Comprehensive Analysis of Formation Water Microorganisms for Their Biosurfactant Potential in MEOR Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Chemical Analysis of Formation Water
2.3. Next-Generation Sequencing (NGS)
2.4. Isolation and Screening of Microorganisms
2.5. FT-IR Spectroscopic Analysis of Crude Biosurfactant
2.6. Genetic Identification of Biosurfactants
3. Results and Discussion
3.1. Chemical Composition of Formation Water
3.2. Distribution Characteristics of the Microbial Community
3.3. Screening of Biosurfactant-Producing Isolates
3.4. FT-IR Analysis of Biosurfactant
3.5. Genetic Markers of Biosurfactant Synthesis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sen, R. Biotechnology in petroleum recovery: The microbial EOR. Prog. Energy Combust. Sci. 2008, 34, 714–724. [Google Scholar] [CrossRef]
- Nikolova, C.; Gutierrez, T. Use of Microorganisms in the Recovery of Oil from Recalcitrant Oil Reservoirs: Current State of Knowledge, Technological Advances and Future Perspectives. Front. Microbiol. 2020, 10, 2996. [Google Scholar] [CrossRef] [PubMed]
- Banat, I.M.; Franzetti, A.; Gandolfi, I.; Bestetti, G.; Martinotti, M.G.; Fracchia, L.; Smyth, T.J.; Marchant, R. Microbial biosurfactants production, applications and future potential. Appl. Microbiol. Biotechnol. 2010, 87, 427–444. [Google Scholar] [CrossRef] [PubMed]
- Couto, M.R.; Gudiña, E.J.; Ferreira, D.; Teixeira, J.A.; Rodrigues, L.R. The biopolymer produced by Rhizobium viscosum CECT 908 is a promising agent for application in microbial enhanced oil recovery. New Biotechnol. 2019, 49, 144–150. [Google Scholar] [CrossRef]
- Wu, B.; Xiu, J.; Yu, L.; Huang, L.; Yi, L.; Ma, Y. Research advances of microbial enhanced oil recovery. Heliyon 2022, 8, e11424. [Google Scholar] [CrossRef]
- Ramjan, T.; Mohammadi, A. An Overview of Microbial Enhanced Oil Recovery. Pet. Coal 2024, 66, 1455–1470. [Google Scholar]
- Mukherjee, S.; Das, P.; Sen, R. Towards commercial production of microbial surfactants. TRENDS Biotechnol. 2006, 24, 509–515. [Google Scholar] [CrossRef]
- Geetha, S.J.; Banat, I.M.; Joshi, S.J. Biosurfactants: Production and potential applications in microbial enhanced oil recovery (MEOR). Biocatal. Agric. Biotechnol. 2018, 14, 23–32. [Google Scholar]
- McInerney, M.J.; Knapp, R.M.; Duncan, K.; Simpson, D.R.; Youssef, N.; Ravi, N.; Folmsbee, M.J.; Fincher, T.; Maudgalya, S.; Davis, J. Development of an In Situ Biosurfactant Production Technology for Enhanced Oil Recovery; University of Oklahoma: Norman, OK, USA, 2007. Available online: https://www.osti.gov/biblio/943328 (accessed on 10 February 2025).
