Acidification Kinetics, Culture Viability, Physicochemical and Antioxidant Characteristics of Yogurt Fortified with Apple Pulp
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Apple Pulp Production and Extraction
2.3. Yogurt Production and Extraction
2.4. Analyses
2.4.1. Acidification Kinetics
2.4.2. Titratable Acidity, pH, and Moisture Content
2.4.3. Water-Holding Capacity and Syneresis
2.4.4. Total Phenolic Content
2.4.5. Antioxidant Activity
2.4.6. Microbiological Analysis
2.5. Statistical Analysis
3. Results and Discussion
3.1. Selection of Apple Cultivar
3.2. Acidification Kinetics of Yogurt
3.3. Quality Assessment of Yogurt
3.3.1. Total Acidity, pH, and Moisture
3.3.2. Syneresis and Water-Holding Capacity
3.4. Viability of Starter Culture
3.5. Total Phenolic Content and Antioxidant Activity of Yogurts
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFU | Colony-forming unit |
DPPH | 1,1-diphenyl-2-picrylhydrazyl |
FRAP | Ferric reducing antioxidant potential |
Y0AP | Yogurt without apple pulp |
Y5AP | Yogurt containing 5% w/w apple pulp |
Y10AP | Yogurt containing 10% w/w apple pulp |
Y15AP | Yogurt containing 15% w/w apple pulp |
References
- Dimitrellou, D.; Salamoura, C.; Kontogianni, A.; Katsipi, D.; Kandylis, P.; Zakynthinos, G.; Varzakas, T. Effect of milk type on the microbiological, physicochemical and sensory characteristics of probiotic fermented milk. Microorganisms 2019, 7, 274. [Google Scholar] [CrossRef]
- Marinaki, E.; Kandylis, P.; Dimitrellou, D.; Zakynthinos, G.; Varzakas, T. Probiotic yogurt production with Lactobacillus casei and prebiotics. Curr. Res. Nutr. Food Sci. 2016, 4, 48–53. [Google Scholar] [CrossRef]
- Ramos, I.M.; Navajas-Porras, B.; Delgado-Osorio, A.; Rufián-Henares, J.Á.; Poveda, J.M. Bioactive compounds and antioxidant properties of sheep’s milk yogurt enriched with a postbiotic extract from Lactiplantibacillus plantarum UCLM56: Effects of in vitro digestion and fermentation. J. Agric. Food Chem. 2025, 73, 7325–7334. [Google Scholar] [CrossRef]
- Manzoor, M.; Anwar, F.; Saari, N.; Ashraf, M. Variations of antioxidant characteristics and mineral contents in pulp and peel of different apple (Malus domestica Borkh.) cultivars from Pakistan. Molecules 2012, 17, 390–407. [Google Scholar] [CrossRef] [PubMed]
- Bondonno, N.P.; Bondonno, C.P.; Ward, N.C.; Hodgson, J.M.; Croft, K.D. The cardiovascular health benefits of apples: Whole fruit vs. isolated compounds. Trends Food Sci. Technol. 2017, 69, 243–256. [Google Scholar] [CrossRef]
- Vallée Marcotte, B.; Verheyde, M.; Pomerleau, S.; Doyen, A.; Couillard, C. Health benefits of apple juice consumption: A review of interventional trials on humans. Nutrients 2022, 14, 821. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, J.A.; dos Santos Pereira, E.; de Oliveira Raphaelli, C.; Radünz, M.; Camargo, T.M.; da Rocha Concenço, F.I.G.; Cantillano, R.F.F.; Fiorentini, A.M.; Nora, L. Application of prebiotics in apple products and potential health benefits. J. Food Sci. Technol. 2022, 59, 1249–1262. [Google Scholar] [CrossRef]
- Henríquez, C.; Almonacid, S.; Chiffelle, I.; Valenzuela, T.; Araya, M.; Cabezas, L.; Simpson, R.; Speisky, H. Determination of antioxidant capacity, total phenolic content and mineral composition of different fruit tissue of five apple cultivars grown in Chile. Chil. J. Agric. Res. 2010, 70, 523–536. [Google Scholar] [CrossRef]
