Enhancing the Functionality of Beef Burgers Enriched with Hazelnut Skin Powder Through Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
Strains Used in the Study
2.2. Methods
2.2.1. Preparation of Lactic Acid Bacteria Stains
2.2.2. Production of Burgers
2.2.3. Physicochemical Analyses
2.2.4. Cooking Loss and Dimensional Changes
2.2.5. Colour Values
2.2.6. Texture Profile Analysis (TPA)
2.2.7. Determination of Fatty Acid Composition
2.2.8. Microbiological Analyses
2.2.9. L. plantarum and L. acidophilus Counts
2.2.10. Sensory Analyses
2.2.11. Statistical Analysis
3. Results and Discussion
3.1. Physicochemical Properties of the Samples
3.2. Cooking Loss (%) and Dimensional Changes (%)
3.3. Colour Values
3.4. Textural Properties of the Samples
3.5. Fatty Acid Composition
3.6. Microbiological Analyses
3.7. Sensory Evaluation
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Viola, E.; Badalamenti, N.; Bruno, M.; Tundis, R.; Loizzo, M.R.; Moschetti, G.; Sottile, F.; Naselli, V.; Francesca, N.; Settanni, L.; et al. Reuse of Almond By-Products: Scale-Up Production of Functional Almond Skin Added Semolina Sourdough Breads. Future Foods 2024, 9, 100372. [Google Scholar] [CrossRef]
- Gaglio, R.; Restivo, I.; Barbera, M.; Barbaccia, P.; Ponte, M.; Tesoriere, L.; Bonanno, A.; Attanzio, A.; Di Grigoli, A.; Francesca, N.; et al. Effect on the Antioxidant, Lipoperoxyl Radical Scavenger Capacity, Nutritional, Sensory and Microbiological Traits of an Ovine Stretched Cheese Produced with Grape Pomace Powder Addition. Antioxidants 2021, 10, 306. [Google Scholar] [CrossRef]
- Restivo, I.; Sciurba, L.; Indelicato, S.; Allegra, M.; Lino, C.; Garofalo, G.; Bongiorno, D.; Davino, S.; Avellone, G.; Settanni, L.; et al. Repurposing Olive Oil Mill Wastewater into a Valuable Ingredient for Functional Bread Production. Foods 2025, 14, 1945. [Google Scholar] [CrossRef]
- Kumar, P.; Kaur, S.; Goswami, M.; Singh, S.; Sharma, A.; Mehta, N. Antioxidant and Antimicrobial Efficacy of Giloy (Tinospora cordifolia) Stem Powder in Spent Hen Meat Patties Under Aerobic Packaging at Refrigeration Temperature (4 ± 1 °C). J. Food Process. Preserv. 2021, 45, e15772. [Google Scholar] [CrossRef]
- Nazarova, N.; Lazutina, A.; Lebedeva, T.; Batsyna, Y.; Statuev, A. The Use of Plant Raw Materials in The Production of Meat Pate. IOP Conf. Ser. Earth Environ. Sci. 2022, 1052, 012063. [Google Scholar] [CrossRef]
- Ivanović, S.; Avramović, N.; Dojčinović, B.; Trifunović, S.; Novaković, M.; Tešević, V.; Mandić, B. Chemical Composition, Total Phenols and Flavonoids Contents and Antioxidant Activity as Nutritive Potential of Roasted Hazelnut Skins (Corylus avellana L.). Foods 2020, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations (FAO). Crops and Livestock Products. 2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 15 August 2025).
- Horoszewicz, J.; Kruk, M.; Król, K.; Jaworska, D.; Hallmann, E.; Trząskowska, M. The Use of Hazelnut Seed Skins for The Fortification of Food with Polyphenols and to Increase Food Safety. Zywnosc Nauka Technol. Jakosc/Food Sci. Technol. Qual. 2022, 29, 102–111. [Google Scholar] [CrossRef]
- Çelik, Ö.; Aktaş, N.; Tugay, M.; Tunçil, Y. Hazelnut (Corylus avellana L.) Skin, a By-Product of Hazelnut Industry, Possesses Oil with High Oxidative and Thermal Stabilities. Int. J. Food Sci. Technol. 2023, 58, 5471–5477. [Google Scholar] [CrossRef]
- Dinkçi, N.; Aktaş, M.; Akdeniz, V.; Sîrbu, A. The Influence of Hazelnut Skin Addition on Quality Properties and Antioxidant Activity of Functional Yogurt. Foods 2021, 10, 2855. [Google Scholar] [CrossRef]
- Zeppa, G.; Belviso, S.; Bertolino, M.; Cavallero, M.C.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Giorgis, M.; Grosso, A.; Rolle, L.; et al. The Effect of Hazelnut Roasted Skin from Different Cultivars on the Quality Attributes, Polyphenol Content and Texture of Fresh Egg Pasta. J. Sci. Food Agric. 2015, 95, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Mani-López, E.; Hernández-Figueroa, R.; López-Malo, A.; Morales-Camacho, J. Viability and Functional Impact of Probiotic and Starter Cultures in Salami-Type Fermented Meat Products. Front. Chem. 2024, 12, 1507370. [Google Scholar] [CrossRef] [PubMed]
