β-Glucosidase: Progress from Basic Mechanism to Frontier Application
Abstract
1. Introduction
2. Classification and Catalytic Mechanism of β-Glucosidase
2.1. Classification and Protein Structure of β-Glucosidase
2.2. The Catalytic Mechanism of β-Glucosidase
3. Biological Characteristics of β-Glucosidase from Different Sources
3.1. β-Glucosidase from Microorganisms
3.2. β-Glucosidase from Plant
4. Modification of β-Glucosidase by Genetic Engineering and Protein Engineering
4.1. Modification of Enzyme Activity
4.2. Heat-Resistant Modification of Enzyme
5. Extraction and Purification of β-Glucosidase
5.1. Traditional Extraction Method
5.2. Efficient Purification Technology
6. Application of β-Glucosidase
6.1. Biofuel Production
6.2. Application in Food Industry
6.3. Applications in the Pharmaceutical Industry
6.4. Application in Paper Industry
6.5. Waste Treatment and Biodegradation
7. Future Prospects
7.1. Optimization of Enzymatic Properties
7.2. Innovative Immobilization Technology
7.3. Biological Reaction Synthesis of Enzyme
7.4. Expanding Application Fields
7.5. Promote Industrial Production
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, X.; Li, X.; Zhao, J. Improving enzymatic efficiency of β-glucosidases in cellulase system by altering its binding behavior to the insoluble substrate during bioconversion of lignocellulose. Bioresour. Technol. 2024, 391, 129974. [Google Scholar] [CrossRef]
- Kaenying, W.; Tagami, T.; Suwan, E.; Pitsanuwong, C.; Chomngam, S.; Okuyama, M.; Kongsaeree, P.; Kimura, A.; Kongsaeree, P.T. Structural and mutational analysis of glycoside hydrolase family 1 Br2 β-glucosidase derived from bovine rumen metagenome. Heliyon 2023, 9, e21923. [Google Scholar] [CrossRef]
- Erkanli, M.E.; El-Halabi, K.; Kim, J.R. Exploring the diversity of β-glucosidase: Classification, catalytic mechanism, molecular characteristics, kinetic models, and applications. Enzym. Microb. Technol. 2024, 173, 110363. [Google Scholar] [CrossRef]
- Hao, S.; Liu, Y.; Qin, Y.; Zhao, L.; Zhang, J.; Wu, T.; Sun, B.; Wang, C. Expression of a highly active β-glucosidase from Aspergillus niger AS3.4523 in Escherichia coli and its application in gardenia blue preparation. Ann. Microbiol. 2020, 70, 32. [Google Scholar] [CrossRef]
- Okamoto, K.; Nakano, H.; Yatake, T.; Kiso, T.; Kitahata, S. Purification and some properties of a beta-glucosidase from Flavobacterium johnsonae. Biosci. Biotechnol. Biochem. 2000, 64, 333–340. [Google Scholar] [CrossRef]
- Lu, J.; Du, L.; Wei, Y.; Hu, Y.; Huang, R. Expression and characterization of a novel highly glucose-tolerant β-glucosidase from a soil metagenome. Acta Biochim. Biophys. Sin. 2013, 45, 664–673. [Google Scholar] [CrossRef]
- Frassatto, P.A.C.; Casciatori, F.P.; Thoméo, J.C.; Gomes, E.; Boscolo, M.; da Silva, R. β-Glucosidase production by Trichoderma reesei and Thermoascus aurantiacus by solid state cultivation and application of enzymatic cocktail for saccharification of sugarcane bagasse. Biomass Convers. Biorefinery 2021, 11, 503–513. [Google Scholar] [CrossRef]
- Chang, J.; Wang, J.; Li, Z.; Wang, L.; Lu, P.; Zhong, Y.; Liu, H. High-Level Expression of β-Glucosidase in Aspergillus niger ATCC 20611 Using the Trichoderma reesei Promoter Pcdna1 to Enhance Cellulose Degradation. Fermentation 2024, 10, 461. [Google Scholar]
- Cairns, J.R.K.; Esen, A. β-Glucosidases. Cell. Mol. Life Sci. CMLS 2010, 67, 3389. [Google Scholar]
- Juhász, T.; Egyházi, A.; Réczey, K. β-Glucosidase production by Trichoderma reesei. Appl. Biochem. Biotechnol. 2005, 121, 243–254. [Google Scholar] [CrossRef]
- Wang, C.; Wu, G.; Chen, C.; Chen, S. High production of β-glucosidase by Aspergillus niger on corncob. Appl. Biochem. Biotechnol. 2012, 168, 58–67. [Google Scholar] [CrossRef]
