Advances in Mead Aroma Research: A Comprehensive Bibliometric Review and Insights into Key Factors and Trends
Abstract
1. Introduction
2. History, Tradition, and Modern State of Mead
3. Molecular Composition of Mead
4. Sources of Aromas in Mead
5. Methods for Analyzing Volatile Compounds: Chromatographic and Sensory Approaches
Type of Mead | Type of Honey | Additive | Additive Concentration | Maturation | Volatile Compounds | Method | Sensory Aroma | Reference |
---|---|---|---|---|---|---|---|---|
Traditional | Multifloral (Valencia, Spain) | Pollen | 10–50 g L−1 | 7 days at 6 °C | Isovaleric acid, hexanoic acid, octanoic acid | GC-MS with SPE | Floral and acidic | [8] |
Melomel | Multifloral and honeydew | Blackcurrant (Ribes nigrum) | 0.5 w/w | 1 day at 4 °C | A total of 62 compounds, including isoamyl acetate, ethyl hexanoate, ethyl octanoate | GC-MS with HS-SPME | Floral, fruity, citrusy, green | [28] |
Melomel (pyment) | Multifloral (Rio Grande do Sul, Brazil) | Moscato grape juice | 10%, 20%, 30% (v/v) | Not provided | A total of 32 compounds, including alcohols, esters, fatty acids and terpenes | GC-MS with SPME | Floral, fruity, honey and balanced | [58] |
Traditional | Multifloral (Bragança, Portugal) | Fining agents | - | 4–7 days at 4 °C | A total of 36 compounds, including alcohols, acetates, esters | GC-FID and GC-MS | A total of 2 fining agents that may decrease aroma intensity | [63] |
Traditional | Multifloral (Rio Grande do Sul, Brazil) | None | - | Not provided | A total of 52 compounds, including higher alcohols, esters, fatty acids and others | GC-MS with HS-SPME | S. cerevisiae had less aromas than S. bayanus | [70] |
Metheglin | Honeydew (Naples, Italy) | Cannabis sativa | 0.25% and 0.50% | None | Alcohols, esters, terpenes and aldehydes | GC-MS with SPME | Freshness and hemp aroma | [59] |
Traditional | Multifloral, Vitex, Acacia, Linden, Jujube | None | - | None | A total of 66 compounds, including alcohols, esters, acids, aldehydes, ketones, terpenes | GC-MS with SPME | Floral and honey-like | [48] |
Traditional | Multifloral (Portugal) | None | - | None | A total of 27 compounds, including alcohols, Isoamyl acetate, ethyl hexanoate, ethyl octanoate | GC-MS | Fruity notes | [71] |
6. Sensory Profile of Different Types of Mead and Panelists’ Insights
7. Factors Affecting the Aroma of Mead
8. Impact of Molecular Interactions on Mead’s Aroma
9. Current and Future Trends in Mead’s Aroma Research
10. Bibliometric Review and Insights into Mead Research as Previously Discussed
11. Final Considerations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ramalhosa, E.; Gomes, T.; Pereira, A.P.; Dias, T.; Estevinho, L.M. Mead Production: Tradition Versus Modernity. Adv. Food Nutr. Res. 2011, 63, 101–118. [Google Scholar] [PubMed]
- Akalın, H.; Bayram, M.; Anlı, R.E. Determination of some individual phenolic compounds and antioxidant capacity of mead produced from different types of honey. J. Inst. Brew. 2017, 123, 167–174. [Google Scholar] [CrossRef]
- Galimberti, A.; Bruno, A.; Agostinetto, G.; Casiraghi, M.; Guzzetti, L.; Labra, M. Fermented food products in the era of globalization: Tradition meets biotechnology innovations. Curr. Opin. Biotechnol. 2021, 70, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Coletti, G.F. Mercado de Bebidas no Brasil e no Mundo; Editora Senac São Paulo: São Paulo, Brazil, 2022; Available online: https://books.google.com.br/books?hl=pt-BR&lr=&id=TOBeEAAAQBAJ&oi=fnd&pg=PT16&dq=Mercado+de+bebidas+no+Brasil+e+no+mundo&ots=VZysIffISY&sig=ias3Z8T3UsmcHDSVm5JDdBB498w#v=onepage&q=Mercado%20de%20bebidas%20no%20Brasil%20e%20no%20mundo&f=false (accessed on 3 April 2025).