- Munekata, P.E.S.; Pateiro, M.; Tomašević, I.; Domínguez, R.; da Silva Barretto, A.C.; Santos, E.M.; Lorenzo, J. Functional Fermented Meat Products with Probiotics—A Review. J. Appl. Microbiol. 2022, 133, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Goktas, H.; Dikmen, H.; Bekiroglu, H.; Cebi, N.; Dertli, E.; Sagdic, O. Characteristics of Functional Ice Cream Produced with Probiotic Saccharomyces boulardii in Combination with Lactobacillus rhamnosus GG. LWT 2022, 153, 112489. [Google Scholar] [CrossRef]
- Abdel-Moatamed, B.R.; El-Fakhrany, A.E.M.; Elneairy, N.A.; Shaban, M.M.; Roby, M.H. The Impact of Chlorella vulgaris Fortification on The Nutritional Composition and Quality Characteristics of Beef Burgers. Foods 2024, 13, 1945. [Google Scholar] [CrossRef]
- AOAC. Association of Official Analytical Chemists, Official Methods of Analysis, 20th ed.; AOAC: Washington, DC, USA, 2016. [Google Scholar]
- Turhan, S.; Sagir, I.; Ustun, N.S. Utilization of Hazelnut Pellicle in Low-Fat Beef Burgers. Meat Sci. 2005, 71, 312–316. [Google Scholar] [CrossRef] [PubMed]
- Longato, E.; Meineri, G.; Peiretti, P.G.; Gai, F.; Viuda-Martos, M.; Pérez-Álvarez, J.Á.; Fernández-López, J. Effects of Hazelnut Skin Addition on The Cooking, Antioxidant and Sensory Properties of Chicken Burgers. J. Food Sci. Technol. 2019, 56, 3329–3336. [Google Scholar] [CrossRef] [PubMed]
- Amalia, L.; Yuliana, N.D.; Sugita, P.; Arofah, D.; Syafitri, U.D.; Windarsih, A.; Rohman, A.; Bakar, N.K.A.; Kusnandar, F. Volatile Compounds, Texture, and Color Characterization of Meatballs Made from Beef, Rat, Wild Boar, and Their Mixtures. Heliyon 2022, 8, e10882. [Google Scholar] [CrossRef]
- Romero de Ávila, D.M.; Isabel Cambero, M.; Ordóñez, J.A.; de la Hoz, L.; Herrero, A.M. Rheological Behaviour of Commercial Cooked Meat Products Evaluated by Tensile Test and Texture Profile Analysis (TPA). Meat Sci. 2014, 98, 310–315. [Google Scholar] [CrossRef]
- Bardakçı, S.; Secilmis, H. Investigation of The Chemical Content of Rose Oil in Isparta Region by GC-MS and FTIR Spectroscopy Technique. SDU Fac. Arts Sci. J. Sci. 2006, 1, 64–69. [Google Scholar]
- Halkman, K.; Sağdaş, Ö.E. Food Microbiology Applications; Prosigma Printing and Promotion Services: Ankara, Turkey, 2011. [Google Scholar]
- ISO 4833-2:2013; Horizontal Method for the Enumeration of Microorganisms. Part 2: Colony Count at 30 Degrees C by the Surface Plating Technique. International Standard Organization: Geneva, Switzerland, 2013.
- ISO 4833-1:2013; Microbiology of the Food Chain. Horizontal Method for the Enumeration of Microorganisms. Part 1: Colony Count at 30 Degrees C by the Pour Plate Technique. International Standard Organization: Geneva, Switzerland, 2013.
- ISO 21527-1:2008; Microbiology of Food and Animal Feeding Stuffs, Horizontal Method for the Enumeration of Yeasts and Moulds Part 1: Colony Count Technique in Products with Water Activity Greater than 0.95. International Standard Organization: Geneva, Switzerland, 2008.
- ISO 4832; General Guidance for the Enumeration of Coliforms Colony Count Technique. International Standard Organization: Geneva, Switzerland, 1991.
- Ngamsomchat, A.; Kaewkod, T.; Konkit, M.; Tragoolpua, Y.; Bovonsombut, S.; Chitov, T. Characterisation of Lactobacillus plantarum of Dairy-Product Origin for Probiotic Chèvre Cheese Production. Foods 2022, 11, 934. [Google Scholar] [CrossRef]
- Vinderola, C.G.; Bailo, N.; Reinheimer, J.A. Survival of Probiotic Microflora in Argentinian Yogurts during Refrigerated Storage. Food Res. Int. 2000, 33, 97–102. [Google Scholar] [CrossRef]
- Mena, B.; Aryana, K.L. Influence of Ethanol on Probiotic and Culture Bacteria Lactobacillus bulgaricus and Streptococcus thermophilus within a Therapeutic Product. Open J. Med. Microbiol. 2012, 2, 70–76. [Google Scholar] [CrossRef]
- Ercan, M.; Akbulut, M.; Çoklar, H.; Demirci, T. Impacts of Sonication on Fermentation Process and Physicochemical, Microbiological and Sensorial Characteristics of Fermented Black Carrot Juice. Fermentation 2025, 11, 475. [Google Scholar] [CrossRef]
- ISO 8589; Sensory Analysis—General Guidance for the Design of Test Rooms. ISO: Geneva, Switzerland, 2007.
- ISO 11132; Sensory Analysis—Methodology—Guidelines for Monitoring the Performance of a Quantitative Sensory Panel. ISO: Geneva, Switzerland, 2012.