- Fernandes, N.A.T.; Simões, L.A.; Dias, D.R. Comparison of Biodegradability, and Toxicity Effect of Biosurfactants with Synthetic Surfactants. In Advancements in Biosurfactants Research; Aslam, R., Mobin, M., Aslam, J., Zehra, S., Eds.; Springer: Cham, Switzerland, 2023. [Google Scholar] [CrossRef]
- Phetcharat, T.; Dawkrajai, P.; Chitov, T.; Mhuantong, W.; Champreda, V.; Bovonsombut, S. Biosurfactant-Producing Capability and Prediction of Functional Genes Potentially Beneficial to Microbial Enhanced Oil Recovery in Indigenous Bacterial Communities of an Onshore Oil Reservoir. Curr. Microbiol. 2019, 76, 382–391. [Google Scholar] [CrossRef]
- Jha, S.S.; Joshi, S.J.; Geetha, S.J. Lipopeptide production by Bacillus subtilis R1 and its possible applications. Braz. J. Microbiol. 2016, 47, 955–964. [Google Scholar] [CrossRef]
- Zhao, F.; Zhang, J.; Shi, R.; Han, S.; Ma, F.; Zhang, Y. Production of biosurfactant by a Pseudomonas aeruginosa isolate and its applicability to in situ microbial enhanced oil recovery under anoxic conditions. RSC Adv. 2015, 5, 36044–36050. [Google Scholar] [CrossRef]
- Gudina, E.J.; Pereira, J.F.; Costa, R.; Coutinho, J.A.; Teixeira, J.A.; Rodrigues, L.R. Biosurfactant-producing and oil-degrading Bacillus subtilis strains enhance oil recovery in laboratory sand-pack columns. J. Hazard. Mater. 2013, 261, 106–113. [Google Scholar] [CrossRef]
- Samanta, A. Biosurfactants and Its Application in Oil Recovery. In Surfactants in Upstream E&P; Solling, T., Kamal, M.S., Hussain, S.M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 181–205. [Google Scholar] [CrossRef]
- Sari, C.N.; Hertadi, R.; Harahap, A.F.P.; Ramadhan, M.Y.A.; Gozan, M. Process optimization of palm oil mill effluent-based biosurfactant of Halomonas meridiana BK-AB4 originated from Bledug Kuwu Mud Volcano in Central Java for microbial enhanced oil recovery. Processes 2020, 8, 716. [Google Scholar] [CrossRef]
- Dhanarajan, G.; Rangarajan, V.; Bandi, C.; Dixit, A.; Das, S.; Ale, K.; Sen, R. Biosurfactant-biopolymer driven microbial enhanced oil recovery (MEOR) and its optimization by an ANN-GA hybrid technique. J. Biotechnol. 2017, 256, 46–56. [Google Scholar] [CrossRef]
- GOST 2517-2012; Petroleum and Petroleum Products. Methods of Sampling. GOST: Bergamo, Italy, 2012.
- GOST 26449.1-85; Stationary Distillation Desalting Units. Methods of Saline Water Chemical Analysis. GOST: Bergamo, Italy, 1985.
- MT No. 13-2020; Measurement Methods. KazStandard: Astana, Kazakhstan, 2020.
- GOST 23268.11-78; Drinking Medicinal, Medicinal-Table and Natural-Table Mineral Waters. Methods of Determination of Iron Ions. GOST: USSR (Adopted in Kazakhstan). 1978. Available online: https://meganorm.ru/mega_doc/norm/gost_gosudarstvennyj-standart/25/gost_23268_11-78_gosudarstvennyy_standart_soyuza_ssr_vody.html (accessed on 29 March 2025).
- GOST 23268.16-78; Drinking Medicinal, Medicinal-Table and Natural-Table Mineral Waters. Methods of Determination Iodide Ions. GOST: USSR (Adopted in Kazakhstan). 1978. Available online: https://meganorm.ru/Data2/1/4294830/4294830767.pdf (accessed on 29 March 2025).
- GOST 23268.15-78; Drinking Medicinal, Medicinal-Table and Natural-Table Mineral Waters. Methods of Determination of Bromide-Ions. GOST: USSR (Adopted in Kazakhstan). 1978. Available online: https://www.gostrf.com/normadata/1/4294830/4294830768.pdf (accessed on 29 March 2025).
- ASTM D 445:2011; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM: Kazakhstan. 2011. Available online: https://store.astm.org/standards/d445 (accessed on 29 March 2025).
- GOST 18995.1-73; Liquid Chemical Products. Methods for Determination of Density. GOST: USSR (Adopted in Kazakhstan). 1973. Available online: https://files.stroyinf.ru/Data2/1/4294834/4294834295.pdf (accessed on 29 March 2025).