- Iglesias, A.; Pascoal, A.; Choupina, A.B.; Carvalho, C.A.; Feás, X.; Estevinho, L.M. Developments in the Fermentation Process and Quality Improvement Strategies for Mead Production. Molecules 2014, 19, 12577–12590. [Google Scholar] [CrossRef]
- Vidrih, R.; Hribar, J. Mead: The Oldest Alcoholic Beverage. In Traditional Foods; Springer: Boston, MA, USA, 2016; Volume 10, pp. 325–338. [Google Scholar]
- Amorim, T.S.; Lopes Sde, B.; Bispo, J.A.C.; Bonafe, C.F.S.; de Carvalho, G.B.M.; Martínez, E.A. Influence of acerola pulp concentration on mead production by Saccharomyces cerevisiae AWRI 796. LWT 2018, 97, 561–569. [Google Scholar] [CrossRef]
- Roldán, A.; Van Muiswinkel, G.C.J.; Lasanta, C.; Palacios, V.; Caro, I. Influence of pollen addition on mead elaboration: Physicochemical and sensory characteristics. Food Chem. 2011, 126, 574–582. [Google Scholar] [CrossRef]
- Navrátil, M.; Šturdík, E.; Gemeiner, P. Batch and continuous mead production with pectate immobilised, ethanol-tolerant yeast. Biotechnol. Lett. 2001, 23, 977–982. [Google Scholar] [CrossRef]
- Finola, M.S.; Lasagno, M.C.; Marioli, J.M. Microbiological and chemical characterization of honeys from central Argentina. Food Chem. 2007, 100, 1649–1653. [Google Scholar] [CrossRef]
- Castro-Vázquez, L.; Díaz-Maroto, M.C.; González-Viñas, M.A.; Pérez-Coello, M.S. Differentiation of monofloral citrus, rosemary, eucalyptus, lavender, thyme and heather honeys based on volatile composition and sensory descriptive analysis. Food Chem. 2009, 112, 1022–1030. [Google Scholar] [CrossRef]
- Angelo, P.M.; Jorge, N. Compostos fenólicos em alimentos—Uma breve revisão. Rev. Inst. Adolfo Lutz 2007, 66, 1–9. [Google Scholar] [CrossRef]
- De Graca Ribeiro Campos, M.; Sabatier, S.; Amiot, M.J.; Aubert, S. Characterization of flavonoids in three hive products: Bee pollen, propolis, and honey. Planta Med. 1990, 56, 580–581. [Google Scholar] [CrossRef]
- Estevinho, L.; Pereira, A.P.; Moreira, L.; Dias, L.G.; Pereira, E. Antioxidant and antimicrobial effects of phenolic compounds extracts of Northeast Portugal honey. Food Chem. Toxicol. 2008, 46, 3774–3779. [Google Scholar] [CrossRef]
- Gomes, S.; Dias, L.G.; Moreira, L.L.; Rodrigues, P.; Estevinho, L. Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food Chem. Toxicol. 2010, 48, 544–548. [Google Scholar]
- Kortesniemi, M.; Rosenvald, S.; Laaksonen, O.; Vanag, A.; Ollikka, T.; Vene, K.; Yang, B. Sensory and chemical profiles of Finnish honeys of different botanical origins and consumer preferences. Food Chem. 2018, 246, 351–359. [Google Scholar] [CrossRef]
- Wintersteen, C.L.; Andrae, L.M.; Engeseth, N.J. Effect of Heat Treatment on Antioxidant Capacity and Flavor Volatiles of Mead. J. Food Sci. 2005, 70, C119–C126. [Google Scholar] [CrossRef]
- Ferraz, F.d.O. Estudo dos Parâmetros Fermentativos, Características Físico-Químicas e Sensoriais de Hidromel; Biblioteca Digital Brasileira de Teses e Dissertações (BDTD): Sao Paulo, Brazil, 2014. [Google Scholar]
- Gupta, J.K.; Sharma, R. Production technology and quality characteristics of mead and fruit-honey wines: A review. NPR 2009, 8, 345–355. [Google Scholar]
- Brunelli, L.T. Caracterização Físico-Química, Energética e Sensorial de Hydromel; Universidade Estadual Paulista (Unesp): Sao Paulo, Brazil, 2015; Available online: http://hdl.handle.net/11449/145493 (accessed on 3 December 2024).
- Souza, N.R.; De, L.; Análise, S.; De, S.; Tipo, H. Análise Sensorial de Hidromel: Tipo Tradicional; RIUFAL: Maceió, Brazil, 2019. [Google Scholar]
- Sant’Ana, R.R.A.; Wanderley, B.R.S.M.; Amboni, R.D.M.C.; Fritzen-Freire, C.B. HIDROMEL COM FRUTAS E ESPECIARIAS: Possibilidades de elaboração e desafios do mercado. In Ciência e Tecnologia de Alimentos: Pesquisas e Avanços; Agron Food Academy: São Carlos, Brazil, 2023; Volume 4, pp. 214–224. [Google Scholar]
- Felipe, A.L.D.; Souza, C.O.; Santos, L.F.; Cestari, A. Synthesis and characterization of mead: From the past to the future and development of a new fermentative route. J. Food Sci. Technol. 2019, 56, 4966–4971. [Google Scholar] [CrossRef]
- Starowicz, M.; Granvogl, M. Trends in food science & technology an overview of mead production and the physicochemical, toxicological, and sensory characteristics of mead with a special emphasis on flavor. Trends Food Sci. Technol. 2020, 106, 402–416. [Google Scholar]
- Withers, J.W.; Michielin, E.M.Z. Hidromel: Caracterização, Processo de Produção, e Potencialidades; Repositorio Institucional: Santa Catarina, Brazil, 2023. [Google Scholar]
- Araújo, G.S.; Gutiérrez, M.P.; Sampaio, K.F.; de Souza, S.M.A.; Rodrigues Rde, C.L.B.; Martínez, E.A. Mead Production by Saccharomyces cerevisiae Safbrew T-58 and Saccharomyces bayanus (Premier Blanc and Premier Cuvée): Effect of Cowpea (Vigna unguiculata L. Walp) Extract Concentration. Appl. Biochem. Biotechnol. 2020, 191, 212–225. [Google Scholar] [CrossRef]
- Almeida, T.; Queiroz, E.; Canettieri, E.; Rodrigues, R.; Martinez, E.A. Mead Production Technology: Process stages and fermentation conditions. Sci. Technol. Stud. Biotechnol. 2020, 1, 215–235. [Google Scholar]
