrate metabolism of bifidobacteria in milk fermentation. Food Chem. 2012, 130, 866–874. [Google Scholar] [CrossRef]
- Tao, Y.; García, J.F.; Sun, D.-W. Advances in wine aging technologies for enhancing wine quality and accelerating wine aging process. Crit. Rev. Food Sci. Nutr. 2014, 54, 817–835. [Google Scholar] [CrossRef] [PubMed]
- Novoa-Díaz, D.; Rodríguez-Nogales, J.; Fernández-Fernández, E.; Vila-Crespo, J.; García-Álvarez, J.; Amer, M.; Chávez, J.; Turó, A.; García-Hernández, M.J.; Salazar, J. Ultrasonic monitoring of malolactic fermentation in red wines. Ultrasonics 2014, 54, 1575–1580. [Google Scholar] [CrossRef] [PubMed]
- Becker, T.; Mitzscherling, M.; Delgado, A. Ultrasonic velocity–a noninvasive method for the determination of density during beer fermentation. Eng. Life Sci. 2001, 1, 61–67. [Google Scholar] [CrossRef]
- Resa, P.; Elvira, L.; De Espinosa, F.M.; Gómez-Ullate, Y. Ultrasonic velocity in water–ethanol–sucrose mixtures during alcoholic fermentation. Ultrasonics 2005, 43, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Winder, W.; Aulik, D.; Rice, A. An ultrasonic method for direct and simultaneous determination of alcohol and extract content of wines. Am. J. Enol. Vitic. 1970, 21, 1–11. [Google Scholar]
- Ogasawara, H.; Mizutani, K.; Ohbuchi, T.; Nakamura, T. Acoustical experiment of yogurt fermentation process. Ultrasonics 2006, 44, e727–e730. [Google Scholar] [CrossRef] [PubMed]
- Stillhart, C.; Kuentz, M. Comparison of high-resolution ultrasonic resonator technology and raman spectroscopy as novel process analytical tools for drug quantification in self-emulsifying drug delivery systems. J. Pharm. Biomed. Anal. 2012, 59, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Grassi, S.; Amigo, J.M.; Lyndgaard, C.B.; Foschino, R.; Casiraghi, E. Beer fermentation: Monitoring of process parameters by ft-nir and multivariate data analysis. Food Chem. 2014, 155, 279–286. [Google Scholar] [CrossRef] [PubMed]
- Giovenzana, V.; Beghi, R.; Guidetti, R. Rapid evaluation of craft beer quality during fermentation process by vis/nir spectroscopy. J. Food Eng. 2014, 142, 80–86. [Google Scholar] [CrossRef]
- Iñón, F.A.; Garrigues, S.; de la Guardia, M. Combination of mid- and near-infrared spectroscopy for the determination of the quality properties of beers. Anal. Chim. Acta 2006, 571, 167–174. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Q.; Zhao, J.; Pan, W.; Chen, Q. Real-time monitoring of process parameters in rice wine fermentation by a portable spectral analytical system combined with multivariate analysis. Food Chem. 2016, 190, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.-Y.; Cho, B.-K. Rapid monitoring of the fermentation process for korean traditional rice wine ‘makgeolli’ using ft-nir spectroscopy. Infrared Phys. Technol. 2015, 73, 95–102. [Google Scholar] [CrossRef]
- Cavinato, A.G.; Mayes, D.M.; Ge, Z.; Callis, J.B. Noninvasive method for monitoring ethanol in fermentation processes using fiber-optic near-infrared spectroscopy. Anal. Chem. 1990, 62, 1977–1982. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wang, J.; Lin, G.; Suo, H.; Zhao, C. Short-wave near-infrared spectrometer for alcohol determination and temperature correction. J. Anal. Methods Chem. 2012, 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Nordon, A.; Mills, A.; Burn, R.T.; Cusick, F.M.; Littlejohn, D. Comparison of non-invasive nir and raman spectrometries for determination of alcohol content of spirits. Anal. Chim. Acta 2005, 548, 148–158. [Google Scholar] [CrossRef]
- Liu, L.; Cozzolino, D.; Cynkar, W.U.; Dambergs, R.G.; Janik, L.; O’Neill, B.K.; Colby, C.B.; Gishen, M. Preliminary study on the application of visible–near infrared spectroscopy and chemometrics to classify riesling wines from different countries. Food Chem. 2008, 106, 781–786. [Google Scholar] [CrossRef]
- Urbano-Cuadrado, M.; Luque de Castro, M.D.; Pérez-Juan, P.M.; García-Olmo, J.; Gómez-Nieto, M.A. Near infrared reflectance spectroscopy and multivariate analysis in enology. Anal. Chim. Acta 2004, 527, 81–88. [Google Scholar] [CrossRef]