- Wajs, J.; Brodziak, A.; Król, J. Shaping the physicochemical, functional, microbiological and sensory properties of yoghurts using plant additives. Foods 2023, 12, 1275. [Google Scholar] [CrossRef]
- Kandylis, P.; Dimitrellou, D.; Moschakis, T. Recent applications of grapes and their derivatives in dairy products. Trends Food Sci. Technol. 2021, 114, 696–711. [Google Scholar] [CrossRef]
- Salehi, F. Quality, physicochemical, and textural properties of dairy products containing fruits and vegetables: A review. Food Sci. Nutr. 2021, 9, 4666–4686. [Google Scholar] [CrossRef]
- Jaster, H.; Arend, G.D.; Rezzadori, K.; Chaves, V.C.; Reginatto, F.H.; Petrus, J.C.C. Enhancement of antioxidant activity and physicochemical properties of yogurt enriched with concentrated strawberry pulp obtained by block freeze concentration. Food Res. Int. 2018, 104, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Pereira, E.P.R.; Ferreira, B.M.; Freire, L.; Neri-Numa, I.A.; Guimarães, J.T.; Rocha, R.S.; Pastore, G.M.; Cruz, A.G.; Sant’aNa, A.S. Enhancing the functionality of yogurt: Impact of exotic fruit pulps addition on probiotic viability and metabolites during processing and storage. Food Res. Int. 2024, 196, 115057. [Google Scholar] [CrossRef]
- Jackson, C.; Shukla, V.; Kolba, N.; Agarwal, N.; Padilla-Zakour, O.I.; Tako, E. Empire apple (Malus domestica) juice, pomace, and pulp modulate intestinal functionality, morphology, and bacterial populations in vivo (Gallus gallus). Nutrients 2022, 14, 4955. [Google Scholar] [CrossRef] [PubMed]
- Oyenihi, A.B.; Belay, Z.A.; Mditshwa, A.; Caleb, O.J. “An apple a day keeps the doctor away”: The potentials of apple bioactive constituents for chronic disease prevention. J. Food Sci. 2022, 87, 2291–2309. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, A.; Abbas, N.; Gilani, A.H. Quality of stirred buffalo milk yogurt blended with apple and banana fruits. Pak. J. Agric. Sci. 2008, 45, 275–279. [Google Scholar]
- Jovanović, M.; Petrović, M.; Miočinović, J.; Zlatanović, S.; Laličić Petronijević, J.; Mitić-Ćulafić, D.; Gorjanović, S. Bioactivity and sensory properties of probiotic yogurt fortified with apple pomace flour. Foods 2020, 9, 763. [Google Scholar] [CrossRef]
- Popescu, L.; Ceșco, T.; Gurev, A.; Ghendov-Mosanu, A.; Sturza, R.; Tarna, R. Impact of apple pomace powder on the bioactivity, and the sensory and textural characteristics of yogurt. Foods 2022, 11, 3565. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. Adding apple pomace as a functional ingredient in stirred-type yogurt and yogurt drinks. Food Hydrocoll. 2020, 100, 105453. [Google Scholar] [CrossRef]
- Kim, J.; Kim, M.; Choi, I. Physicochemical characteristics, antioxidant properties and consumer acceptance of Greek yogurt fortified with apple pomace syrup. Foods 2023, 12, 1856. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Sakadani, E.; Kandylis, P. Enhancing probiotic viability in yogurt: The role of apple fibers in supporting Lacticaseibacillus casei ATCC 393 during storage and gastrointestinal transit. Foods 2025, 14, 376. [Google Scholar] [CrossRef]