- Cooper, D.G.; Macdonald, C.R.; Duff, S.J.B.; Kosaric, N. Enhanced production of surfactin from Bacillus subtilis by continuous product removal and metal cation additions. Appl. Environ. Microbiol. 1981, 42, 408–412. [Google Scholar] [CrossRef]
- Youssef, N.H.; Duncan, K.E.; Nagle, D.P.; Savage, K.N.; Knapp, R.M.; McInerney, M.J. Comparison of methods to detect biosurfactant production by diverse microorganisms. J. Microbiol. Methods 2004, 56, 339–347. [Google Scholar] [CrossRef]
- Cooper, D.G.; Goldenberg, B.G. Surface-active agents from two Bacillus species. Appl. Environ. Microbiol. 1987, 53, 224–229. [Google Scholar] [CrossRef]
- Ebnesajjad, S. Surface tension and its measurement. In Handbook of Adhesives and Surface Preparation; Elsevier: Amsterdam, The Netherlands, 2011; pp. 21–30. Available online: https://www.sciencedirect.com/science/article/pii/B9781437744613100033 (accessed on 10 March 2025).
- Zhang, J.; Xue, Q.; Gao, H.; Lai, H.; Wang, P. Production of lipopeptide biosurfactants by Bacillus atrophaeus 5-2a and their potential use in microbial enhanced oil recovery. Microb. Cell Factories 2016, 15, 168. [Google Scholar] [CrossRef] [PubMed]
- Shaimerdenova, U.; Kaiyrmanova, G.; Lewandowska, W.; Bartoszewicz, M.; Swiecicka, I.; Yernazarova, A. Biosurfactant and biopolymer producing microorganisms from West Kazakhstan oilfield. Sci. Rep. 2024, 14, 2294. [Google Scholar] [CrossRef]
- Płaza, G.; Chojniak, J.; Rudnicka, K.; Paraszkiewicz, K.; Bernat, P. Detection of biosurfactants in Bacillus species: Genes and products identification. J. Appl. Microbiol. 2015, 119, 1023–1034. [Google Scholar] [CrossRef]
- Mindiola, G.L.; Flores, M.; Rondón, A.E. Factibilidad de aplicación de la tecnología de recuperación mejorada de hidrocarburos con microorganismos (MEOR) en yacimientos del campo Pilón, distrito Morichal, estado Monagas. Ing. Y Compet. 2021, 23, 2. [Google Scholar] [CrossRef]
- Alkan, H.; Biegel, E.; Krüger, M.; Sitte, J.; Kögler, F.; Bültemeier, H.; Beier, K.; McInerney, M.J.; Herold, A.; Hatscher, S. An Integrated MEOR Project; Workflow to Develop a Pilot in a German Field. SPE Improved Oil Recovery Conference? SPE-169151. Available online: https://onepetro.org/SPEIOR/proceedings-abstract/14IOR/All-14IOR/SPE-169151-MS/211182 (accessed on 20 March 2025).
- Ge, M.-R.; Miao, S.-J.; Liu, J.-F.; Gang, H.-Z.; Yang, S.-Z.; Mu, B.-Z. Laboratory studies on a novel salt-tolerant and alkali-free flooding system composed of a biopolymer and a bio-based surfactant for oil recovery. J. Pet. Sci. Eng. 2021, 196, 107736. [Google Scholar] [CrossRef]
- Sayyouh, M.H.; Al-Blehed, M.S.; Hemeida, A.M. Possible Applications of MEOR to the Arab Oil Fields. J. King Saud Univ.-Eng. Sci. 1993, 5, 291–301. [Google Scholar] [CrossRef]
- Safdel, M.; Anbaz, M.A.; Daryasafar, A.; Jamialahmadi, M. Microbial enhanced oil recovery, a critical review on worldwide implemented field trials in different countries. Renew. Sustain. Energy Rev. 2017, 74, 159–172. [Google Scholar] [CrossRef]