- Martelo-Vidal, M.J.; Vázquez, M. Determination of polyphenolic compounds of red wines by uv–vis–nir spectroscopy and chemometrics tools. Food Chem. 2014, 158, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Regmi, U.; Palma, M.; Barroso, C.G. Direct determination of organic acids in wine and wine-derived products by fourier transform infrared (ft-ir) spectroscopy and chemometric techniques. Anal. Chim. Acta 2012, 732, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Sen, I.; Ozturk, B.; Tokatli, F.; Ozen, B. Combination of visible and mid-infrared spectra for the prediction of chemical parameters of wines. Talanta 2016, 161, 130–137. [Google Scholar] [CrossRef] [PubMed]
- Malacarne, M.; Bergamo, L.; Bertoldi, D.; Nicolini, G.; Larcher, R. Use of fourier transform infrared spectroscopy to create models forecasting the tartaric stability of wines. Talanta 2013, 117, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Teslić, N.; Berardinelli, A.; Ragni, L.; Iaccheri, E.; Parpinello, G.P.; Pasini, L.; Versari, A. Rapid assessment of red wine compositional parameters by means of a new waveguide vector spectrometer. LWT—Food Sci. Technol. 2017, 84, 433–440. [Google Scholar] [CrossRef]
- Grassi, S.; Amigo, J.M.; Lyndgaard, C.B.; Foschino, R.; Casiraghi, E. Assessment of the sugars and ethanol development in beer fermentation with ft-ir and multivariate curve resolution models. Food Res. Int. 2014, 62, 602–608. [Google Scholar] [CrossRef]
- Musingarabwi, D.M.; Nieuwoudt, H.H.; Young, P.R.; Eyéghè-Bickong, H.A.; Vivier, M.A. A rapid qualitative and quantitative evaluation of grape berries at various stages of development using fourier-transform infrared spectroscopy and multivariate data analysis. Food Chem. 2016, 190, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Kwiatkowski, M.J.; Waters, E.J.; Gishen, M. A feasibility study on the use of visible and short wavelengths in the near-infrared region for the non-destructive measurement of wine composition. Anal. Bioanal. Chem. 2007, 387, 2289–2295. [Google Scholar] [CrossRef] [PubMed]
- Cozzolino, D.; Cynkar, W.; Shah, N.; Smith, P. Quantitative analysis of minerals and electric conductivity of red grape homogenates by near infrared reflectance spectroscopy. Comput. Electron. Agric. 2011, 77, 81–85. [Google Scholar] [CrossRef]
- Cozzolino, D.; Kwiatkowski, M.J.; Dambergs, R.G.; Cynkar, W.U.; Janik, L.J.; Skouroumounis, G.; Gishen, M. Analysis of elements in wine using near infrared spectroscopy and partial least squares regression. Talanta 2008, 74, 711–716. [Google Scholar] [CrossRef] [PubMed]
- Anjos, O.; Santos, A.J.A.; Estevinho, L.M.; Caldeira, I. Ftir–atr spectroscopy applied to quality control of grape-derived spirits. Food Chem. 2016, 205, 28–35. [Google Scholar] [CrossRef] [PubMed]
- Lachenmeier, D.W. Rapid quality control of spirit drinks and beer using multivariate data analysis of fourier transform infrared spectra. Food Chem. 2007, 101, 825–832. [Google Scholar] [CrossRef]
- Pizarro, C.; González-Sáiz, J.M.; Esteban-Díez, I.; Orio, P. Prediction of total and volatile acidity in red wines by fourier-transform mid-infrared spectroscopy and iterative predictor weighting. Anal. Bioanal. Chem. 2011, 399, 2061–2072. [Google Scholar] [CrossRef] [PubMed]
- Castritius, S.; Geier, M.; Jochims, G.; Stahl, U.; Harms, D. Rapid determination of the attenuation limit of beer using middle-infrared (mir) spectroscopy and a multivariate model. J. Agric. Food Chem. 2012, 60, 6341–6348. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Ying, Y.; Li, B.; Zheng, Y.; Hu, J. Prediction of sugars and acids in chinese rice wine by mid-infrared spectroscopy. Food Res. Int. 2011, 44, 1521–1527. [Google Scholar] [CrossRef]
- Friedel, M.; Patz, C.-D.; Dietrich, H. Comparison of different measurement techniques and variable selection methods for ft-mir in wine analysis. Food Chem. 2013, 141, 4200–4207. [Google Scholar] [CrossRef] [PubMed]
- Romera-Fernández, M.; Berrueta, L.A.; Garmón-Lobato, S.; Gallo, B.; Vicente, F.; Moreda, J.M. Feasibility study of ft-mir spectroscopy and pls-r for the fast determination of anthocyanins in wine. Talanta 2012, 88, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Llario, R.; Iñón, F.A.; Garrigues, S.; de la Guardia, M. Determination of quality parameters of beers by the use of attenuated total reflectance-fourier transform infrared spectroscopy. Talanta 2006, 69, 469–480. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Xu, E.; Long, J.; Zhang, Y.; Wang, F.; Xu, X.; Jin, Z.; Jiao, A. Monitoring of fermentation process parameters of chinese rice wine using attenuated total reflectance mid-infrared spectroscopy. Food Control 2015, 50, 405–412. [Google Scholar] [CrossRef]