- Chitarrini, G.; Debiasi, L.; Stuffer, M.; Ueberegger, E.; Zehetner, E.; Jaeger, H.; Robatscher, P.; Conterno, L. Volatile profile of mead fermenting blossom honey and honeydew honey with or without Ribes nigrum. Molecules 2020, 25, 1818. [Google Scholar] [CrossRef]
- Pereira, A.P.; Dias, T.; Andrade, J.; Ramalhosa, E.; Estevinho, L.M. Mead production: Selection and characterization assays of Saccharomyces cerevisiae strains. Food Chem. Toxicol. 2009, 47, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- Mendes-Ferreira, A.; Cosme, F.; Barbosa, C.; Falco, V.; Inês, A.; Mendes-Faia, A. Optimization of honey-must preparation and alcoholic fermentation by Saccharomyces cerevisiae for mead production. Int. J. Food Microbiol. 2010, 144, 193–198. [Google Scholar] [CrossRef] [PubMed]
- Sant’Ana, R.R.A. Potencial de Diferentes Méis e da Fruta Butiá (Butia catarinensis) para a Elaboração de Hidromel: Estudo Com consumidores, Desenvolvimento de Produtos, Caracterização Físico-Química e Sensorial das Bebidas; Universidade Federal de Santa Catarina: Florianópolis, SC, Brazil, 2024. [Google Scholar]
- Kawa-Rygielska, J.; Adamenko, K.; Kucharska, A.Z.; Szatkowska, K. Fruit and herbal meads—Chemical composition and antioxidant properties. Food Chem. 2019, 283, 19–27. [Google Scholar] [CrossRef] [PubMed]
- BRASIL Ministério da Agricultura, Pecuária e Abastecimento. Decreto nº 6.871, de 4 de junho de 2009. Dispõe sobre a padronização, a classificação, o registro, a inspeção, a produção e a fiscalização de bebidas. Diário Oficial da União, 5 June 2009. [Google Scholar]
- Escriche, I.; Visquert, M.; Juan-Borrás, M.; Fito, P. Influence of simulated industrial thermal treatments on the volatile fractions of different varieties of honey. Food Chem. 2009, 112, 329–338. [Google Scholar] [CrossRef]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.Z.; Głowacki, A.; Piórecki, N. Changes in the antioxidative activity and the content of phenolics and iridoids during fermentation and aging of natural fruit meads. Biomolecules 2021, 11, 1113. [Google Scholar] [CrossRef]
- Arráez-Román, D.; Gómez-Caravaca, A.M.; Gómez-Romero, M.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Identification of phenolic compounds in rosemary honey using solid-phase extraction by capillary electrophoresis–electrospray ionization-mass spectrometry. J. Pharm. Biomed. Anal. 2006, 41, 1648–1656. [Google Scholar] [CrossRef]
- Baltrušaityte, V.; Venskutonis, P.R.; Čeksteryte, V. Radical scavenging activity of different floral origin honey and beebread phenolic extracts. Food Chem. 2007, 101, 502–514. [Google Scholar] [CrossRef]
- MAlvarez-Suarez, J.; Giampieri, F.; Battino, M. Honey as a Source of Dietary Antioxidants: Structures, Bioavailability and Evidence of Protective Effects Against Human Chronic Diseases. Curr. Med. Chem. 2013, 20, 621–638. [Google Scholar] [CrossRef]
- Bertoncelj, J.; Doberšek, U.; Jamnik, M.; Golob, T. Evaluation of the phenolic content, antioxidant activity and colour of Slovenian honey. Food Chem. 2007, 105, 822–828. [Google Scholar] [CrossRef]
- Moreno, L.F.M. A Formulação Química das Bebidas Alcoólicas e Suas Especificidades; RDU: Raleigh, NC, USA, 2022; Available online: https://repositorio.ufersa.edu.br/handle/prefix/8024 (accessed on 7 November 2024).
- Castro, M.G. Pontos Relevantes da Produção de Hidromel 2021. Available online: https://lattes.cnpq.br/7968339888621897 (accessed on 7 November 2024).
- Webster, C.E.; Barker, D.; Deed, R.C.; Pilkington, L.I. Mead production and quality: A review of chemical and sensory mead quality evaluation with a focus on analytical methods. Food Res. Int. 2025, 202, 115655. [Google Scholar] [CrossRef] [PubMed]
- Rocha Da Silva, M.; Paula, A.; Coutinho, C. Produção e caracterização de diferentes tipos de hidromel. Environ. Sci. Technol. Innov. 2023, 2, 304–320, ISSN 2965-1158. [Google Scholar]
- Ribeiro Júnior, M.R.; Canaver, A.B.; Bassan, C.F.D. Produção de Hidromel: Análise Físico-Química e Sensorial. Rev. Unimar Ciências 2015, 24, 59–63. [Google Scholar]
- da Silva Monteiro Wanderley, B.R.; de Lima, N.D.; Deolindo, C.T.P.; Kempka, A.P.; Moroni, L.S.; Gomes, V.V.; Gonzaga, L.V.; Costa, A.C.O.; Amboni, R.D.d.M.C.; Aquino, A.C.M.d.S.; et al. Impact of pre-fermentative maceration techniques on the chemical characteristics, phenolic composition, in vitro bioaccessibility, and biological activities of alcoholic and acetic fermented products from jaboticaba (Plinia trunciflora). Food Res. Int. 2024, 197, 115246. [Google Scholar] [CrossRef]
- Sroka, P.; Tuszyński, T. Changes in organic acid contents during mead wort fermentation. Food Chem. 2007, 104, 1250–1257. [Google Scholar] [CrossRef]
- Cavalcante da Silva, S.M.P.; de Carvalho, C.A.L.; Sodré Gda, S.; Estevinho, L.M. Production and characterization of mead from the honey of Melipona scutellaris stingless bees. J. Inst. Brew. 2018, 124, 194–200. [Google Scholar] [CrossRef]