- Chakraborty, C.; Mukherjee, S.; Biswas, S. Evaluation of rheological, physicochemical, and sensory properties of apple fortified yoghurt. Indian. J. Dairy. Sci. 2019, 72, 53–58. [Google Scholar] [CrossRef]
- Saleh, I.; Abdelwahed, E.M.; Rabie, A.M.H.; El-Ella, A. Fortification of probiotic stirred yoghurt by addition of apple and mango pulps. Zagazig J. Agric. Res. 2018, 45, 625–635. [Google Scholar] [CrossRef]
- Wang, X.; Kristo, E.; LaPointe, G. The effect of apple pomace on the texture, rheology and microstructure of set type yogurt. Food Hydrocoll. 2019, 91, 83–91. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Moschakis, T.; Kandylis, P. Impact of apple pulp on textural characteristics, microstructure, volatile profile, and sensory acceptance of yogurts. Foods 2025, 14, 2453. [Google Scholar] [CrossRef]
- Senadeera, S.S.; Prasanna, P.H.P.; Jayawardana, N.W.I.A.; Gunasekara, D.C.S.; Senadeera, P.; Chandrasekara, A. Antioxidant, physicochemical, microbiological, and sensory properties of probiotic yoghurt incorporated with various Annona species pulp. Heliyon 2018, 4, e00955. [Google Scholar] [CrossRef] [PubMed]
- Dimitrellou, D.; Solomakou, N.; Kokkinomagoulos, E.; Kandylis, P. Yogurts supplemented with juices from grapes and berries. Foods 2020, 9, 1158. [Google Scholar] [CrossRef] [PubMed]
- Ning, X.; Luo, Z.; Chen, Z.; Zhou, C.; Xie, C.; Du, W.; Wang, L. Fortification of set yogurt with passion fruit juice: Effects on fermentation kinetics, physicochemical properties, and functionality. J. Dairy. Sci. 2021, 104, 4084–4093. [Google Scholar] [CrossRef]
- Bullock, Y.; Gruen, I. Effect of strained yogurt on the physico-chemical, texture, and sensory properties of low-fat frozen desserts. Food Chem. Adv. 2023, 2, 100161. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Imeh, U.; Khokhar, S. Distribution of conjugated and free phenols in fruits: Antioxidant activity and cultivar variations. J. Agric. Food Chem. 2002, 50, 6301–6306. [Google Scholar] [CrossRef]
- Tsao, R.; Yang, R.; Xie, S.; Sockovie, E.; Khanizadeh, S. Which polyphenolic compounds contribute to the total antioxidant activities of apple? J. Agric. Food Chem. 2005, 53, 4989–4995. [Google Scholar] [CrossRef]
- Piagentini, A.M.; Pirovani, M.E. Total phenolics content, antioxidant capacity, physicochemical attributes, and browning susceptibility of different apple cultivars for minimal processing. Int. J. Fruit. Sci. 2017, 17, 102–116. [Google Scholar] [CrossRef]
- du Toit, D.; Iniguez, A.B.; Sun, Q.; Zhu, M.J. Impact of cultivation practices and storage conditions on polyphenol content and antioxidant activity in ‘WA 38’,‘Granny Smith’, and ‘Cripps Pink’apples. Postharvest Biol. Technol. 2024, 217, 113100. [Google Scholar] [CrossRef]
- Sung, J.M.; Kim, Y.B.; Kum, J.S.; Choi, Y.S.; Seo, D.H.; Choi, H.W.; Park, J.D. Effects of freeze-dried mulberry on antioxidant activities and fermented characteristics of yogurt during refrigerated storage. Korean J. Food Sci. Anim. Resour. 2015, 35, 807. [Google Scholar] [CrossRef] [PubMed]
- Sanusi, M.S.; Raji, A.O.; Ayilaran, E.O. Kinetic acidification and quality composition of yoghurt produced with soursop puree. J. Food Meas. Charact. 2022, 16, 2229–2239. [Google Scholar] [CrossRef]