- Parafati, L.; Proetto, I.; Palmeri, R.; Pesce, F.; Fallico, B.; Restuccia, C. Reuse of Brewer’s Spent Grain (BSG) for the Induction of Wickerhamomyces anomalus BS91 β-Glucosidase with Bioflavoring Potential. Fermentation 2024, 10, 472. [Google Scholar] [CrossRef]
- Muradova, M.; Proskura, A.; Canon, F.; Aleksandrova, I.; Schwartz, M.; Heydel, J.-M.; Baranenko, D.; Nadtochii, L.; Neiers, F. Unlocking flavor potential using microbial β-glucosidases in food processing. Foods 2023, 12, 4484. [Google Scholar] [CrossRef]
- Yang, W.; Su, Y.; Wang, R.; Zhang, H.; Jing, H.; Meng, J.; Zhang, G.; Huang, L.; Guo, L.; Wang, J.; et al. Microbial production and applications of β-glucosidase-A review. Int. J. Biol. Macromol. 2024, 256, 127915. [Google Scholar] [CrossRef] [PubMed]
- Henrissat, B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 1991, 280, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Henrissat, B.; Davies, G. Structural and sequence-based classification of glycoside hydrolases. Curr. Opin. Struct. Biol. 1997, 7, 637–644. [Google Scholar] [CrossRef] [PubMed]
- Deng, P.; Meng, C.; Wu, Y.; Xu, J.; Tang, X.; Zhang, X.; Xiao, Y.; Wang, X.; Fang, Z.; Fang, W. An unusual GH1 β-glucosidase from marine sediment with β-galactosidase and transglycosidation activities for superior galacto-oligosaccharide synthesis. Appl. Microbiol. Biotechnol. 2020, 104, 4927–4943. [Google Scholar]
- Gudmundsson, M.; Hansson, H.; Karkehabadi, S.; Larsson, A.; Stals, I.; Kim, S.; Sunux, S.; Fujdala, M.; Larenas, E.; Kaper, T.; et al. Structural and functional studies of the glycoside hydrolase family 3 β-glucosidase Cel3A from the moderately thermophilic fungus Rasamsonia emersonii. Acta Crystallogr. Sect. D Struct. Biol. 2016, 72, 860–870. [Google Scholar] [CrossRef]
- Drula, E.; Garron, M.-L.; Dogan, S.; Lombard, V.; Henrissat, B.; Terrapon, N. The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Res. 2022, 50, D571–D577. [Google Scholar]
- Koetzler, M.P.; Robinson, K.; Chen, H.-M.; Okon, M.; McIntosh, L.P.; Withers, S.G. Modulating the Nucleophile of a Glycoside Hydrolase through Site-Specific Incorporation of Fluoroglutamic Acids. J. Am. Chem. Soc. 2018, 140, 8268–8276. [Google Scholar] [CrossRef]
- Xinhan, L.; Fengfei, S.; Pengjun, S. Prokaryotic expression and characterization of bifunctional thermostable β-glucosidase IuBgl3 from Infirmifilum uzonense. Acta Bioeng. 2022, 38, 4644–4657. [Google Scholar]
- Zayulina, K.S.; Elcheninov, A.G.; Toshchakov, S.V.; Kochetkova, T.V.; Novikov, A.A.; Blamey, J.M.; Kublanov, I.V. Novel hyperthermophilic crenarchaeon Infirmifilum lucidum gen. nov. sp. nov., reclassification of Thermofilum uzonense as Infirmifilum uzonense comb. nov. and assignment of the family Thermofilaceae to the order Thermofilales ord. nov. Syst. Appl. Microbiol. 2021, 44, 126230. [Google Scholar] [CrossRef]
- Karkehabadi, S.; Hansson, H.; Mikkelsen, N.E.; Kim, S.; Kaper, T.; Sandgren, M.; Gudmundsson, M. Structural studies of a glycoside hydrolase family 3 β-glucosidase from the model fungus Neurospora crassa. Struct. Biol. Cryst. Commun. 2018, 74, 787–796. [Google Scholar] [CrossRef]
- Santos, C.M.M.; Proença, C.; Freitas, M.; Araújo, A.N.; Silva, A.M.S.; Fernandes, E. Inhibition of the carbohydrate-hydrolyzing enzymes α-amylase and α-glucosidase by hydroxylated xanthones. Food Funct. 2022, 13, 7930–7941. [Google Scholar] [CrossRef]
- Thenchartanan, P.; Wattana-Amorn, P.; Svasti, J.; Kongsaeree, P.T. Improved synthesis of long-chain alkyl glucosides catalyzed by an engineered β-glucosidase in organic solvents and ionic liquids. Biotechnol. Lett. 2020, 42, 2379–2387. [Google Scholar] [CrossRef]