- Yuliana, N.; Koesoemawardani, D.; Susilawaty, S.; Kurniati, Y. Lactic Acid Bacteria During Fish Fermentation (Rusip). MOJ Food Process. Technol. 2018, 6, 211–216. [Google Scholar] [CrossRef]
- Hwang, S.; Lee, E.; Hong, G. Effects of Temperature and Time on The Cookery Properties of Sous-Vide Processed Pork Loin. Food Sci. Anim. Resour. 2019, 39, 65–72. [Google Scholar] [CrossRef]
- Kalkan, S.; Incekara, K.; Otağ, M.R.; Unal Turhan, E. The Influence of Hazelnut Milk Fortification on Quality Attributes of Probiotic Yogurt. Food Sci. Nutr. 2025, 13, e70235. [Google Scholar] [CrossRef]
- Liang, X.; Zhou, N.; Irfan, M.; Gerard, M.; Wang, Y.; Wang, F. Synergistic Effect of Protease and Cranberry Powder to Enhance the Quality Characteristics of Fried Beef Meatballs. Food Bioeng. 2023, 2, 64–74. [Google Scholar] [CrossRef]
- Dong, P.; Xiao, L.; Fan, W.; Yang, H.; Xu, C.; Qiao, M.; Zhu, K.; Wu, H.; Deng, J. Effect of Fat Replacement by Flaxseed Flour on The Quality Parameters of Pork Meatballs. Food Sci. Technol. Int. 2023, 31, 48–58. [Google Scholar] [CrossRef]
- Ceraulo, M.; Mantia, F.P.L.; Mistretta, M.C.; Titone, V. The Use of Waste Hazelnut Shells as a Reinforcement in The Development of Green Biocomposites. Polymers 2022, 14, 2151. [Google Scholar] [CrossRef]
- Ergezer, H.; Akcan, T.; Serdaroğlu, M. The Effects of Potato Puree and Bread Crumbs on Some Quality Characteristics of Low Fat Meatballs. Korean J. Food Sci. Anim. Resour. 2014, 34, 561–569. [Google Scholar] [CrossRef]
- Su, W.; Zhao, S.; Zhou, J.; Xi, L.; Jin, W.; Abd El-Aty, A.M. Comparative Analysis of The Quality Characteristics and Flavor Volatiles of Lueyang Black-Bone Chicken Meatballs Cooked Via Different Methods. Front. Nutr. 2025, 12, 1629738. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Han, J.; Wang, D.; Gao, F.; Zhang, K.; Tian, J.; Jin, Y. Research Update on the İmpact of Lactic Acid Bacteria on The Substance Metabolism, Flavor, and Quality Characteristics of Fermented Meat Products. Foods 2022, 11, 2090. [Google Scholar] [CrossRef]
- Todorov, S.D.; Stojanovski, S.; Iliev, I.; Moncheva, P.; Nero, L.A.; Ivanova, I.V. Technology and Safety Assessment for Lactic Acid Bacteria Isolated from Traditional Bulgarian Fermented Meat Product “Lukanka”. Braz. J. Microbiol. 2017, 48, 576–586. [Google Scholar] [CrossRef]
- Li, L.; Wen, X.; Wen, Z.; Chen, S.; Wang, L.; Wei, X. Evaluation of The Biogenic Amines Formation and Degradation Abilities of Lactobacillus curvatus from Chinese Bacon. Front. Microbiol. 2018, 9, 1015. [Google Scholar] [CrossRef] [PubMed]
- Cao, C.; Feng, M.; Sun, J.; Xu, X.; Zhou, G. Screening of Lactic Acid Bacteria with High Protease Activity from Fermented Sausages and Antioxidant Activity Assessment of Its Fermented Sausages. CyTA J. Food 2019, 17, 347–354. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Lee, S.; Ham, S.H.; Lee, M.G.; Hahn, J.; Kim, Y.; Choi, Y.J. Relationship Between Sensory Attributes and Instrumental Texture Properties in Meat Analog Patty System Substituted with Sweet Potato Stem. J. Sci. Food Agric. 2024, 104, 7002–7012. [Google Scholar] [CrossRef]