- Li, R.; Sun, Y. Effects of Honey Variety and Non-Saccharomyces cerevisiae on the Flavor Volatiles of Mead. J. Am. Soc. Brew. Chem. 2019, 77, 40–53. [Google Scholar] [CrossRef]
- Prumysl, K.; Chaijak, P.; Sinkan, P.; Sotha, S. Honey Mead Fermentation from Thai Stingless Bee (Tetragonula leaviceps) Honey using Ethanol Tolerant Yeast. Kvas. Prum. 2021, 67, 503–510. [Google Scholar]
- Głód, B.K.; Piszcz, P. Changes in the antioxidative properties of honeys during their fermentation. Open Chem. 2021, 19, 600–603. [Google Scholar] [CrossRef]
- Kuś, P.M.; Czabaj, S.; Jerković, I. Comparison of Volatile Profiles of Meads and Related Unifloral Honeys: Traceability Markers. Molecules 2022, 27, 4558. [Google Scholar] [CrossRef]
- Olaitan, P.B.; Adeleke, O.E.; OOla, I. Honey: A reservoir for microorganisms and an inhibitory agent for microbes. Afr. Health Sci. 2007, 7, 159–165. [Google Scholar] [PubMed]
- Snowdon, J.A.; Cliver, D.O. Microorganisms in honey. Int. J. Food Microbiol. 1996, 31, 1–26. [Google Scholar] [CrossRef]
- Cavanholi, M.G.; Wanderley, B.R.D.S.M.; Santetti, G.S.; Amboni, R.D.M.C.; Fritzen-Freire, C.B. Influência da adição de erva-mate (Ilex paraguariensis A. St. Hil.) em pó nas características físico-químicas e no potencial bioativo de hidroméis. Res. Soc. Dev. 2021, 10, e25010917821. [Google Scholar] [CrossRef]
- Qureshi, N.; Tamhane, D.V. Mead production by continuous series reactors using immobilized yeast cells. Appl. Microbiol. Biotechnol. 1986, 23, 438–439. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Dias, L.G.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. Volatile Composition and Sensory Properties of Mead. Microorganisms 2019, 7, 404. [Google Scholar] [CrossRef]
- Cicha-Wojciechowicz, D.; Drabińska, N.; Majcher, M.A. Influence of Honey Varieties, Fermentation Techniques, and Production Process on Sensory Properties and Odor-Active Compounds in Meads. Molecules 2024, 29, 5913. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, L.V.; Marcon, A.R.; Delamare, A.P.L.; Agostini, F.; Moura e Silva, S.; Echeverrigaray, S. Aromatic and sensorial characterization of “Moscato pyments”: An innovative beverage. J. Food Sci. Technol. 2022, 59, 3530–3539. [Google Scholar] [CrossRef] [PubMed]
- Romano, R.; Aiello, A.; De Luca, L.; Sica, R.; Caprio, E.; Pizzolongo, F.; Blaiotta, G. Characterization of a new type of mead fermented with Cannabis sativa L. (hemp). J. Food Sci. 2021, 86, 874–880. [Google Scholar] [CrossRef]
- Vidrih, R.; Hribar, J. Studies on the sensory properties of mead and the formation of aroma compounds related to the type of honey. Acta Aliment. 2007, 36, 151–162. [Google Scholar] [CrossRef]
- Koguchi, M.; Saigusa, N.; Teramoto, Y. Production and Antioxidative Activity of Mead Made from Honey and Black Rice (Oryza sativa var. Indica cv. Shiun). J. Inst. Brew. 2009, 115, 238–242. [Google Scholar] [CrossRef]
- Francesca, N.; Gaglio, R.; Matraxia, M.; Naselli, V.; Prestianni, R.; Settanni, L.; Badalamenti, N.; Columba, P.; Bruno, M.; Maggio, A.; et al. Technological screening and application of Saccharomyces cerevisiae strains isolated from fermented honey by-products for the sensory improvement of Spiritu re fascitrari, a typical Sicilian distilled beverage. Food Microbiol. 2022, 104, 103968. [Google Scholar] [CrossRef] [PubMed]
- Pascoal, A.; Oliveira, J.M.; Pereira, A.P.; Féas, X.; Anjos, O.; Estevinho, L.M. Influence of fining agents on the sensorial characteristics and volatile composition of mead. J. Inst. Brew. 2017, 123, 562–571. [Google Scholar] [CrossRef]
- Pascoal, A.; Anjos, O.; Feás, X.; Oliveira, J.M.; Estevinho, L.M. Impact of fining agents on the volatile composition of sparkling mead. J. Inst. Brew. 2019, 125, 125–133. [Google Scholar] [CrossRef]
- Gomes, T.; Dias, T.; Cadavez, V.; Verdial, J.; Morais, J.S.; Ramalhosa, E.; Estevinho, L.M. Influence of sweetness and ethanol content on mead acceptability. Pol. J. Food Nutr. Sci. 2015, 65, 137–142. [Google Scholar] [CrossRef]
- Sottil, C.; Salor-Torregrosa, J.M.; Moreno-Garcia, J.; Peinado, J.; Mauricio, J.C.; Moreno, J.; Garcia-Martinez, T. Using Torulaspora delbrueckii, Saccharomyces cerevisiae and Saccharomyces bayanus wine yeasts as starter cultures for fermentation and quality improvement of mead. Eur. Food Res. Technol. 2019, 245, 2705–2714. [Google Scholar] [CrossRef]
- Sroka, P.; Satora, P. The influence of hydrocolloids on mead wort fermentation. Food Hydrocoll. 2017, 63, 233–239. [Google Scholar] [CrossRef]
- Lesschaeve, I.; Noble, A.C. Sensory analysis of wine. Managing Wine Quality: Volume One: Viticulture and Wine Quality; Woodhead Publishing: Sawston, UK, 2022. [Google Scholar] [CrossRef]
- Vieira, M.P.T. Hidromel: Uma Revisão Sobre Aspectos de Produção, Características Físico-Químicas, Sensoriais, Potencial Bioativo e de Mercado da Bebida; UFSC: Florianópolis, Brazil, 2021. [Google Scholar]