- Zhao, L.; Zhou, Y.; Qin, S.; Qin, P.; Chu, J.; He, B. β-Galactosidase BMG without galactose and glucose inhibition: Secretory expression in Bacillus subtilis and for synthesis of oligosaccharide. Int. J. Biol. Macromol. 2018, 120, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Ortega, P.G.; López-Miranda, J.; Rojas-Contreras, J.A.; Ilina, A.; Soto-Cruz, N.O.; Páez-Lerma, J.B. Expression of a β-glucosidase from Trichoderma reesei in Escherichia coli using a synthetic optimized gene and stability improvements by immobilization using magnetite nano-support. Protein Expr. Purif. 2022, 190, 106009. [Google Scholar] [CrossRef]
- Lopez-Trujillo, J.; Medina-Morales, M.A.; Sanchez-Flores, A.; Arevalo, C.; Ascacio-Valdes, J.A.; Mellado, M.; Aguilar, C.N.; Aguilera-Carbo, A.F. Solid bioprocess of tarbush (Flourensia cernua) leaves for β-glucosidase production by Aspergillus niger: Initial approach to fiber–glycoside interaction for enzyme induction. 3 Biotech 2017, 7, 271. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, H.; Kang, K.; Zhang, X.; Fraser, K.; Zhang, F.; Linhardt, R.J. β-Glucosidase on clay minerals: Structure and function in the synthesis of octyl glucoside. Int. J. Biol. Macromol. 2024, 256, 128386. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, Y.; Lin, L.; Zhou, W.; Liu, M.; Cheng, K.; Wang, W. Engineering Saccharomyces cerevisiae with the deletion of endogenous glucosidases for the production of flavonoid glucosides. Microb. Cell Factories 2016, 15, 134. [Google Scholar] [CrossRef]
- Magwaza, B.; Amobonye, A.; Bhagwat, P.; Pillai, S. Hyper β-glucosidase producer Beauveria bassiana SAN01—Optimization of fermentation conditions and evaluation of saccharification potential. Biomass Convers. Biorefinery 2025, 15, 9753–9765. [Google Scholar] [CrossRef]
- Paventi, G.; Di Martino, C.; Coppola, F.; Iorizzo, M. β-Glucosidase Activity of Lactiplantibacillus plantarum: A Key Player in Food Fermentation and Human Health. Foods 2025, 14, 1451. [Google Scholar] [CrossRef]
- Xie, Y.; Yan, X.; Li, C.; Wang, S.; Jia, L. Characterization and insight mechanism of an acid-adapted β-Glucosidase from Lactobacillus paracasei and its application in bioconversion of glycosides. Front. Bioeng. Biotechnol. 2024, 12, 1334695. [Google Scholar]
- Romero-Téllez, S.; Lluch, J.M.; González-Lafont, À.; Masgrau, L. Comparing hydrolysis and transglycosylation reactions catalyzed by Thermus thermophilus β-glycosidase. A Comb. MD QM/MM Study. Front. Chem. 2019, 7, 200. [Google Scholar] [CrossRef] [PubMed]
- Horikoshi, S.; Saburi, W.; Yu, J.; Matsuura, H.; Cairns, J.R.K.; Yao, M.; Mori, H. Substrate specificity of glycoside hydrolase family 1 β-glucosidase AtBGlu42 from Arabidopsis thaliana and its molecular mechanism. Biosci. Biotechnol. Biochem. 2022, 86, 231–245. [Google Scholar]
- Liew, K.J.; Lim, L.; Woo, H.Y.; Chan, K.-G.; Shamsir, M.S.; Goh, K.M. Purification and characterization of a novel GH1 beta-glucosidase from Jeotgalibacillus malaysiensis. Int. J. Biol. Macromol. 2018, 115, 1094–1102. [Google Scholar] [CrossRef]
- Ahmed, S.; Andaleeb, H.; Aslam, A.; Raza, J.A.; Waseem, S.M.Y.; Javaid, A.; Talib, C. Improved Cellulolytic Activity of Alternaria citri: Optimization and EMS Treatment for Enhanced Cellulase Production. Fermentation 2025, 11, 274. [Google Scholar] [CrossRef]
- Lee, K.W.; Han, N.S.; Kim, J.H. Purification and characterization of beta-glucosidase from Weissella cibaria 37. J. Microbiol. Biotechnol. 2012, 22, 1705–1713. [Google Scholar] [CrossRef]
- Fan, T.; Jing, S.; Zhang, H.; Yang, X.; Jin, G.; Tao, Y. Localization, purification, and characterization of a novel β-glucosidase from Hanseniaspora uvarum Yun268. J. Food Sci. 2022, 87, 886–894. [Google Scholar]