- Díaz-Vela, J.; Totosaus, A.; Pérez-Chabela, M.L. Integration of Agroindustrial Co-Products as Functional Food Ingredients: Cactus Pear (Opuntia ficus indica) Flour and Pineapple (Ananas comosus) Peel Flour as Fiber source in Cooked Sausages Inoculated with Lactic Acid Bacteria. J. Food Process. Preserv. 2015, 39, 2630–2638. [Google Scholar] [CrossRef]
- Campêlo, M.C.D.S.; Medeiros, J.M.S.D.; Rebouças, M.D.O.; Pereira, J.C.D.S.; Abrantes, M.R.; Oliveira, A.R.M.D.; Lima, P.D.O.; Silva, J.B.A.D. Use of Natural Preservatives in Low Sodium Carne-De-Sol Beef. J. Food Saf. 2017, 37, e12347. [Google Scholar] [CrossRef]
- Yıldız, E.; Demirkesen, İ.; Mert, B. High Pressure Microfluidization of Agro By-Product to Functionalized Dietary Fiber and Evaluation as a Novel Bakery Ingredient. J. Food Qual. 2016, 39, 599–610. [Google Scholar] [CrossRef]
- Durmus, Y.; Anil, M.; Simsek, S. Innovative Use of Hazelnut Skin and Starch Modifications in Sourdough Bread Formulation. J. Food Process Eng. 2024, 47, e14517. [Google Scholar] [CrossRef]
- Suryadi, U.; Hertamawati, R.T.; Imam, S. Fermented Meat and Digestive Tract of Snail as Amino Acid Supplements for Functional Feed of Native Chickens. IOP Conf. Ser. Earth Environ. Sci. 2022, 980, 012020. [Google Scholar] [CrossRef]
- Zhang, N.; Shi, Z.; Hu, Y.; Sun, Y.; Zhou, C.; Xia, Q.; He, J.; Yan, H.; Yu, H.; Pan, D. Effect of Pulsed Electric Field Pretreatment on the Texture and Flavor of Air-Dried Duck Meat. Foods 2025, 14, 1891. [Google Scholar] [CrossRef]
- Choe, J.; Kim, G.; Kim, H. Effects of Green Tea Leaf, Lotus Leaf, and Kimchi Powders on Quality Characteristics of Chicken Liver Sausages. J. Anim. Sci. Technol. 2019, 61, 28–34. [Google Scholar] [CrossRef]
- Kim, D.H.; Kim, T.K.; Kim, Y.B.; Sung, J.M.; Jang, Y.; Shim, J.Y.; Han, S.G.; Choi, Y.S. Effect of The Duck Skin on Quality Characteristics of Duck Hams. Korean J. Food Sci. Anim. Resour. 2017, 37, 360. [Google Scholar] [CrossRef]
- Atalar, İ.; Gül, O.; Kurt, A.; Saricaoğlu, F.T.; Gençcelep, H. Effect of Cold-Pressed Hazelnut Cake Incorporation on The Quality Characteristic of Meat Emulsion System and Its Potential Application for Frankfurter-Type Beef Sausages. Food Sci. Technol. Int. 2023, 30, 329–339. [Google Scholar] [CrossRef]
- Bağdatli, A.; Kundakci, A. Optimization of Compositional and Structural Properties in Probiotic Sausage Production. J. Food Sci. Technol. 2016, 53, 1679–1689. [Google Scholar] [CrossRef]
- Alalwan, T.A.; Mohammed, D.; Hasan, M.; Sergi, D.; Ferraris, C.; Gasparri, C.; Rondanelli, M.; Perna, S. Almond, Hazelnut, and Pistachio Skin: An Opportunity for Nutraceuticals. Nutraceuticals 2022, 2, 300–310. [Google Scholar] [CrossRef]
- Yeung, Y.K.; Lee, Y.K.; Chang, Y.H. Physicochemical, Microbial, and Rheological Properties of Yogurt Substituted with Pectic Polysaccharide Extracted from Ulmus Davidiana. J. Food Process. Preserv. 2019, 43, e13907. [Google Scholar] [CrossRef]
- Detti, C.; Nascimento, L.B.D.S.; Gori, A.; Vanti, G.; Amato, G.; Nazzaro, F.; Ferrini, F.; Centritto, M.; Bilia, A.R.; Brunetti, C. Addition of Polyphenolic Extracts of Myrtus communis and Arbutus unedo Fruits to Whey: Valorization of a Common Dairy Waste Product as a Functional Food. J. Sci. Food Agric. 2025, 105, 2559–2568. [Google Scholar] [CrossRef] [PubMed]