- Guo, H.; Li, Y.; Yiran, Z.; Wang, F.; Wang, Y.; Yu, Z.; Haicheng, S.; Yuanyuan, G.; Chuyi, J.; Xian, G. Progress of microbial enhanced oil recovery in China. In Proceedings of the SPE Asia Pacific Enhanced Oil Recovery Conference, Kuala Lumpur, Malaysia, 11–13 August 2015. [Google Scholar]
- Scheffer, G.; Hubert, C.R.; Enning, D.R.; Lahme, S.; Mand, J.; de Rezende, J.R. Metagenomic investigation of a low diversity, high salinity offshore oil reservoir. Microorganisms 2021, 9, 2266. [Google Scholar] [CrossRef]
- Kadnikov, V.V.; Ravin, N.V.; Sokolova, D.S.; Semenova, E.M.; Bidzhieva, S.K.; Beletsky, A.V.; Ershov, A.P.; Babich, T.L.; Khisametdinov, M.R.; Mardanov, A.V. Metagenomic and culture-based analyses of microbial communities from petroleum reservoirs with high-salinity formation water, and their biotechnological potential. Biology 2023, 12, 1300. [Google Scholar] [CrossRef] [PubMed]
- Hidalgo, K.; Sierra-Garcia, I.N.; Zafra, G.; Oliveira, V.M.d. Genome-Resolved Meta-Analysis of the Microbiome in Oil Reservoirs Worldwide. Microorganisms 2021, 9, 1812. [Google Scholar] [CrossRef]
- Sierra-Garcia, I.N.; Belgini, D.R.; Torres-Ballesteros, A.; Páez-Espino, D.; Capilla, R.; Neto, E.V.S.; Gray, N.; Oliveira, V.M.d. In depth metagenomic analysis in contrasting oil wells reveals syntrophic bacterial and archaeal associations for oil biodegradation in petroleum reservoirs. Sci. Total Environ. 2020, 715, 136646. [Google Scholar] [CrossRef]
- Simpson, D.R.; Natraj, N.R.; McInerney, M.J.; Duncan, K.E. Biosurfactant-producing Bacillus are present in produced brines from Oklahoma oil reservoirs with a wide range of salinities. Appl. Microbiol. Biotechnol. 2011, 91, 1083–1093. [Google Scholar] [CrossRef]
- Bosch, P.; Robert, M.; Mercadé, M.; Espuny, M.; Parra, J.; Guinea, J. Surface active compounds on microbial cultures. Tenside Surfactants Deterg. 1998, 25, 208–211. [Google Scholar] [CrossRef]
- Walter, V.; Syldatk, C.; Hausmann, R. Screening Concepts for the Isolation of Biosurfactant Producing Microorganisms. In Biosurfactants; Sen, R., Ed.; Springer: New York, NY, USA, 2010; Volume 672, pp. 1–13. [Google Scholar] [CrossRef]
- Pornsunthorntawee, O.; Chavadej, S.; Rujiravanit, R. Solution properties and vesicle formation of rhamnolipid biosurfactants produced by Pseudomonas aeruginosa SP4. Colloids Surf. B Biointerfaces 2009, 72, 6–15. [Google Scholar] [CrossRef] [PubMed]
- Aparna, A.; Srinikethan, G.; Smitha, H. Production and characterization of biosurfactant produced by a novel Pseudomonas sp. 2B. Colloids Surf. B Biointerfaces 2012, 95, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Mawgoud, A.M.; Aboulwafa, M.M.; Hassouna, N.A.-H. Optimization of Surfactin Production by Bacillus subtilis Isolate BS5. Appl. Biochem. Biotechnol. 2008, 150, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Rahman, P.K.S.M.; Gakpe, E. Production, Characterisation and Applications of Biosurfactants-Review. Biotechnology 2008, 7, 360–370. [Google Scholar] [CrossRef]