- Del Cueto, J.; Møller, B.L.; Dicenta, F.; Sánchez-Pérez, R. β-Glucosidase activity in almond seeds. Plant Physiol. Biochem. 2018, 126, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Kumar, A.K.; Shah, A. Purification and characterization of novel bi-functional GH3 family β-xylosidase/β-glucosidase from Aspergillus niger ADH-11. Int. J. Biol. Macromol. 2018, 109, 1260–1269. [Google Scholar] [CrossRef]
- Zhong, P.; Xiu, Y.; Zhou, K.; Zhao, H.; Wang, N.; Zheng, F.; Yu, S. Characterization of a novel thermophilic beta-glucosidase from Thermotoga sp. and its application in the transformation of notoginsenoside R1. 3 Biotech 2022, 12, 289. [Google Scholar] [CrossRef] [PubMed]
- Maicas, S.; Lilao, J.; Mateo, J.J. Characterization of a β-glucosidase isolated from an alpeorujo strain of Candida adriatica. Food Biotechnol. 2017, 31, 114–127. [Google Scholar] [CrossRef]
- Vervoort, Y.; Herrera-Malaver, B.; Mertens, S.; Medina, V.G.; Duitama, J.; Michiels, L.; Derdelinckx, G.; Voordeckers, K.; Verstrepen, K.J. Characterization of the recombinant Brettanomyces anomalus β-glucosidase and its potential for bioflavouring. J. Appl. Microbiol. 2016, 121, 721–733. [Google Scholar] [CrossRef]
- Karaulli, J.; Xhaferaj, N.; Coppola, F.; Testa, B.; Letizia, F.; Kyçyk, O.; Kongoli, R.; Ruci, M.; Lamçe, F.; Sulaj, K.; et al. Bioprospecting of Metschnikowia pulcherrima Strains, Isolated from a Vineyard Ecosystem, as Novel Starter Cultures for Craft Beer Production. Fermentation 2024, 10, 513. [Google Scholar] [CrossRef]
- Bi, Y.; Zhu, C.; Wang, Z.; Luo, H.; Fu, R.; Zhao, X.; Zhao, X.; Jiang, L. Purification and characterization of a glucose-tolerant β-glucosidase from black plum seed and its structural changes in ionic liquids. Food Chem. 2019, 274, 422–428. [Google Scholar] [CrossRef]
- Gómez-Anduro, G.; Ceniceros-Ojeda, E.A.; Casados-Vázquez, L.E.; Bencivenni, C.; Sierra-Beltrán, A.; Murillo-Amador, B.; Tiessen, A. Genome-wide analysis of the beta-glucosidase gene family in maize (Zea mays L. var B73). Plant Mol. Biol. 2011, 77, 159–183. [Google Scholar]
- Asati, V.; Sharma, P.K. Purification and characterization of an isoflavones conjugate hydrolyzing β-glucosidase (ICHG) from Cyamopsis tetragonoloba (guar). Biochem. Biophys. Rep. 2019, 20, 100669. [Google Scholar] [CrossRef]
- Rodríguez, A.C.; Esperanza, F.A.S.; Pérez-Campos, E.; Hernández-Huerta, M.T.; Mayoral, L.P.-C.; Matias-Cervantes, C.A.; Barras, A.M.; Mayoral-Andrade, G.; Pineda, L.Á.S.; Barrita, A.J.D.; et al. Aggregation and molecular properties of β-glucosidase isoform II in chayote (Sechium edule). Molecules 2020, 25, 1699. [Google Scholar] [CrossRef]
- Kumar, A.; Gautam, A.; Dutt, D. Co-Cultivation of Penicillium sp. AKB-24 and Aspergillus nidulans AKB-25 as a Cost-Effective Method to Produce Cellulases for the Hydrolysis of Pearl Millet Stover. Fermentation 2016, 2, 12. [Google Scholar] [CrossRef]
- Cameron, R.G.; Manthey, J.A.; Baker, R.A. Purification and characterization of a beta-glucosidase from Citrus sinensis var. Valencia fruit tissue. J. Agric. Food Chem. 2001, 49, 4457–4462. [Google Scholar] [CrossRef]
- Bešić, L.; Ašić, A.; Muhović, I.; Dogan, S.; Turan, Y. Purification and Characterization of β-Glucosidase from Brassica oleracea. J. Food Process. Preserv. 2017, 41, e12764. [Google Scholar] [CrossRef]
- Hao, W.X. Construction of Engineering Strain with High β-Glucosidase Yield and Its Effect on Fermentation of Saccharomyces Cerevisiae WXY12 to Produce Ethanol; Jilin Agricultural University: Changchun, China, 2019. [Google Scholar]
- Guo, J.H.; Lu, H.Y.; Hong, J.F. YPS1/YPS2 inactivation improves β-glucosidase expression in Saccharomyces cerevisiae An-α strain. Microbiol China 2021, 48, 4485–4495. [Google Scholar]