- Alasalvar, C.; Karamac, M.; Kosinska, A.; Rybarczyk, A.; Shahidi, F.; Amarowicz, R. Antioxidant Activity of Hazelnut Skin Phenolics. J. Agric. Food Chem. 2009, 57, 4645–4650. [Google Scholar] [CrossRef] [PubMed]
- Del Rio, D.; Calani, L.; Dall’Asta, M.; Brighenti, F. Polyphenolic Composition of Hazelnut Skin. J. Agric. Food Chem. 2011, 59, 9935–9941. [Google Scholar] [CrossRef] [PubMed]
- Costantini, L.; Frangipane, M.T.; Massantini, R.; Garzoli, S.; Merendino, N. Hazelnut Skin Fortification of Dehulled Lentil Chips to Improve Nutritional, Antioxidant, Sensory, and Chemical Properties. Foods 2025, 14, 683. [Google Scholar] [CrossRef]
- Lee, C.W.; Kim, T.K.; Hwang, K.E.; Kim, H.W.; Kim, Y.B.; Kim, C.J.; Cho, Y.S. Combined Effects of Wheat Sprout and Isolated Soy Protein on Quality Properties of Breakfast Sausage. Korean J. Food Sci. Anim. Resour. 2017, 37, 52. [Google Scholar] [CrossRef]
Sample Code | Hazelnut Skin Content | Lactic Acid Bacteria |
---|---|---|
S1 | - | - |
S2 | 5% | - |
S3 | 10% | - |
S4 | - | L. acidophilus LA-5® |
S5 | 5% | L. acidophilus LA-5® |
S6 | 10% | L. acidophilus LA-5® |
S7 | - | L. plantarum UALp-05TM |
S8 | 5% | L. plantarum UALp-05TM |
S9 | 10% | L. plantarum UALp-05TM |
Sample | Pre-Fermentation | Post-Fermentation | Cooked | |
---|---|---|---|---|
pH | S1 | 5.32 ± 0.01 Aa | 5.35 ± 0.03 Aa | 5.23 ± 0.01 Bc |
S2 | 5.13 ± 0.01 Cb | 5.30 ± 0.01 Ab | 5.23 ± 0.01 Bc | |
S3 | 5.14 ± 0.01 Bb | 5.10 ± 0.01 Bd | 5.30 ± 0.01 Ab | |
S4 | 5.30 ± 0.01 Ba | 5.23 ± 0.01 Cc | 5.39 ± 0.01 Aa | |
S5 | 5.13 ± 0.02 Ab | 4.99 ± 0.01 Bef | 5.16 ± 0.01 Ad | |
S6 | 5.12 ± 0.01 Ab | 5.03 ± 0.01 Bd | 5.05 ± 0.01 Be | |
S7 | 4.96 ± 0.01 Bd | 4.96 ± 0.01 Bf | 5.05 ± 0.01 Ae | |
S8 | 5.12 ± 0.01 Ab | 5.05 ± 0.01 Bd | 5.05 ± 0.01 Be | |
S9 | 5.02 ± 0.01 Ac | 5.02 ± 0.01 Ade | 5.00 ± 0.01 Af | |
Interaction | p Value | r | ||
Process | <0.0001 | −0.830 ** | ||
Product type | 0.356 | −0.084 | ||
Process × Product type | 0.686 | -- | ||
Dry Matter (%) | S1 | 35.79 ± 0.14 Ag | 35.47 ± 0.19 Ac | 30.86 ± 0.16 Bc |
S2 | 42.43 ± 0.54 Ae | 42.25 ± 0.43 Ab | 36.76 ± 0.37 Bb | |
S3 | 46.73 ± 0.20 Aa | 46.42 ± 0.29 Aa | 40.38 ± 0.25 Ba | |
S4 | 35.79 ± 0.29 Ag | 35.38 ± 0.17 Ac | 30.78 ± 0.15 Bc | |
S5 | 43.96 ± 0.10 Ac | 43.79 ± 0.04 Bb | 38.10 ± 0.03 Cb | |
S6 | 46.02 ± 0.17 Ab | 45.82 ± 0.14 Aa | 39.86 ± 0.12 Ba | |
S7 | 36.57 ± 0.06 Af | 35.75 ± 0.11 Bc | 31.10 ± 0.10 Cc | |
S8 | 43.20 ± 0.32 Ad | 42.95 ± 0.13 Ab | 37.36 ± 0.11 Bb | |
S9 | 46.66 ± 0.14 Aa | 46.43 ± 0.31 Aa | 40.39 ± 0.27 Ba | |
Interaction | p Value | r | ||
Process | <0.0001 | −0.481 ** | ||
Product type | <0.0001 | 0.248 | ||
Process × Product type | <0.0001 | -- |
Sample | Weight Loss (%) | Diameter Change (%) | Height Change (%) |
---|---|---|---|
S1 | 24.50 ± 0.24 c | 18.02 ± 2.71 b | 26.56 ± 1.55 cd |
S2 | 20.00 ± 0.47 f | 17.43 ± 0.67 bc | 25.63 ± 2.87 d |
S3 | 14.58 ± 0.59 g | 16.68 ± 1.23 bc | 27.80 ± 1.69 bcd |
S4 | 23.00 ± 0.46 d | 18.01 ± 0.43 b | 30.26 ± 0.47 bc |
S5 | 27.20 ± 0.58 b | 22.83 ± 0.64 a | 38.33 ± 1.41 a |
S6 | 21.20 ± 0.66 e | 17.69 ± 1.23 bc | 28.40 ± 2.26 bcd |
S7 | 24.66 ± 0.59 c | 14.66 ± 0.35 cd | 30.90 ± 0.41 b |