- Abdullah, N.A.; Yusof, F.; Ahmad, F.B. Preliminary study on immobilization of plant esterase on functionalized multi-walled carbon nanotubes (MWCNTs) for biosensor application. IOP Conf. Ser. Mater. Sci. Eng. 2020, 932, 012040. [Google Scholar] [CrossRef]
- Rück-Braun, K.; Petersen, M.Å.; Michalik, F.; Hebert, A.; Przyrembel, D.; Weber, C.; Ahmed, S.A.; Kowarik, S.; Weinelt, M. Formation of Carboxy- and Amide-Terminated Alkyl Monolayers on Silicon(111) Investigated by ATR-FTIR, XPS, and X-ray Scattering: Construction of Photoswitchable Surfaces. Langmuir 2013, 29, 11758–11769. [Google Scholar] [CrossRef]
- Peng, H.; Alemany, L.B.; Margrave, J.L.; Khabashesku, V.N. Sidewall Carboxylic Acid Functionalization of Single-Walled Carbon Nanotubes. J. Am. Chem. Soc. 2003, 125, 15174–15182. [Google Scholar] [CrossRef]
- Deng, M.; Wu, J.; Reinhart-King, C.A.; Chu, C.-C. Synthesis and Characterization of Biodegradable Poly(ester amide)s with Pendant Amine Functional Groups and In Vitro Cellular Response. Biomacromolecules 2009, 10, 3037–3047. [Google Scholar] [CrossRef]
- Abdulla, H.A.; Minor, E.C.; Dias, R.F.; Hatcher, P.G. Changes in the compound classes of dissolved organic matter along an estuarine transect: A study using FTIR and 13C NMR. Geochim. Cosmochim. Acta 2010, 74, 3815–3838. [Google Scholar] [CrossRef]
- Anuradha, S.N. Structural and Molecular Characteristics of Lichenysin and Its Relationship with Surface Activity. In Biosurfactants; Sen, R., Ed.; Springer: New York, NY, USA, 2010; Volume 672, pp. 304–315. [Google Scholar] [CrossRef]
- Das, P.; Mukherjee, S.; Sen, R. Genetic Regulations of the Biosynthesis of Microbial Surfactants: An Overview. Biotechnol. Genet. Eng. Rev. 2008, 25, 165–186. [Google Scholar] [CrossRef]
Biosurfactant | Gene | Sequence | PCR Product Size (bp) | Annealing Temperature (°C) | References |
---|---|---|---|---|---|
Surfactin | srfAA | F-5′ AAGGGCCATTGCCAATACGA 3′ R-5′ ACTTTGCCGTTTGCCGTAAC 3′ | 501 | 56–58 | [31] |
srfp | F-5′ ATGAAGATTTACGGAATTTA 3′ R-5′ TTATAAAAGCTCTTCGTACG 3′ | 635 | 48–52 | [32] | |
Lichenysin | lchAA | F-5′ TGAACGGCACAAAATGCAGG 3′ R-5′ CGTTTGATCGATTCGCGCTT 3′ | 678 | 56–60 | [31] |
Rhamnolipid | rhlAA | F-5′ ATGCGGCGCGAAAGTCTGTTGGTA 3′ R-5′ TCAGGCGTAGCCGATGGCCAT 3′ | 887 | 68 | In this study |
Parameters | Units of Measurement | No. 129 | No. 15 | No. 142 |
---|---|---|---|---|
HCO3− | mg/L | 24.4 | 210 | 52 |
SO42− | Not detected | Not detected | Not detected | |
Cl− | 160,322.6 | 149,634 | 156,760 | |
Ca2+ | 9018 | 4058 | 2806 | |
Mg2+ | 2675.2 | 2128 | 1824 | |
Na+ + K+ | 88,616.7 | 88,480 | 95,056 | |
Fe3+ | mg-eq/L | 11.76 | Not detected | Not detected |
Fe2+ | mg-eq/L | 17.6 | 30.9 | Not detected |