- Kutyła-Olesiuk, A.; Wawrzyniak, U.E.; Jańczyk, M.; Wróblewski, W. Electrochemical sensor arrays for the analysis of wine production. Procedia Eng. 2014, 87, 580–583. [Google Scholar] [CrossRef]
- Stashenko, H.; Macku, C.; Shibamoto, T. Monitoring volatile chemicals formed from must during yeast fermentation. J. Agric. food Chem. 1992, 40, 2257–2259. [Google Scholar] [CrossRef]
- Salanitro, J.; Muirhead, P. Quantitative method for the gas chromatographic analysis of short-chain monocarboxylic and dicarboxylic acids in fermentation media. Appl. Microbiol. 1975, 29, 374–381. [Google Scholar] [PubMed]
- Liu, J.; Han, B.; Deng, S.; Sun, S.; Chen, J. Changes in proteases and chemical compounds in the exterior and interior of sufu, a Chinese fermented soybean food, during manufacture. LWT—Food Sci. Technol. 2018, 87, 210–216. [Google Scholar] [CrossRef]
- Sánchez-Paniagua López, M.; Redondo-Gómez, E.; López-Ruiz, B. Electrochemical enzyme biosensors based on calcium phosphate materials for tyramine detection in food samples. Talanta 2017, 175, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Giménez-Gómez, P.; Gutiérrez-Capitán, M.; Capdevila, F.; Puig-Pujol, A.; Fernández-Sánchez, C.; Jiménez-Jorquera, C. Monitoring of malolactic fermentation in wine using an electrochemical bienzymatic biosensor for l-lactate with long term stability. Anal. Chim. Acta 2016, 905, 126–133. [Google Scholar] [CrossRef] [PubMed]
Chemicals Monitored | Fermentation Process | Techniques | Authors |
---|---|---|---|
Volatile flavour chemicals—acetates, ethyl esters, C4–C8 fatty acids | Grapes during yeast fermentation | Gas chromatography | Stashenko et al. [111] |
Short chain monocarboxylic and dicarboxylic acids-butyl esters of volatile (C1–C7) and nonvolatile (lactic, succinic, and fumaric) acids | Microbial fermentation | Gas chromatography flame ionisation detection. | Salanitro and Muirhead [112] |
Proteases and ethanol, ethylene glycol, glucose, isopropanol, and mannitol | Fermented soybean foods | Electrophoresis and 1H NMR methods | Liu et al. [113] |
Malolactic fermentation compounds | Wine fermentation | Pulse-echo ultrasound of 1 MHz measurement using sound velocity | Resa et al. [77] |
Oligosaccharides, improved fermentation rates, accelerated lactose hydrolysis | Probiotic fermented milk | 20 kHz low-frequency ultrasound technique | Nguyen et al. [73] |
Total sugar content, alcohol, and pH | Rice Wine | UV-Vis and NIR spectroscopy coupled with multivariate analysis | Ouyang et al. [84] |
Tyramine | Cheese | Electrochemical enzyme biosensor based on calcium phosphate | Sanchez-Paniagua Lopez et al. [114] |
l-Lactic acid | Wine | Electrochemical bienzymatic | Gimenez-Gomez et al. [115] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandra, S.; Chapman, J.; Power, A.; Roberts, J.; Cozzolino, D. The Application of State-of-the-Art Analytic Tools (Biosensors and Spectroscopy) in Beverage and Food Fermentation Process Monitoring. Fermentation 2017, 3, 50. https://doi.org/10.3390/fermentation3040050
Chandra S, Chapman J, Power A, Roberts J, Cozzolino D. The Application of State-of-the-Art Analytic Tools (Biosensors and Spectroscopy) in Beverage and Food Fermentation Process Monitoring. Fermentation. 2017; 3(4):50. https://doi.org/10.3390/fermentation3040050
Chicago/Turabian StyleChandra, Shaneel, James Chapman, Aoife Power, Jess Roberts, and Daniel Cozzolino. 2017. "The Application of State-of-the-Art Analytic Tools (Biosensors and Spectroscopy) in Beverage and Food Fermentation Process Monitoring" Fermentation 3, no. 4: 50. https://doi.org/10.3390/fermentation3040050
APA StyleChandra, S., Chapman, J., Power, A., Roberts, J., & Cozzolino, D. (2017). The Application of State-of-the-Art Analytic Tools (Biosensors and Spectroscopy) in Beverage and Food Fermentation Process Monitoring. Fermentation, 3(4), 50. https://doi.org/10.3390/fermentation3040050