S8 | 29.25 ± 0.35 a | 12.66 ± 1.41 d | 26.96 ± 1.36 bcd |
S9 | 24.03 ± 0.54 cd | 16.59 ± 1.57 bc | 37.86 ± 0.94 a |
Sample | Pre-Fermentation | Post-Fermentation | Cooked | |
---|---|---|---|---|
Hardness | S1 | 1510.86 ± 12.66 Ae | 1468.97 ± 9.86 Ad | 392.14 ± 29.25 Bc |
S2 | 2846.90 ± 234.25 Abc | 2901.29 ± 151.04 Ab | 489.99 ± 109.02 Bc | |
S3 | 3439.76 ± 252.03 Aa | 3500.57 ± 186.61 Aa | 785.27 ± 30.15 Ba | |
S4 | 1504.47 ± 6.59 Ae | 1334.55 ± 62.34 Bd | 258.04 ± 16.09 Cd | |
S5 | 2502.10 ± 29.07 Ad | 2201.02 ± 215.81 Ac | 654.95 ± 21.91 Bb | |
S6 | 2929.65 ± 116.43 Ab | 2503.50 ± 125.63 Bbc | 696.65 ± 57.58 Cab | |
S7 | 1557.67 ± 63.80 Ae | 1399.04 ± 220.80 Ad | 250.97 ± 25.45 Bd | |
S8 | 2626.02 ± 74.77 Acd | 2459.39 ± 41.92 Abc | 501.62 ± 53.27 Bc | |
S9 | 3029.98 ± 60.13 Ab | 2769.37 ± 52.93 Bb | 731.09 ± 12.99 Cab | |
Interaction | p Value | r | ||
Process | <0.0001 | −0.696 ** | ||
Product type | <0.0001 | −0.211 | ||
Process × Product type | <0.0001 | -- | ||
Adhesiveness | S1 | −98.49 ± 1.62 Be | −102.54 ± 1.85 Bg | −0.67 ± 0.02 Ad |
S2 | −57.55 ± 1.14 Bc | −60.66 ± 1.71 Bd | −0.35 ± 0.03 Ac | |
S3 | −13.13 ± 0.76 Ba | −14.26 ± 0.43 Ba | −0.14 ± 0.04 Aa | |
S4 | −101.43 ± 1.58 Bf | −114.13 ± 1.91 Ci | −0.71 ± 0.02 Ad | |
S5 | −60.17 ± 1.11 Bd | −72.93 ± 1.01 Cf | −0.38 ± 0.02 Ac | |
S6 | −15.95 ± 0.10 Bb | −29.16 ± 0.75 Cc | −0.20 ± 0.02 Ab | |
S7 | −99.14 ± 0.59 Bef | −110.48 ± 1.57 Ch | −0.68 ± 0.01 Ad | |
S8 | −57.87 ± 0.81 Bcd | −68.81 ± 0.58 Ce | −0.36 ± 0.01 Ac | |
S9 | −14.33 ± 0.49 Bab | −24.69 ± 0.81 Cb | −0.17 ± 0.01 Aab | |
Interaction | p Value | r | ||
Process | <0.0001 | 0.552 ** | ||
Product type | <0.0001 | 0.339 ** | ||
Process × Product type | <0.0001 | -- | ||
Springiness | S1 | 0.869 ± 0.01 Ba | 0.893 ± 0.01 Bb | 15.41 ± 0.18 Ac |
S2 | 0.826 ± 0.01 Bc | 0.809 ± 0.01 Bd | 12.52 ± 0.10 Af | |
S3 | 0.736 ± 0.01 Bd | 0.717 ± 0.01 Bfg | 8.42 ± 0.06 Ai | |
S4 | 0.877 ± 0.01 Ba | 0.947 ± 0.01 Ba | 17.74 ± 0.28 Aa | |
S5 | 0.847 ± 0.01 Bb | 0.862 ± 0.01 Bc | 13.87 ± 0.13 Ad | |
S6 | 0.752 ± 0.01 Bd | 0.768 ± 0.01 Be | 9.97 ± 0.02 Ag | |
S7 | 0.873 ± 0.01 Ba | 0.932 ± 0.01 Ba | 16.22 ± 0.07 Ab | |
S8 | 0.833 ± 0.01 Bbc | 0.840 ± 0.01 Bc | 12.88 ± 0.05 Ae | |
S9 | 0.744 ± 0.01 Bd | 0.741 ± 0.01 Bf | 9.20 ± 0.01 Ah | |
Interaction | p Value | r | ||
Process | <0.0001 | 0.824 ** | ||
Product type | <0.0001 | −0.080 | ||
Process × Product type | <0.0001 | -- | ||
Cohesiveness | S1 | 0.91 ± 0.01 Aa | 0.92 ± 0.01 Aa | 0.62 ± 0.01 Ba |
S2 | 0.74 ± 0.01 Ac | 0.75 ± 0.02 Ac | 0.47 ± 0.02 Bb | |
S3 | 0.62 ± 0.01 Ae | 0.63 ± 0.01 Ae | 0.38 ± 0.04 Bc | |
S4 | 0.93 ± 0.01 Aa | 0.93 ± 0.01 Aa | 0.64 ± 0.01 Ba | |
S5 | 0.77 ± 0.01 Ab | 0.78 ± 0.01 Ab | 0.51 ± 0.01 Bb | |
S6 | 0.65 ± 0.01 Ad | 0.66 ± 0.01 Ad | 0.43 ± 0.01 Bc | |
S7 | 0.92 ± 0.01 Aa | 0.92 ± 0.01 Aa | 0.63 ± 0.01 Ba | |
S8 | 0.76 ± 0.01 Abc | 0.77 ± 0.01 Abc | 0.49 ± 0.02 Bb | |
S9 | 0.64 ± 0.01 Ade | 0.63 ± 0.01 Ae | 0.41 ± 0.02 Bc | |
Interaction | p Value | r | ||
Process | <0.0001 | −0.611 ** | ||
Product type | <0.0001 | −0.298 * | ||
Process × Product type | 0.048 | -- | ||
Gumminess | S1 | 1373.31 ± 5.58 Ac | 1353.73 ± 28.44 Acd | 244.12 ± 13.23 Bbc |