Total mineralisation | mg/L | 261,760 | 245,305 | 257,880 |
Suspended solids | Not detected | Not detected | Not detected | |
Density at 20 °C | g/cm3 | 1.1730 | 1.1673 | 1.1722 |
pH | - | 5.76 | 6.48 | 6.59 |
J− | mg-eq/L | 3.78 | 3.15 | 1.68 |
Br− | mg-eq/L | 197.08 | 159.9 | 98.28 |
Temperature | °C | 42.1 | 33.5 | 41 |
Isolates | Oil Spreading, cm | Emulsifying Index, % |
---|---|---|
M93-1 | 0 | 0 |
M93-2 | 0.5 ± 0.5 | 0 |
M93-3 | 0 | 0 |
M93-4 | 0 | 0 |
M93-5 | 0 | 0 |
M93-6 | 1.3 ± 1 | 0 |
M93-7B | 0.5 ± 0.01 | 4 ± 1.0 |
M93-8C * | 3.0 ± 0.5 | 50 ± 1.7 |
M121-1 | 0.2 ± 0.3 | 0 |
M121-2 | 0.3 ± 0.6 | 0 |
M121-3A | 0.7 ± 0.3 | 0 |
M121-4C | 2.9 ± 1.5 | 0 |
M121-5 | 1.5 ± 1 | 0 |
M83-1 | 0.5 ± 0.5 | 16 ± 1.5 |
M83-2P | 0.4 ± 0.7 | 0 |
M83-3B | 2.8 ± 1.0 | 25 ± 1.0 |
M83-4C | 0.8 ± 0.3 | 15 ± 1.7 |
M22-1 | 0.2 ± 0.3 | 13 ± 1.5 |
M22-2B | 0.7 ± 0.3 | 7 ± 1.0 |
M22-3B | 0.3 ± 0.2 | 12 ± 1.5 |
M22-4A | 0.7 ± 0.3 | 6 ± 0.1 |
M145-1 | 0.2 ± 0.3 | 0 |
M145-2P | 0.7 ± 0.3 | 20 ± 0.1 |
M130-1 | 1.7 ± 1.5 | 0 |
M130-2 | 1.6 ± 0.5 | 21 ± 1.8 |
M130-3B | 0.2 ± 0.3 | 6 ± 0.1 |
M130-4B | 0.9 ± 0.2 | 20 ± 0.1 |
M130-5 | 0.7 ± 0.8 | 9 ± 1.5 |
M130-6 | 1.3 ± 0.8 | 9 ± 1.0 |
M130-7 | 0.8 ± 0.3 | 4 ± 1.5 |
M130-8 | 0.8 ± 0.6 | 16 ± 1.4 |
M15-1 | 0.7 ± 1.2 | 0 |
M22-5 | 0.9 ± 0.6 | 0 |
M22-6 * | 2.7 ± 1.2 | 50 ± 0.8 |
M22-7 * | 3.0 ± 2.4 | 46 ± 1.0 |
M22-8 | 0 | 0 |
M22-9 | 0.7 ± 0.8 | 2 ± 0.1 |
M142-1 | 1.1 ± 0.9 | 23 ± 0.5 |
M142-2 * | 2.9 ± 0.8 | 50 ± 0.5 |
M142-3A | 1.5 ± 0.9 | 34 ± 0.6 |
Isolate | Gene a | |||
---|---|---|---|---|
srfAA | srfp | lchAA | rhlAA | |
M22-6 | − | − | − | − |
M22-7 | + | + | − | − |
M93-8C | + | + | − | − |
M142-2 | + | + | − | − |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaiyrmanova, G.; Shaimerdenova, U.; Assylbek, A.; Amirgaliyeva, A.; Yerzhan, A.; Yernazarova, A. Comprehensive Analysis of Formation Water Microorganisms for Their Biosurfactant Potential in MEOR Applications. Fermentation 2025, 11, 367. https://doi.org/10.3390/fermentation11070367
Kaiyrmanova G, Shaimerdenova U, Assylbek A, Amirgaliyeva A, Yerzhan A, Yernazarova A. Comprehensive Analysis of Formation Water Microorganisms for Their Biosurfactant Potential in MEOR Applications. Fermentation. 2025; 11(7):367. https://doi.org/10.3390/fermentation11070367
Chicago/Turabian StyleKaiyrmanova, Gulzhan, Ulzhan Shaimerdenova, Alisher Assylbek, Almira Amirgaliyeva, Arailym Yerzhan, and Aliya Yernazarova. 2025. "Comprehensive Analysis of Formation Water Microorganisms for Their Biosurfactant Potential in MEOR Applications" Fermentation 11, no. 7: 367. https://doi.org/10.3390/fermentation11070367
APA StyleKaiyrmanova, G., Shaimerdenova, U., Assylbek, A., Amirgaliyeva, A., Yerzhan, A., & Yernazarova, A. (2025). Comprehensive Analysis of Formation Water Microorganisms for Their Biosurfactant Potential in MEOR Applications. Fermentation, 11(7), 367. https://doi.org/10.3390/fermentation11070367