- Shen, F.F.; Miu, T.T.; Zhang, X.X. Prokaryotic expression and characterization of thermoactivated β-glucosidase TaBgl3 from thermophilic archaea Thermofilum adornatum. Acta Microbiol Sin. 2022, 62, 2555–2567. [Google Scholar]
- Tong, X.; Qi, Z.; Zheng, D.; Pei, J.; Li, Q.; Zhao, L. High-level expression of a novel multifunctional GH3 family β-xylosidase/α-arabinosidase/β-glucosidase from Dictyoglomus turgidum in Escherichia coli. Bioorganic Chem. 2021, 111, 104906. [Google Scholar] [CrossRef]
- Shuang, D.; He, L. Directional screening, recombinant expression and enzymatic properties of β-glucosidase Bgl747. Microbiol. Bull. 2021, 48, 2524–2533. [Google Scholar]
- Singh, A.K.; Raheja, T.; Sarkar, P.; Sathaye, S.B.; Rai, A.K.; Singh, S.P. Genetic and functional characterization of a Limosilactobacillus fermentum strain with β-galactosidase activity, isolated from Chhurpi sample of Sikkim. Food Bioprod. Process. 2025, 150, 107–117. [Google Scholar] [CrossRef]
- Britto, D.S.; Pirovani, C.P.; Andrade, B.S.; dos Santos, T.P.; Pungartnik, C.; Cascardo, J.C.M.; Micheli, F.; Gesteira, A.S. Recombinant β-1,3-1,4-glucanase from Theobroma cacao impairs Moniliophthora perniciosa mycelial growth. Mol. Biol. Rep. 2013, 40, 5417–5427. [Google Scholar] [CrossRef]
- Wickramasinghe, G.H.I.M.; Rathnayake, P.P.A.M.S.I.; Chandrasekharan, N.V.; Weerasinghe, M.S.S.; Wijesundera, R.L.C.; Wijesundera, W.S.S. Trichoderma virens β-glucosidase I (BGL I) gene; expression in Saccharomyces cerevisiae including docking and molecular dynamics studies. BMC Microbiol. 2017, 17, 137. [Google Scholar] [CrossRef] [PubMed]
- Larue, K.; Melgar, M.; Martin, V.J.J. Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae. Biotechnol. Biofuels 2016, 9, 52. [Google Scholar] [CrossRef]
- Sun, J.; Wang, W.; Ying, Y.; Hao, J. A novel glucose-tolerant GH1 β-glucosidase and improvement of its glucose tolerance using site-directed mutation. Appl. Biochem. Biotechnol. 2020, 192, 999–1015. [Google Scholar] [CrossRef]
- Xia, H.; Zhou, Y.; Zheng, Y.; Xu, Q.; Xue, F. Steric hindrance scanning for activity enhancement of β-glucosidase BgMd and its application in glucoside transformation. Mol. Catal. 2025, 584, 115260. [Google Scholar] [CrossRef]
- Li, J.-J.; Pei, X.-Q.; Zhang, S.-B.; Wu, Z.-L. Improving the thermostability of feruloyl esterase by DNA shuffling and site-directed mutagenesis. Process Biochem. 2015, 50, 1783–1787. [Google Scholar]
- Yücetürk, S.Ç.; Azaz, A.D. Production, purification, and determination of the biochemical properties of β-glucosidase in Trichoderma koningii via solid substrate fermentation. Z. Für Naturforschung C 2025, 80, 9–19. [Google Scholar] [CrossRef]
- Ichikawa, S.; Ichihara, M.; Ito, T.; Isozaki, K.; Kosugi, A.; Karita, S. Glucose production from cellulose through biological simultaneous enzyme production and saccharification using recombinant bacteria expressing the β-glucosidase gene. J. Biosci. Bioeng. 2019, 127, 340–344. [Google Scholar] [CrossRef] [PubMed]
- Nath, P.; Dhillon, A.; Kumar, K.; Sharma, K.; Jamaldheen, S.B.; Moholkar, V.S.; Goyal, A. Development of bi-functional chimeric enzyme (CtGH1-L1-CtGH5-F194A) from endoglucanase (CtGH5) mutant F194A and β-1, 4-glucosidase (CtGH1) from Clostridium thermocellum with enhanced activity and structural integrity. Bioresour. Technol. 2019, 282, 494–501. [Google Scholar] [CrossRef] [PubMed]
- Pitchayatanakorn, P.; Putthasang, P.; Chomngam, S.; Jongkon, N.; Choowongkomon, K.; Kongsaeree, P.; Fushinobu, S.; Kongsaeree, P.T. Structure-Based Engineering to Improve Thermostability of Acetivibrio thermocellus AtBgl1A β-Glucosidase. ACS Omega 2025, 10, 27153–27164. [Google Scholar]