- Schwarz, L.V.; Marcon, A.R.; Delamare, A.P.L.; Agostini, F.; Moura, S.; Echeverrigaray, S. Selection of low nitrogen demand yeast strains and their impact on the physicochemical and volatile composition of mead. J. Food Sci. Technol. 2020, 57, 2840–2851. [Google Scholar] [CrossRef]
- Pereira, A.P.; Mendes-Ferreira, A.; Oliveira, J.M.; Estevinho, L.M.; Mendes-Faia, A. High-cell-density fermentation of Saccharomyces cerevisiae for the optimisation of mead production. Food Microbiol. 2013, 33, 114–123. [Google Scholar] [CrossRef]
- Švecová, B.; Bordovská, M.; Kalvachová, D.; Hájek, T. Analysis of Czech meads: Sugar content, organic acids content and selected phenolic compounds content. J. Food Compost. Anal. 2015, 38, 80–88. [Google Scholar] [CrossRef]
- Camargo, G.D.V.G.; Vieira, R.d.C. HIDROMEL: Processo de produção e predisposição da bebida no Brasil. Ciência Tecnol. 2023, 15, e1511. [Google Scholar] [CrossRef]
- Adamenko, K.; Kawa-Rygielska, J.; Kucharska, A.; Piórecki, N. Characteristics of Biologically Active Compounds in Cornelian Cherry Meads. Molecules 2018, 23, 2024. [Google Scholar] [CrossRef] [PubMed]
- Essiedu, J.A.; Kovaleva, E.G. Physicochemical, antioxidant activity, and sensory characteristics of mead produced with Hibiscus sabdariffa and Betula pendula (Birch sap.). Biocatal. Agric. Biotechnol. 2024, 58, 103189. [Google Scholar] [CrossRef]
- Gorman, M.; Stright, A.; Baxter, L.; Moss, R.; McSweeney, M.B. An analysis of consumer perception, emotional responses, and beliefs about mead. Int. J. Food Sci. Technol. 2024, 59, 7426–7435. [Google Scholar] [CrossRef]
- de Souza, H.F.; Bogáz, L.T.; Monteiro, G.F.; Freire, E.N.S.; Pereira, K.N.; de Carvalho, M.V.; Rocha, R.d.S.; da Cruz, A.G.; Brandi, I.V.; Kamimura, E.S. Water kefir in co-fermentation with Saccharomyces boulardii for the development of a new probiotic mead. Food Sci. Biotechnol. 2024, 33, 3299–3311. [Google Scholar] [CrossRef]
- Prestianni, R.; Matraxia, M.; Naselli, V.; Pirrone, A.; Badalamenti, N.; Ingrassia, M.; Gaglio, R.; Settanni, L.; Columba, P.; Maggio, A.; et al. Use of sequentially inoculation of Saccharomyces cerevisiae and Hanseniaspora uvarum strains isolated from honey by-products to improve and stabilize the quality of mead produced in Sicily. Food Microbiol. 2022, 107, 104064. [Google Scholar] [CrossRef]
- Starowicz, M.; Granvogl, M. Effect of Wort Boiling on Volatiles Formation and Sensory Properties of Mead. Molecules 2022, 27, 710. [Google Scholar] [CrossRef] [PubMed]
- Van Mullem, J.J.; Zhang, J.; Dias, D.R.; Schwan, R.F. Using wild yeasts to modulate the aroma profile of low-alcoholic meads. Braz. J. Microbiol. 2022, 53, 2173–2184. [Google Scholar] [CrossRef]
- Senn, K.; Cantu, A.; Heymann, H. Characterizing the chemical and sensory profiles of traditional American meads. J. Food Sci. 2021, 86, 1048–1057. [Google Scholar] [CrossRef] [PubMed]
- Lopes, A.C.A.; Costa, R.; Andrade, R.P.; Lima, L.M.Z.; Santiago, W.D.; das Graças Cardoso, M.; Duarte, W.F. Impact of Saccharomyces cerevisiae single inoculum and mixed inoculum with Meyerozyma caribbica on the quality of mead. Eur. Food Res. Technol. 2020, 246, 2175–2185. [Google Scholar] [CrossRef]
- Peepall, C.; Nickens, D.G.; Vinciguerra, J.; Bochman, M.L. An organoleptic survey of meads made with lactic acid-producing yeasts. Food Microbiol. 2019, 82, 398–408. [Google Scholar] [CrossRef]
- Hernández, C.Y.; Serrato, J.C.; Quicazan, M.C. Evaluation of Physicochemical and Sensory Aspects of Mead, Produced by Different Nitrogen Sources and Commercial Yeast. Chem. Eng. Trans. 2015, 43, 1–6. [Google Scholar]
- Suceveanu, E.-M.; Alexa, I.-C. Sensory and Physicochemical Evaluation of Some Varieties of Romanian Artisanal Mead. Food Ind. 2021, 22, 235–243. [Google Scholar]
- Sant’Ana, R.R.A.; Wanderley, B.R.d.S.M.; Gonzaga, L.V.; Antunes, A.C.N.; Costa, A.C.O.; Amboni, R.D.d.M.C.; Fritzen-Freire, C.B. Influence of Honey Types on the Physicochemical Properties, Consumer Acceptance, and Sensory Profile of Meads Using Check-All-That-Apply. J. Sens. Stud. 2025, in press. [Google Scholar] [CrossRef]
- Anklam, E. A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chem. 1998, 63, 549–562. [Google Scholar] [CrossRef]
- da Silva Santos, E.A.; de Souza Aragão, G.; Silva, J.A.O.; dos Santos, M.J.R.; de Melo Resende, F.; Fontes, R.F.; Santos, T.S.; Reis, M.F.T. Desenvolvimento e caracterização Físico-Química do Hidromel/Development and Physicochemical characterization of Mead. Braz. J. Dev. 2021, 7, 57775–57787. [Google Scholar] [CrossRef]
- Nedyalkov, P.; Qnkova-Nikolova, A.; Kolev, N.; Vlahova-Vangelova, D. Sensory and antioxidant properties of mead with added beehive products. Food Sci. Appl. Biotechnol. 2024, 7, 231–238. [Google Scholar] [CrossRef]
- Schramm, K. The Compleat Meadmaker: Home Production of Honey Wine from Your First Batch to Award-winning Fruit and Herb Variations; Brewers Publications: Boulder, CO, USA, 2003; Available online: https://books.google.com.br/books?hl=ptBR&lr=&id=XmE9DQAAQBAJ&oi=fnd&pg=PP1&dq=The+Compleat+Meadmaker:+Home+Production+of+Honey+Wine+From+Your+First+Batch+to+Award-winning (accessed on 3 April 2025).