- Dimitrellou, D.; Kandylis, P.; Kourkoutas, Y. Assessment of freeze-dried immobilized Lactobacillus casei as probiotic adjunct culture in yogurts. Foods 2019, 8, 374. [Google Scholar] [CrossRef]
- Ergün, Z. Determination of biochemical contents of fresh, oven-dried, and sun-dried peels and pulps of five apple cultivars (Amasya, Braeburn, Golden Delicious, Granny Smith, and Starking). J. Food Qual. 2021, 2021, 9916694. [Google Scholar] [CrossRef]
- Yang, T.X.; Liu, Z.H.; Zhang, Y.N.; Hou, Y.; Wu, K.Y.; Duan, X. Goats’ milk yogurt with passion fruit pulp: Impact of the addition on antioxidant activity, physico-chemical and sensory properties. J. Food Nutr. Res. 2023, 62, 163–169. [Google Scholar]
- Arab, M.; Yousefi, M.; Khanniri, E.; Azari, M.; Ghasemzadeh-Mohammadi, V.; Mollakhalili-Meybodi, N. A comprehensive review on yogurt syneresis: Effect of processing conditions and added additives. J. Food Sci. Technol. 2023, 60, 1656–1665. [Google Scholar] [CrossRef]
- Khubber, S.; Chaturvedi, K.; Thakur, N.; Sharma, N.; Yadav, S.K. Low-methoxyl pectin stabilizes low-fat set yoghurt and improves their physicochemical properties, rheology, microstructure and sensory liking. Food Hydrocoll. 2021, 111, 106240. [Google Scholar] [CrossRef]
- Zygmantaitė, G.; Keršienė, M.; Jasutienė, I.; Šipailienė, A.; Venskutonis, P.R.; Leskauskaitė, D. Extract isolated from cranberry pomace as functional ingredient in yoghurt production: Technological properties and digestibility studies. LWT 2021, 148, 111751. [Google Scholar] [CrossRef]
- Lyu, F.; Luiz, S.F.; Azeredo, D.R.P.; Cruz, A.G.; Ajlouni, S.; Ranadheera, C.S. Apple pomace as a functional and healthy ingredient in food products: A review. Processes 2020, 8, 319. [Google Scholar] [CrossRef]
- FAO/WHO. Codex standard for fermented milks 243. In Codex Alimentarius Commission: Milk and Milk Products, 2nd ed.; CODEX STAN 243-2003; World Health Organization & Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; pp. 6–16. [Google Scholar]
- Feng, C.; Wang, B.; Zhao, A.; Wei, L.; Shao, Y.; Wang, Y.; Cao, B.; Zhang, F. Quality characteristics and antioxidant activities of goat milk yogurt with added jujube pulp. Food Chem. 2019, 277, 238–245. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Evans, C.A.; Adams, M.C.; Baines, S.K. Probiotic viability and physico-chemical and sensory properties of plain and stirred fruit yogurts made from goat’s milk. Food Chem. 2012, 135, 1411–1418. [Google Scholar] [CrossRef]
- Venizelou, M.; Kehagias, C.; Samona, A.; Koulouris, S. Survival of yoghurt characteristic microorganisms in fruit yoghurts prepared under various conditions. Egyptian J. Dairy. Sci. 2000, 1, 25–52. [Google Scholar]
- Fernandes, P.A.; Ferreira, S.S.; Bastos, R.; Ferreira, I.; Cruz, M.T.; Pinto, A.; Coelho, E.; Passos, C.P.; Coimbra, M.A.; Cardoso, S.M.; et al. Apple pomace extract as a sustainable food ingredient. Antioxidants 2019, 8, 189. [Google Scholar] [CrossRef]
- Wilkowska, A.; Nowak, A.; Antczak-Chrobot, A.; Motyl, I.; Czyżowska, A.; Paliwoda, A. Structurally different pectic oligosaccharides produced from apple pomace and their biological activity in vitro. Foods 2019, 8, 365. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, H.; Hutkins, R.W. Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Appl. Environ. Microbiol. 2000, 66, 2682–2684. [Google Scholar] [CrossRef] [PubMed]