- Chen, A.; Liu, K.; Guo, Y.; Wang, C.; Ji, C. Structural and Functional Insights into β-Glucosidase Derived from Thermoproteus sp. AZ2. Arch. Biochem. Biophys. 2025, 771, 110478. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Cao, L.; Yang, X.; Wu, X.; Xu, S.; Liu, Y. Simultaneously optimizing multiple properties of β-glucosidase Bgl6 using combined (semi-) rational design strategies and investigation of the underlying mechanisms. Bioresour. Technol. 2023, 374, 128792. [Google Scholar] [CrossRef]
- Singhvi, M.S.; Zinjarde, S.S. Production of pharmaceutically important genistein and daidzein from soybean flour extract by using β-glucosidase derived from Penicillium janthinellum NCIM 1171. Process Biochem. 2020, 97, 183–190. [Google Scholar] [CrossRef]
- Han, J.; Fang, S.; He, X.; Wang, L.; Li, C.; Wu, J.; Cai, Y.; Wang, Y. Combination of aqueous two-phase flotation and inverse transition cycling: Strategies for separation and purification of recombinant β-glucosidase from cell lysis solution. Food Chem. 2022, 373, 131543. [Google Scholar] [CrossRef]
- Qin, Y.; Li, Q.; Luo, F.; Fu, Y.; He, H. One-step purification of two novel thermotolerant β-1, 4-glucosidases from a newly isolated strain of Fusarium chlamydosporum HML278 and their characterization. AMB Express 2020, 10, 182. [Google Scholar] [CrossRef] [PubMed]
- Yao, C.; Sun, J.; Wang, W.; Zhuang, Z.; Liu, J.; Hao, J. A novel cold-adapted β-galactosidase from Alteromonas sp. ML117 cleaves milk lactose effectively at low temperature. Process Biochem. 2019, 82, 94–101. [Google Scholar] [CrossRef]
- Zheng, W.; Qin, Y.; Zhuang, X.; Xiao, H.; Liu, C.; Fu, X.; Lin, Q.; Lan, T. Recycling enzymatic hydrolysis lignin residues saved cellulase in enzymatic hydrolysis of lignocellulose: An insight from cellulase adsorption mechanism. Ind. Crop. Prod. 2024, 208, 117884. [Google Scholar] [CrossRef]
- Srivastava, N.; Rathour, R.; Jha, S.; Pandey, K.; Srivastava, M.; Thakur, V.K.; Sengar, R.S.; Gupta, V.K.; Mazumder, P.B.; Khan, A.F.; et al. Microbial beta glucosidase enzymes: Recent advances in biomass conversation for biofuels application. Biomolecules 2019, 9, 220. [Google Scholar] [CrossRef]
- Boisset, C.; Fraschini, C.; Schülein, M.; Henrissat, B.; Chanzy, H. Interfacial molecular interactions of cellobiohydrolase Cel7A and its variants on cellulose. Biotechnol. Biofuels 2020, 13, 10. [Google Scholar] [CrossRef]
- Gu, B.; Xia, L. High expression of a neutral endo-β-glucanase gene from Humicola insolens in Trichoderma reesei. J. Ind. Microbiol. Biotechnol. 2013, 40, 773–779. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, C.; Wang, G.; Ma, Y.; Zhang, K.; Zou, S.; Zhang, M. Comparison of the expression in Saccharomyces cerevisiae of endoglucanase II from Trichoderma reesei and endoglucanase I from Aspergillus aculeatus. BioResources 2012, 7, 4031–4045. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, Z.; Qin, Y.; Ye, D.-Q.; Song, Y.-Y.; Liu, Y.-L. Efficient Display of Aspergillus niger β-glucosidase on Saccharomyces cerevisiae cell wall for aroma enhancement in wine. J. Agric. Food Chem. 2019, 67, 5169–5176. [Google Scholar] [CrossRef]
- Han, Y.; Du, J.; Song, Z. Effects of the yeast endogenous β-glucosidase on hawthorn (Crataegus pinnatifida Bunge) wine ethyl carbamate and volatile compounds. J. Food Compos. Anal. 2021, 103, 104084. [Google Scholar] [CrossRef]
- Wang, J.; Ma, L.; Gao, H. The effect of commercial β-glucosidase and its immobilization on quality of red wine production. Biocatal. Agric. Biotechnol. 2023, 54, 102965. [Google Scholar] [CrossRef]
- Baffi, M.A.; Tobal, T.; Lago, J.H.G.; Boscolo, M.; Gomes, E.; Da-Silva, R. Wine aroma improvement using a β-glucosidase preparation from Aureobasidium pullulans. Appl. Biochem. Biotechnol. 2013, 169, 493–501. [Google Scholar] [CrossRef]