- Fortes, J.P.; Franco, F.W.; Baranzelli, J.; Ugalde, G.A.; Ballus, C.A.; Rodrigues, E.; Mazutti, M.A.; Somacal, S.; Sautter, C.K. Enhancement of the Functional Properties of Mead Aged with Oak (Quercus) Chips at Different Toasting Levels. Molecules 2023, 28, 56. [Google Scholar] [CrossRef]
- Cao, W.; Shu, N.; Wen, J.; Yang, Y.; Jin, Y.; Lu, W. Characterization of the Key Aroma Volatile Compounds in Nine Different Grape Varieties Wine by Headspace Gas Chromatography–Ion Mobility Spectrometry (HS-GC-IMS), Odor Activity Values (OAV) and Sensory Analysis. Foods 2022, 11, 2767. [Google Scholar] [CrossRef]
- Chhouk, C.R. Investigation into the Fermentation and Chemical Signature of Mānuka Honey Meads; University of Auckland: Auckland, New Zealand, 2022. [Google Scholar]
- Prata, J.C.; da Costa, P.M. Fourier Transform Infrared Spectroscopy Use in Honey Characterization and Authentication: A systematic review. ACS Food Sci. Technol. 2024, 4, 1817–1828. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. bibliometrix: An R-tool for comprehensive science mapping analysis. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2009, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Šmogrovičová, D.; Nádaský, P.; Lich, R.T.; Wilhelmi, B.S.; Cambray, G. Analytical and Aroma Profiles of Slovak and South African Meads. Czech J. Food Sci. 2012, 30, 241–246. [Google Scholar] [CrossRef]
- Gomes, T.; Barradas, C.; Dias, T.; Verdial, J.; Morais, J.S.; Ramalhosa, E.; Estevinho, L.M. Optimization of mead production using Response Surface Methodology. Food Chem. Toxicol. 2013, 59, 680–686. [Google Scholar] [CrossRef] [PubMed]
- Lindsay, M.A.; Granucci, N.; Greenwood, D.R.; Villas-Boas, S.G. Fermentative Production of Volatile Metabolites Using Brettanomyces bruxellensis from Fruit and Vegetable By-Products. Fermentation 2022, 8, 457. [Google Scholar] [CrossRef]
- Jose-Salazar, J.A.; Ballinas-Cesatti, C.B.; Hernández-Martínez, D.M.; Cristiani-Urbina, E.; Melgar-Lalanne, G.; Morales-Barrera, L. Kinetic Evaluation of the Production of Mead from a Non-Saccharomyces Strain. Foods 2024, 13, 1948. [Google Scholar] [CrossRef]
- Augusto, F.; Valente, A.L.P.; Dos Santos Tada, E.; Rivellino, S.R. Screening of Brazilian fruit aromas using solid-phase microextraction–gas chromatography–mass spectrometry. J. Chromatogr. A 2000, 873, 117–127. [Google Scholar] [CrossRef]
- Wanderley BRda, S.M.; Haas ICda, S.; Biluca, F.C.; Brugnerotto, P.; Aquino ACMde, S.; Costa, A.C.O.; de Mello Castanho Amboni, R.D.; Fritzen-Freire, C.B. How native and exotic Brazilian fruits affect the profile of organic acids and the yeast performance during the mead fermentation process? JSFA Rep. 2022, 2, 161–167. [Google Scholar]
Parameter | Traditional Mead | Mead with Orange | Mead with Jabuticaba | Unit of Measurement |
---|---|---|---|---|
Alcohol Content | 25.6% ± 0.1 | 13.7% ± 0.2 | 14.1% ± 0.1 | % (v/v) |
Total Acidity | 94.05 ± 0.04 | 85.55 ± 4.4 | 114.84 ± 0.16 | mEq L−1 |
Volatile Acidity | 5.21 ± 0.13 | 3.17 ± 0.12 | 4.83 ± 0.09 | mEq L−1 |
Fixed Acidity | 27.66 | 30.90 | 35.57 | mEq L−1 |
pH | 3.3 | 3.5 | 3.7 | - |
Soluble Solids (°Brix) | 12 | 9 | 8 | °Brix |
Density | 1.013 ± 0.03 | 0.998 ± 0.002 | 1.016 ± 0.01 | g cm−³ |
Reduced Dry Extract | 20.24 ± 0.17 | 26.34 ± 0.21 | 19.29 ± 0.12 | g L−1 |
Residual Sugar Content | 9.36 ± 0.23 | 11.74 ± 0.08 | 5.91 ± 0.09 | g L−1 |
Organic Acids | Acetic Acid, Lactic Acid | Acetic Acid | Acetic Acid, Lactic Acid | mg L−1 |
Main Aromatic Compounds | Ethyl Octanoate, Phenylethanol | Ethyl Octanoate | Ethyl Octanoate, Phenylethanol | - |
Terpenes | Presents | Presents | Presents | - |
Volatile Compounds | Higher Alcohols | Higher Alcohols | Higher Alcohols | - |
Mead Composition | Mead Production | Sensory Method | Panelists | Sensory Insights | Reference |
---|---|---|---|---|---|
Acacia, buckwheat, and tilia honeys | Must heated and fermented using Saccharomyces cerevisiae, wild yeast, or Galactomyces geotrichum | Meads scored on a 10-point scale for intensity of specific aroma attributes. | Experienced (n = 9) | Honey type had the greatest impact on mead aroma, with buckwheat mead exhibiting the most pronounced fragrance. Boiling the must amplified malty notes, wild fermentation increased yeasty aromas, and G. geotrichum fermentation enhanced floral fragrances. | [57] |
Meads with the addition of hibiscus and birch sap to the must | _ | Specific color, aroma, and palate attributes, along with overall acceptability, were rated on a 9-point scale. | Trained (n = 18) | Mead with both hibiscus and birch sap added was preferred by panellists over the control. | [75] |
Commercial meads of different styles | _ | Meads were evaluated on a 9-point hedonic scale for appearance, flavor, mouthfeel, and overall impression, along with specific descriptive attributes. Some participants were also asked to describe a scenario in which they imagined drinking mead. | Untrained (n = 122), alcoholic beverage consumers | Panelists preferred sweeter meads with higher alcohol content, and those who imagined a mead-drinking scenario rated the meads more favorably than those who did not. | [76] |
Mead composition | Mead production | Sensory method | Panelists | Sensory insights | Reference |