S2 | 2106.89 ± 143.26 Aab | 2196.14 ± 118.72 Aa | 236.30 ± 64.40 Bbcd | |
S3 | 2142.26 ± 137.55 Aa | 2205.72 ± 127.48 Aa | 304.92 ± 44.44 Bab | |
S4 | 1393.11 ± 8.79 Ac | 1252.95 ± 96.89 Ad | 167.02 ± 12.60 Bcd | |
S5 | 1898.99 ± 104.45 Ab | 1665.01 ± 87.61 Abc | 301.03 ± 35.19 Bab | |
S6 | 1925.52 ± 48.90 Ab | 1728.49 ± 218.10 Ab | 334.50 ± 19.98 Ba | |
S7 | 1431.82 ± 74.06 Ac | 1297.79 ± 279.12 Ad | 160.59 ± 18.23 Bd | |
S8 | 1931.89 ± 66.18 Aab | 1758.18 ± 20.12 Bb | 250.33 ± 36.46 Cb | |
S9 | 1992.08 ± 73.43 Aab | 1902.02 ± 19.77 Aab | 301.67 ± 16.21 Bab | |
Interaction | p Value | r | ||
Process | <0.0001 | −0.797 ** | ||
Product type | <0.0001 | 0.138 | ||
Process × Product type | <0.0001 | -- | ||
Chewiness | S1 | 1194.11 ± 15.53 Bc | 1209.31 ± 1.48 Bd | 3764.46 ± 248.75 Aab |
S2 | 1577.34 ± 87.67 Bab | 1581.753 ± 61.83 Bab | 2569.48 ± 391.82 Ac | |
S3 | 1740.79 ± 102.02 Aa | 1777.23 ± 75.91 Aa | 2962.95 ± 832.31 Abc | |
S4 | 1222.49 ± 18.54 Bc | 1187.54 ± 101.55 Bd | 2961.14 ± 175.41 Abc | |
S5 | 1429.32 ± 90.68 Bb | 1279.34 ± 59.08 Bcd | 3000.94 ± 344.89 Abc | |
S6 | 1632.11 ± 59.15 Ba | 1489.82 ± 172.23 Bbc | 4641.24 ± 322.21 Aa | |
S7 | 1250.93 ± 73.80 Bc | 1209.30 ± 252.02 Bd | 2607.12 ± 307.83 Ac | |
S8 | 1438.41 ± 56.10 Bb | 1303.65 ± 8.70 Bcd | 2775.89 ± 151.56 Abc | |
S9 | 1660.69 ± 76.70 Ba | 1598.55 ± 0.87 Bab | 3227.17 ± 481.62 Abc | |
Interaction | p Value | r | ||
Process | <0.0001 | 0.759 ** | ||
Product type | <0.0001 | 0.011 | ||
Process × Product type | <0.0001 | -- | ||
Resilience | S1 | 0.855 ± 0.03 Bd | 0.821 ± 0.02 Bf | 1.189 ± 0.05 Ae |
S2 | 1.224 ± 0.05 Bc | 1.279 ± 0.02 Bc | 1.516 ± 0.04 Ac | |
S3 | 1.459 ± 0.06 Ba | 1.511 ± 0.05 Ba | 1.754 ± 0.06 Aa | |
S4 | 0.819 ± 0.01 Bd | 0.759 ± 0.01 Bf | 1.149 ± 0.05 Ae | |
S5 | 1.177 ± 0.04 Bc | 1.123 ± 0.03 Be | 1.403 ± 0.03 Ad | |
S6 | 1.372 ± 0.04 Cb | 1.249 ± 0.05 Bcd | 1.593 ± 0.03 Abc | |
S7 | 0.841 ± 0.01 Cd | 0.781 ± 0.01 Bf | 1.165 ± 0.01 Ae | |
S8 | 1.203 ± 0.02 Bc | 1.195 ± 0.01 Bd | 1.417 ± 0.02 Ad | |
S9 | 1.390 ± 0.03 Bab | 1.370 ± 0.01 Bb | 1.618 ± 0.02 Ab | |
Interaction | p Value | r | ||
Process | <0.0001 | 0.394 ** | ||
Product type | <0.0001 | 0.343 ** | ||
Process × Product type | 0.002 | -- |
Samples | S1 | S2 | S3 | S4 | S5 | S6 | S7 | S8 | S9 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Fatty Acid (%) | Bfr | Aft | Bfr | Aft | Bfr | Aft | Bfr | Aft | Bfr | Aft | Bfr | Aft | Bfr | Aft | Bfr | Aft | Bfr | Aft |
Myristic acid (C14:0) | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.07 ± 0.01 | 0.06 ± 0.00 | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.01 | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.00 | 0.04 ± 0.00 | 0.06 ± 0.01 | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.04 ± 0.00 |
Palmitic acid (C16:0) | 25.14 ± 0.33 | 23.09 ± 0.29 | 23.94 ± 0.30 | 22.09 ± 0.29 | 19.37 ± 0.24 | 18.77 ± 0.22 | 25.10 ± 0.32 | 22.91 ± 0.27 | 22.76 ± 0.27 | 21.54 ± 0.26 | 19.01 ± 0.19 | 17.88 ± 0.18 | 25.14 ± 0.28 | 24.66 ± 0.27 | 22.74 ± 0.24 | 21.01 ± 0.22 | 18.66 ± 0.19 | 16.36 ± 0.17 |
Palmitoleic acid (C16:1) | 3.03 ± 0.10 | 3.03 ± 0.11 | 2.78 ± 0.09 | 2.78 ± 0.08 | 2.16 ± 0.06 | 2.17 ± 0.06 | 3.02 ± 0.11 | 3.03 ± 0.11 | 2.45 ± 0.08 | 2.50 ± 0.09 | 2.15 ± 0.06 | 2.17 ± 0.06 | 3.01 ± 0.10 | 3.03 ± 0.10 | 2.44 ± 0.07 | 2.49 ± 0.07 | 2.13 ± 0.05 | 2.15 ± 0.06 |