- González-Pombo, P.; Fariña, L.; Carrau, F.; Batista-Viera, F.; Brena, B.M. A novel extracellular β-glucosidase from Issatchenkia terricola: Isolation, immobilization and application for aroma enhancement of white Muscat wine. Process Biochem. 2011, 46, 385–389. [Google Scholar] [CrossRef]
- Su, H.; Xiao, Z.; Yu, K.; Zhang, Q.; Lu, C.; Wang, G.; Wang, Y.; Liang, J.; Huang, W.; Huang, X.; et al. Use of a purified β-glucosidase from coral-associated microorganisms to enhance wine aroma. J. Sci. Food Agric. 2022, 102, 3467–3474. [Google Scholar] [CrossRef]
- Keerti; Gupta, A.; Kumar, V.; Dubey, A.; Verma, A.K. Kinetic characterization and effect of immobilized thermostable β-glucosidase in alginate gel beads on sugarcane juice. Int. Sch. Res. Not. 2014, 2014, 178498. [Google Scholar]
- Yuksekdag, Z.; Acar, B.C.; Aslim, B.; Tukenmez, U. β-Glucosidase activity and bioconversion of isoflavone glycosides to aglycones by potential probiotic bacteria. Int. J. Food Prop. 2017, 20, S2878–S2886. [Google Scholar] [CrossRef]
- Zhou, J.; Liang, M.; Lin, Y.; Pang, H.; Wei, Y.; Huang, R.; Du, L. Application of β-glucosidase in a biphasic system for the efficient conversion of polydatin to resveratrol. Molecules 2022, 27, 1514. [Google Scholar] [CrossRef] [PubMed]
- Bi, Y.-F.; Wang, X.-Z.; Jiang, S.; Liu, J.-S.; Zheng, M.-Z.; Chen, P. Enzymatic transformation of ginsenosides Re, Rg1, and Rf to ginsenosides Rg2 and aglycon PPT by using β-glucosidase from Thermotoga neapolitana. Biotechnol. Lett. 2019, 41, 613–623. [Google Scholar] [CrossRef]
- Garbin, A.P.; Garcia, N.F.L.; Cavalheiro, G.F.; Silvestre, M.A.; Rodrigues, A.; Paz, M.F.D.A.; Fonseca, G.G.; Leite, R.S.R. β-glucosidase from thermophilic fungus Thermoascus crustaceus: Production and industrial potential. An. Acad. Bras. Ciências 2021, 93, e20191349. [Google Scholar] [CrossRef]
- Singh, G.; Verma, A.K.; Kumar, V. Catalytic properties, functional attributes and industrial applications of β-glucosidases. 3 Biotech 2016, 6, 3. [Google Scholar] [CrossRef]
- Tsatsis, D.E.; Papachristos, D.K.; Valta, K.A.; Vlyssides, A.G.; Economides, D.G. Enzymatic deinking for recycling of office waste paper. J. Environ. Chem. Eng. 2017, 5, 1744–1753. [Google Scholar] [CrossRef]
- Saxena, A.; Chauhan, P.S. Role of various enzymes for deinking paper: A review. Crit. Rev. Biotechnol. 2017, 37, 598–612. [Google Scholar] [CrossRef]
- Soni, R.; Nazir; Chadha, B.S.; Saini, H.S. Novel sources of fungal cellulases for efficient deinking of composite paper waste. Bioresources 2008, 3, 234–246. [Google Scholar] [CrossRef]
- Ram, C.; Rani, P.; Gebru, K.A.; Abrha, M.G.M. Pulp and paper industry wastewater treatment: Use of microbes and their enzymes. Phys. Sci. Rev. 2020, 5, 20190050. [Google Scholar] [CrossRef]
- Ruiz-Barba, J.L.; Cortés-Delgado, A.; Sánchez, A.H.; López-López, A.; Montaño, A. Naturally Fermented Gordal and Manzanilla Green Table Olives: Effect of Single Yeast Starters on Fermentation and Final Characteristics of the Products. Fermentation 2024, 10, 439. [Google Scholar] [CrossRef]
- Mallek-Fakhfakh, H.; Fakhfakh, J.; Masmoudi, N.; Rezgui, F.; Gargouri, A.; Belghith, H. Agricultural wastes as substrates for β-glucosidase production by Talaromyces thermophilus: Role of these enzymes in enhancing waste paper saccharification. Prep. Biochem. Biotechnol. 2017, 47, 414–423. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Li, R.; Zhang, J.; Liu, H.; Xu, Z.; Jin, M.; Bai, F.; Zhong, Y. Achieving high-concentration lignocellulosic sugars by using the Trichoderma reesei strain with high β-glucosidase activity for inducer synthesis and cellulase production. Chem. Eng. J. 2025, 522, 167764. [Google Scholar] [CrossRef]