_ | Mead fermented using Saccharomyces boulardii yeast (probiotic potential) compared to Saccharomyces cerevisiae | Meads rated on a 9-point scale for color, aroma, flavor, and overall impression, and on a 7-point scale for purchase intention. | Untrained (n = 160) | Panelists indicated that both the S. cerevisiae mead and the mead with higher S. boulardii inoculation exceeded the ’purchase intention’ threshold. | [77] |
_ | Meads produced through single and sequential inoculation with Saccharomyces cerevisiae and Hanseniaspora uvarum | Specific color, aroma, and taste attributes, along with overall quality, rated on a 9-point scale. | Trained (n =10) | Meads produced by co-inoculation of both strains were preferred by panellists over those made with only S. cerevisiae. | [78] |
Mead/pyment produced from honey must supplemented with varying amounts of Moscato (grape) juice | _ | Specific aroma and flavor attributes, along with overall acceptance, rated on a 9-point scale. The attributes were selected through group consensus. | Trained (n = 12) | Panelists preferred pyments over both traditional mead and Moscato. | [58] |
_ | Meads prepared from both boiled and non-boiled musts | Specific aroma attributes scored on a 7-point scale. | Experienced and trained (n = 15) | Non-boiled mead received a higher score for ’sweet’ aroma, while flavor was not assessed. | [79] |
_ | Meads fermented using single and co-inoculation of wild yeasts and Saccharomyces cerevisiae | Meads rated on a 9-point scale for both overall impression and individual taste and flavor attributes. | Untrained (n = 21) | Panelists favored meads made with wild yeasts, both in single and co-inoculation methods, over those inoculated solely with S. cerevisiae. | [80] |
Mead composition | Mead production | Sensory method | Panelists | Sensory insights | Reference |
Commercial meads (41); traditional American meads | _ | Intensity of specific aroma, taste, and mouthfeel traits, in relation to reference standards. The attributes were chosen based on group consensus. | Trained (n = 14) 5 × 60 min training sessions | Variation in sour to sweet tastes, and viscous, cloying and hot mouthfeel descriptors. | [81] |
Meads made from blossom and honeydew honeys, both with and without the addition of blackcurrant | _ | Meads scored on a 9-point scale for aroma and taste, and ranked best to worst for overall impression. | Untrained (n = 44) | Floral meads were preferred compared to honeydew meads, and the addition of blackcurrant had a minimal impact. | [28] |
_ | Meads made from various floral honey types and yeast species | Quantitative analysis of meads, accompanied by a group discussion | Experienced (n = unspecified) | Participants favored meads made with darker honeys, and Kluyveromyces thermotolerans was the preferred yeast. | [48] |
_ | Meads made through single and co-inoculation of Saccharomyces cerevisiae and Meyerozyma carribbica | Meads scored on a 9-point scale for color, aroma and taste, and a 5-point scale for overall purchase intention. | Untrained (n = 50) | Panelists showed no significant preference between single and co-inoculation. | [82] |
_ | ’Sour’ meads made with different strains of lactic acid-producing yeast | Qualitative evaluation of specific aroma and flavor attributes, and overall impression of meads. | Participants at the 2018 AMMA Mead Conference, with varying levels of experience (n = 50) | Participants preferred sour meads made with Lachancea fermentati YH77. | [83] |
Mead composition | Mead production | Sensory method | Panelists | Sensory insights | Reference |
_ | Meads produced by free and immobilized Saccharomyces cerevisiae cells | Specific appearance, aroma, and taste attributes scored on a 7-point scale, following ISO (International Organisation for Standardisation) 4121:2003 and ISO 6658:2005. | Partially trained (n = 16) | Panelists preferred mead made with free yeast cells. | [56] |
Meads made with Saccharomyces cerevisiae, Saccharomyces bayanus, and Torulaspora delbrueckii | Specific flavor attributes scored on a 5-point scale. | Experienced (n = 20) | Panelists preferred the mead made with T. delbrueckii, which was also sweeter. | [66] | |
Different fining agents | _ | Meads scored on a 5-point scale for aroma and palate attributes. | Partly trained (n = 43) | Mead fined with silica and a combination of bentonite and animal proteins were the most preferred by panellists. | [63] |
Meads made from must with the addition of various natural hydrocolloids | _ | Meads scored on a weighted 5-point scale for color, clarity, aroma, and taste. | Trained (n = 10) | Panelists found Arabic, carob bean, and ghatti gums to be the most preferred hydrocolloids. | [67] |
Meads of different sweetness and ethanol content | _ | Meads scored on a 10-point scale for aroma and palate attributes. | Untrained (n = 108) | Panelists preferred sweeter meads, and ethanol content did not influence their preference. | [65] |
Meads with various commercial yeasts and musts supplemented with different additives | _ | Meads scored on a 20-point scale comprising appearance, aroma, and palate. | Trained (n = 8) | Panelists favored mead supplemented with a combination of pollen and ammonium dihydrogen phosphate. | [84] |
Mead composition | Mead production | Sensory method | Panelists | Sensory insights | Reference |