- Güler-Akın, M.B.; Akın, M.S. Effects of cysteine and different incubation temperatures on the microflora, chemical composition and sensory characteristics of bio-yogurt made from goat’s milk. Food Chem. 2007, 100, 788–793. [Google Scholar] [CrossRef]
- Kapse, N.; Pisu, V.; Dhakephalkar, T.; Margale, P.; Shetty, D.; Wagh, S.; Dagar, S.; Dhakephalkar, P.K. Unveiling the probiotic potential of Streptococcus thermophilus MCC0200: Insights from in vitro studies corroborated with genome analysis. Microorganisms 2024, 12, 347. [Google Scholar] [CrossRef] [PubMed]
- Paz, D.; Aleman, R.S.; Cedillos, R.; Olson, D.W.; Aryana, K.; Marcia, J.; Boeneke, C. Probiotic characteristics of Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus as influenced by Carao (Cassia grandis). Fermentation 2022, 8, 499. [Google Scholar] [CrossRef]
- Tarrah, A.; Castilhos, J.D.; Rossi, R.C.; Duarte, V.D.S.; Ziegler, D.R.; Corich, V.; Giacomini, A. In vitro probiotic potential and anti-cancer activity of newly isolated folate-producing Streptococcus thermophilus strains. Front. Microbiol. 2018, 9, 2214. [Google Scholar] [CrossRef]
- O’Connell, J.E.; Fox, P.F. Significance and applications of phenolic compounds in the production and quality of milk and dairy products: A review. Int. Dairy. J. 2001, 11, 103–120. [Google Scholar] [CrossRef]
- Mutlu, M.D.; Kanmaz, H.; Kaya, B.; Hayaloğlu, A.A. Enrichment in Bioactive, Techno-Functional and Health Benefits of Yogurt Fortified with Cranberry (Cornus mas L.). Dairy 2025, 6, 12. [Google Scholar] [CrossRef]
- Zahid, H.F.; Ranadheera, C.S.; Fang, Z.; Ajlouni, S. Functional and healthy yogurts fortified with probiotics and fruit peel powders. Fermentation 2022, 8, 469. [Google Scholar] [CrossRef]
- Savatović, S.M.; Ćetković, G.S.; Đilas, S.M.; Tumbas, V.T.; Čanadanović-Brunet, J.M.; Četojević-Simin, D.D.; Mandić, A.I. Antioxidant and antiproliferative activity of Granny Smith apple pomace. Acta Period. Technol. 2008, 39, 201–212. [Google Scholar] [CrossRef]
- Ćetković, G.; Čanadanović-Brunet, J.; Djilas, S.; Savatović, S.; Mandić, A.; Tumbas, V. Assessment of polyphenolic content and in vitro antiradical characteristics of apple pomace. Food Chem. 2008, 109, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Blanda, G.; Cerretani, L.; Cardinali, A.; Bendini, A.; Lercker, G. Effect of frozen storage on the phenolic content of vacuum impregnated Granny Smith and Stark Delicious apple cvv. Eur. Food Res. Technol. 2008, 227, 961–964. [Google Scholar] [CrossRef]
Parameters | Yogurt Samples | Significance | |||
---|---|---|---|---|---|
Y0AP | Y5AP | Y10AP | Y15AP | ||
Vmax (×10−3 pH/min) | 14.7 ± 0.5 C | 12.8 ± 0.0 B | 11.9 ± 0.6 AB | 10.7 ± 0.8 A | *** |
TVmax (min) | 137.5 ± 0.0 B | 137.5 ± 0.0 B | 112.5 ± 0.0 A | 112.5 ± 0.0 A | *** |
TpH4.6 (min) | 230 ± 4 C | 220 ± 0 B | 215 ± 3 AB | 210 ± 2 A | *** |
Parameters | Storage (Days) | Yogurt Samples | Significance | |||
---|---|---|---|---|---|---|
Y0AP | Y5AP | Y10AP | Y15AP | |||
pH | 1 | 4.32 ± 0.00 aA | 4.34 ± 0.01 aA | 4.24 ± 0.01 aB | 4.24 ± 0.04 aB | ** |