- Azevedo, R.; Lopes, J.L.; de Souza, M.M.; Quirino, B.F.; Cançado, L.J.; Marins, L.F. Synechococcus elongatus as a model of photosynthetic bioreactor for expression of recombinant β-glucosidases. Biotechnol. Biofuels 2019, 12, 174. [Google Scholar] [CrossRef]
- Bara Ski, R.; Puddephat, I.J. Tissue specific expression of β-glucuronidase gene driven by heterologous promoters in transgenic cauliflower plants. Acta Physiol. Plant. 2004, 26, 307–315. [Google Scholar] [CrossRef]
- Long, T.; Zhang, P.; Yu, J.; Gao, Y.; Ran, X.; Li, Y. Regulation of β-disaccharide accumulation by β-glucosidase inhibitors to enhance cellulase production in Trichoderma reesei. Fermentation 2022, 8, 232. [Google Scholar] [CrossRef]
- Wang, L.-L.; Tang, W.; Wang, Z.; Wang, Y.-X.; Li, N.; Ren, F.-C. Antimicrobial, Antioxidant, and α-Glucosidase-Inhibitory Activities of Prenylated p-Hydroxybenzoic Acid Derivatives from Oberonia ensiformis. Molecules 2025, 30, 2132. [Google Scholar] [CrossRef] [PubMed]
- Sayyed, R.Z.; Shimpi, G.B.; Chincholkar, S.B. Constitutive production of extracellular glucose isomerase by an osmophillic Aspergillus sp. under submerged conditions. J. Food Sci. Technol. 2010, 47, 496–500. [Google Scholar] [CrossRef]
Source | Molecular Weight | Quaternary Structure of Protein | Optimum pH | Optimum Temperature | Activators | Inhibitors | Ref. |
---|---|---|---|---|---|---|---|
Jeotgalibacillus malaysiensis. DSM 28777T | 52 | 7 | 65 | CaCl2, MgCl2 | FeCl3, NiCl2, CoCl2, ZnSO4, MnSO4, CuSO4 | [33] | |
Stachybotrys sp. | 78 | single subunit | 6 | 50 | 10 mM Ba2+, Ca2+, Zn2+ | 5 mM Fe2+ | [34] |
Weissella cibaria | 50 | 5.5 | 45 | Ca2+ | Cu2+, Zn2+, SDS, pepstatin A | [35] | |
Endophytic bacterium | 33 | single subunit | 6 | 40 | reducing agents (e.g., beta-mercaptoethanol, dithiothreitol, dithioerythritol, glutathione) | Hg2+, Ag+, rho-chloromercuribenzoate, iodoacetic acid, N-ethylmaleimide | [36] |
Aspergillus sojae | 118 | 5 | 60 | Mn2+, Fe3+ | Hg2+, Cu2+ | [37] | |
Thermotoga sp. | 81 | 6.4 | 75 | [38] | |||
Candida adriatica CECT13142 | 50 | 6.2 | 40 | [39] | |||
Brettanomyces anomalus | 96 | single subunit | 5.75 | 37 | [40] |
Source | Molecular Weight | Quaternary Structure of Protein | Optimum pH | Optimum Temperature | pI | Activators | Inhibitors | Ref. |
---|---|---|---|---|---|---|---|---|
Canarium album (Lour.) Raeusch. | 65 | 5.5 | 40 | 7.0 | [42] | |||
Black plum seeds | 60 | single subunit | 5.0 | 55 | Mn2+, Ca2+, Cu2+ | Hg2+, Ag+ | [43] | |
Zea mays L. | 60 | dimer | 5.8 | 50 | 5.2 | 2-mercaptoethanol | Hg2+, Ag+, alkylating agents iodoacetic acid, iodoacetamide | [44] |
Cyamopsis tetragonoloba | 150 | trimer | 4.5 | 37 | Hg2+, Co2+ | [45] | ||
Sechium edule | 58 | single subunit | 6.8 | 6.8 | [46] | |||
Secale cereale L. | 300 | polymer | 5.5 | 25–30 | 4.9~5.1 | Ag+ Castanospermine, Cu2+ | [47] | |
Citrus sinensis var. | 55 | 4.5–5.5 | 40 | [48] | ||||
Brassica oleracea | 130 | dimer | 6 | 35 | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Liu, H.; Liu, T.; Mi, J.; Cai, R.; Xu, H. β-Glucosidase: Progress from Basic Mechanism to Frontier Application. Fermentation 2025, 11, 588. https://doi.org/10.3390/fermentation11100588
Li L, Liu H, Liu T, Mi J, Cai R, Xu H. β-Glucosidase: Progress from Basic Mechanism to Frontier Application. Fermentation. 2025; 11(10):588. https://doi.org/10.3390/fermentation11100588
Chicago/Turabian StyleLi, Linqing, Hanyu Liu, Tianyi Liu, Jingyi Mi, Ruitao Cai, and Huilian Xu. 2025. "β-Glucosidase: Progress from Basic Mechanism to Frontier Application" Fermentation 11, no. 10: 588. https://doi.org/10.3390/fermentation11100588
APA StyleLi, L., Liu, H., Liu, T., Mi, J., Cai, R., & Xu, H. (2025). β-Glucosidase: Progress from Basic Mechanism to Frontier Application. Fermentation, 11(10), 588. https://doi.org/10.3390/fermentation11100588