Meads made with varying amounts of pollen added to the must | _ | Specific visual, aroma, and taste characteristics, and overall acceptability, scored 0–5. | Trained (n = 10), wine-tasting experience | Panelists favored meads with a pollen addition of 30–40 g L−1. | [8] |
Meads made from buckwheat and Chinese milk vetch honey, both with and without rice added | _ | Meads evaluated as very good, good, or not good for aroma and taste. | Not provided | Panelists favored milk vetch meads over buckwheat, and considered the addition of rice acceptable. | [61] |
Meads made from various types of honey | _ | Meads judged by their overall aroma and taste. | Trained (n = 11) | Panelists favored floral meads over honeydew meads, and preferred those with higher residual sugar. | [60] |
Method | Type | Purpose |
---|---|---|
GC-MS/LC-MS/NMR | Analytical | Identify and quantify aroma-related compounds |
Sensory panels/Reconstitution tests | Sensory | Understand perception and interaction effects |
PCA/Cluster analysis | Statistical | Find correlations between compounds and aromas |
Molecular docking | Interaction | Understand physical/chemical interactions |
Volatility assays | Analytical | Evaluate influence of non-volatiles on aroma release |
Brazilian Fruit | Scientific Name | Group | Compound |
---|---|---|---|
Cajá | Spondias lutea, L. | Alcohols | 1-Butanol, Amyl alcohol, Prenol (3-methyl-2-buten-1-ol), 3-Hexen-1-ol, 1-Hexanol |
Aldehydes | Decyl aldehyde | ||
Esters | Ethyl acetate, Methyl butyrate, Ethyl butyrate, Butyl acetate, Isoamyl acetate, Isobutyl butyrate | ||
Butyl butyrate, Ethyl caproate, Hexyl acetate, Isoamyl butyrate, Methyl benzoate, Ethyl benzoate, Hexyl butyrate, Ethyl caprylate, Octyl acetate | |||
Ketones | 1-Penten-3-one | ||
Terpenic compounds | α-Pinene, Camphene, Sabinene, β-Mircene, Limonene, γ-Terpinene, Terpinolene, β-Linalool, Fenchyl alcohol, α-Terpineol, Copaene, Caryophyllene | ||
Graviola | Anona reticulata, L | Alcohols | 1-Butanol, 3-Hexen-1-ol |
Aldehydes | Nonyl aldehyde, Decyl aldehyde | ||
Esters | Ethyl acetate, Methyl butyrate, Methyl crotonate, Ethyl butyrate, Butyl acetate, Ethyl crotonate, Methyl caproate, Methyl 2-hexenoate, Ethyl caproate, Ethyl 2-hexenoate, Methyl caprylate, Methyl 2-octenoate | ||
Ketones | 1-Phenyl-1-penten-3-one | ||
Terpenic compounds | Limonene, β-Linalool | ||
Others | 2,5-Dihydro-2,5-dimethoxyfuran, Palmitic acid | ||
Cupuassu | Theobroma grandiflorum, Spreng. | Alcohols | Ethanol, 1-Butanol, Isoamyl alcohol, Prenol, 2,3-Butanediol, 3-Hexen-1-ol, 1-Hexanol |
Aldehydes | Nonyl aldehyde, Decyl aldehyde | ||
Esters | Ethyl acetate, Ethyl propionate, Ethyl isobutyrate, Ethyl butyrate, Ethyl 2-methylbutyrate, Isoamyl acetate, Methyl caproate, Butyl isobutyrate, Butyl butyrate, Ethyl caproate, Hexyl acetate, Butyl 2-methylbutyrate, Isoamyl butyrate, Butyl caproate | ||
Ketones | 1-Phenyl-2-pentanone | ||
Terpenic compounds | Camphene, β-Mircene, Limonene, Ocimene, β-Linalool, α-Terpineol, Geraniol | ||
Others | Diacetyl, Acetic acid, 2,5-Dihydro-2,5-dimethoxyfuran, 2,4,5-Trimethyl-1,3-dioxolane, γ-Octalactone, Palmitic acid | ||
Siriguela | Spondias purpurea, L. | Alcohols | Ethanol, 1-Butanol, Isoamyl alcohol, Amyl alcohol 2,3-butanediol, 3-Hexen-1-ol, 2-Hexen-1-ol, 1-Hexanol |
Aldehydes | Caproic aldehyde, Nonyl aldehyde, Decyl aldehyde | ||
Esters | Ethyl acetate, Ethyl propionate, Ethyl crotonate, Ethyl 2-methylbutyrate, Isoamyl acetate, Methyl caproate, Methyl 2-hexenoate, Ethyl caproate, Isobutyl 2-methylcrotonate, Ethyl benzoate | ||
Ketones | 1-Penten-3-one | ||
Terpenic compounds | Limonene, Copaene | ||
Others | Diacetyl, Acetic acid, Palmitic acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reitenbach, A.F.; Lorenzi, A.S.; Ghesti, G.F.; Santos, P.C.M.d.; Rodrigues, I.M.T.; Barbosa, A.D.S.; Sant’Ana, R.R.A.; Fritzen-Freire, C.B.; Nowruzi, B.; Burin, V.M. Advances in Mead Aroma Research: A Comprehensive Bibliometric Review and Insights into Key Factors and Trends. Fermentation 2025, 11, 226. https://doi.org/10.3390/fermentation11040226
Reitenbach AF, Lorenzi AS, Ghesti GF, Santos PCMd, Rodrigues IMT, Barbosa ADS, Sant’Ana RRA, Fritzen-Freire CB, Nowruzi B, Burin VM. Advances in Mead Aroma Research: A Comprehensive Bibliometric Review and Insights into Key Factors and Trends. Fermentation. 2025; 11(4):226. https://doi.org/10.3390/fermentation11040226
Chicago/Turabian StyleReitenbach, Amanda Felipe, Adriana Sturion Lorenzi, Grace Ferreira Ghesti, Paula Christina Mattos dos Santos, Igor Murilo Teixeira Rodrigues, Ananda Dos Santos Barbosa, Rodrigo Ribeiro Arnt Sant’Ana, Carlise Beddin Fritzen-Freire, Bahareh Nowruzi, and Vívian Maria Burin. 2025. "Advances in Mead Aroma Research: A Comprehensive Bibliometric Review and Insights into Key Factors and Trends" Fermentation 11, no. 4: 226. https://doi.org/10.3390/fermentation11040226
APA StyleReitenbach, A. F., Lorenzi, A. S., Ghesti, G. F., Santos, P. C. M. d., Rodrigues, I. M. T., Barbosa, A. D. S., Sant’Ana, R. R. A., Fritzen-Freire, C. B., Nowruzi, B., & Burin, V. M. (2025). Advances in Mead Aroma Research: A Comprehensive Bibliometric Review and Insights into Key Factors and Trends. Fermentation, 11(4), 226. https://doi.org/10.3390/fermentation11040226