7 | 4.23 ± 0.02 abA | 4.26 ± 0.04 abA | 4.21 ± 0.01 aA | 4.27 ± 0.03 aA | ns | |
14 | 4.15 ± 0.06 bA | 4.16 ± 0.05 bcA | 4.17 ± 0.06 abA | 4.12 ± 0.06 abA | ns | |
21 | 4.07 ± 0.05 bA | 4.11 ± 0.06 bcA | 4.06 ± 0.05 bcA | 4.04 ± 0.01 bA | ns | |
28 | 4.03 ± 0.03 bA | 4.05 ± 0.04 cA | 3.98 ± 0.03 cA | 4.00 ± 0.06 bA | ns | |
significance | ** | ** | ** | ** | ||
Acidity (lactic acid % w/w) | 1 | 0.98 ± 0.03 aA | 1.00 ± 0.03 aA | 1.01 ± 0.02 aA | 1.02 ± 0.02 aA | ns |
7 | 1.05 ± 0.04 abA | 1.10 ± 0.03 abA | 1.12 ± 0.03 bA | 1.10 ± 0.03 abA | ns | |
14 | 1.10 ± 0.01 bcA | 1.19 ± 0.02 bB | 1.19 ± 0.04 bcB | 1.19 ± 0.02 bB | * | |
21 | 1.12 ± 0.01 bcA | 1.15 ± 0.03 bA | 1.18 ± 0.00 bcA | 1.12 ± 0.01 bA | ns | |
28 | 1.19 ± 0.01 cAB | 1.19 ± 0.01 bAB | 1.25 ± 0.03 cA | 1.15 ± 0.03 bB | * | |
significance | ** | ** | ** | ** | ||
Moisture (% w/w) | 1 | 84.1 ± 0.1 aA | 85.2 ± 0.4 aA | 84.9 ± 1.0 aA | 85.4 ± 0.1 aA | ns |
7 | 84.4 ± 0.5 aA | 84.7 ± 0.4 aA | 84.5 ± 0.4 aA | 84.0 ± 0.9 aA | ns | |
14 | 84.7 ± 0.9 aA | 84.6 ± 0.7 aB | 85.0 ± 1.2 aB | 85.4 ± 0.7 aB | ns | |
21 | 84.6 ± 0.4 aA | 83.8 ± 1.0 aA | 84.4 ± 1.1 aA | 84.2 ± 0.3 aA | ns | |
28 | 85.2 ± 0.3 aA | 83.9 ± 0.7 aA | 85.3 ± 0.3 aA | 83.6 ± 0.5 aB | ns | |
significance | ns | ns | ns | ns |
Parameters | Storage (Days) | Yogurt Samples | Significance | |||
---|---|---|---|---|---|---|
Y0AP | Y5AP | Y10AP | Y15AP | |||
Syneresis (% v/v) | 1 | 30.7 ± 1.3 A | 22.3 ± 1.3 aB | 23.4 ± 1.1 aB | 22.8 ± 1.1 abB | ** |
7 | 28.7 ± 1.8 A | 21.6 ± 0.6 aB | 23.1 ± 1.3 aB | 21.6 ± 0.6 aB | * | |
14 | 30.8 ± 1.7 A | 22.6 ± 0.6 aB | 24.7 ± 1.1 abB | 25.8 ± 1.1 bcB | ** | |
21 | 29.7 ± 0.4 A | 24.1 ± 1.3 abB | 26.4 ± 0.8 abB | 26.3 ± 0.4 bcB | * | |
28 | 28.0 ± 0.7 AB | 25.5 ± 0.4 bB | 28.5 ± 0.7 bA | 26.0 ± 0.8 cAB | * | |
significance | ns | * | * | ** | ||
Water-holding capacity (% w/w) | 1 | 42.8 ± 0.8 A | 47.3 ± 1.5 AB | 50.2 ± 1.4 B | 52.0 ± 1.3 B | ** |
7 | 44.8 ± 0.8 A | 46.4 ± 1.2 A | 52.8 ± 0.8 B | 50.3 ± 0.7 B | ** | |
14 | 47.0 ± 0.7 A | 49.2 ± 0.1 AB | 54.6 ± 1.9 C | 53.3 ± 1.1 BC | ** | |
21 | 46.2 ± 1.8 A | 48.6 ± 1.0 A | 54.0 ± 0.8 B | 54.2 ± 1.2 B | ** | |
28 | 46.5 ± 0.7 A | 46.8 ± 0.2 AB | 50.4 ± 0.6 B | 53.4 ± 0.7 C | ** | |
significance | ns | ns | * | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrellou, D.; Kandylis, P. Acidification Kinetics, Culture Viability, Physicochemical and Antioxidant Characteristics of Yogurt Fortified with Apple Pulp. Fermentation 2025, 11, 466. https://doi.org/10.3390/fermentation11080466
Dimitrellou D, Kandylis P. Acidification Kinetics, Culture Viability, Physicochemical and Antioxidant Characteristics of Yogurt Fortified with Apple Pulp. Fermentation. 2025; 11(8):466. https://doi.org/10.3390/fermentation11080466
Chicago/Turabian StyleDimitrellou, Dimitra, and Panagiotis Kandylis. 2025. "Acidification Kinetics, Culture Viability, Physicochemical and Antioxidant Characteristics of Yogurt Fortified with Apple Pulp" Fermentation 11, no. 8: 466. https://doi.org/10.3390/fermentation11080466
APA StyleDimitrellou, D., & Kandylis, P. (2025). Acidification Kinetics, Culture Viability, Physicochemical and Antioxidant Characteristics of Yogurt Fortified with Apple Pulp. Fermentation, 11(8), 466. https://doi.org/10.3390/fermentation11080466