Heptadecanoic acid (C17:0) | 1.75 ± 0.08 | 1.73 ± 0.06 | 1.79 ± 0.05 | 1.77 ± 0.06 | 1.17 ± 0.04 | 1.16 ± 0.04 | 1.75 ± 0.05 | 1.73 ± 0.05 | 1.71 ± 0.05 | 1.70 ± 0.05 | 1.16 ± 0.04 | 1.17 ± 0.04 | 1.75 ± 0.07 | 1.70 ± 0.05 | 1.70 ± 0.06 | 1.69 ± 0.06 | 1.15 ± 0.04 | 1.12 ± 0.04 |
Cis-10-heptadecenoic acid (C17:1) | 0.64 ± 0.03 | 0.64 ± 0.03 | 0.64 ± 0.04 | 0.65 ± 0.03 | 0.39 ± 0.02 | 0.40 ± 0.02 | 0.63 ± 0.03 | 0.63 ± 0.03 | 0.63 ± 0.04 | 0.64 ± 0.03 | 0.39 ± 0.02 | 0.40 ± 0.02 | 0.63 ± 0.05 | 0.65 ± 0.04 | 0.62 ± 0.03 | 0.63 ± 0.04 | 0.37 ± 0.03 | 0.39 ± 0.03 |
Stearic acid (C18:0) | 29.66 ± 0.37 | 29.45 ± 0.39 | 29.62 ± 0.36 | 29.04 ± 0.38 | 21.95 ± 0.32 | 21.19 ± 0.30 | 29.32 ± 0.35 | 29.32 ± 0.34 | 28.12 ± 0.38 | 27.77 ± 0.37 | 21.95 ± 0.29 | 20.75 ± 0.28 | 29.65 ± 0.33 | 28.89 ± 0.32 | 27.54 ± 0.31 | 26.88 ± 0.30 | 20.34 ± 0.20 | 19.79 ± 0.19 |
Oleic Acid (C18:1) | 35.49 ± 0.43 | 35.89 ± 0.45 | 36.57 ± 0.48 | 37.10 ± 0.51 | 48.07 ± 0.61 | 49.05 ± 0.64 | 34.76 ± 0.52 | 35.06 ± 0.51 | 35.43 ± 0.51 | 36.27 ± 0.53 | 48.05 ± 0.59 | 48.74 ± 0.63 | 35.46 ± 0.48 | 36.12 ± 0.49 | 34.55 ± 0.39 | 35.11 ± 0.44 | 46.91 ± 0.46 | 48.04 ± 0.52 |
Linoleic acid (C18:2) | 3.07 ± 0.12 | 3.07 ± 0.11 | 3.31 ± 0.13 | 3.31 ± 0.13 | 5.93 ± 0.16 | 6.10 ± 0.17 | 3.06 ± 0.10 | 3.07 ± 0.11 | 3.29 ± 0.14 | 3.30 ± 0.14 | 5.92 ± 0.17 | 5.97 ± 0.18 | 3.05 ± 0.11 | 3.07 ± 0.11 | 3.24 ± 0.12 | 3.25 ± 0.12 | 5.88 ± 0.15 | 5.93 ± 0.16 |
Arachidic acid (C20:0) | 0.18 ± 0.01 | 0.17 ± 0.01 | 0.18 ± 0.01 | 0.18 ± 0.01 | 0.16 ± 0.00 | 0.16 ± 0.01 | 0.16 ± 0.00 | 0.16 ± 0.00 | 0.18 ± 0.00 | 0.17 ± 0.01 | 0.16 ± 0.00 | 0.14 ± 0.00 | 0.17 ± 0.01 | 0.15 ± 0.00 | 0.15 ± 0.01 | 0.14 ± 0.00 | 0.13 ± 0.00 | 0.11 ± 0.00 |
Linolenic acid (C18:3) | 0.87 ± 0.04 | 0.88 ± 0.05 | 0.97 ± 0.04 | 0.98 ± 0.03 | 0.61 ± 0.03 | 0.62 ± 0.04 | 0.87 ± 0.04 | 0.87 ± 0.03 | 0.97 ± 0.05 | 0.97 ± 0.05 | 0.61 ± 0.03 | 0.62 ± 0.03 | 0.85 ± 0.04 | 0.86 ± 0.05 | 0.91 ± 0.06 | 0.90 ± 0.04 | 0.59 ± 0.02 | 0.60 ± 0.03 |
Gadoleic acid (C20:1) | 0.05 ± 0.00 | 0.05 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.07 ± 0.00 | 0.08 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.00 |
Behenic acid (C22:0) | 0.07 ± 0.00 | 0.07 ± 0.00 | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.07 ± 0.01 | 0.05 ± 0.00 | 0.08 ± 0.01 | 0.08 ± 0.01 | 0.06 ± 0.00 | 0.05 ± 0.00 | 0.06 ± 0.00 | 0.07 ± 0.01 | 0.07 ± 0.01 | 0.06 ± 0.00 | 0.04 ± 0.00 | 0.04 ± 0.00 |
Sample | Pre-Fermentation | Post-Fermentation | |
---|---|---|---|
Total Aerobic Mesophilic Bacteria | S1 | 5.01 ± 0.01 e | 5.20 ± 0.06 f |
S2 | 5.05 ± 0.01 d | 5.25 ± 0.03 f | |
S3 | 5.08 ± 0.01 c | 5.34 ± 0.03 e | |
S4 | 5.13 ± 0.01 b | 5.78 ± 0.27 d | |
S5 | 5.17 ± 0.02 b | 5.87 ± 0.05 ab | |
S6 | 5.22 ± 0.02 a | 5.91 ± 0.03 a | |
S7 | 5.13 ± 0.01 b | 5.81 ± 0.07 cd | |
S8 | 5.16 ± 0.01 b | 5.85 ± 0.01 bc | |
S9 | 5.16 ± 0.01 b | 5.90 ± 0.01 ab | |
Interaction | p Value | r | |
Process | <0.0001 | 0.767 ** | |
Product type | <0.0001 | 0.473 ** | |
Process × Product type | <0.0001 | -- | |
Total Yeast and Mould | S1 | 3.12 ± 0.02 bcd | 4.06 ± 0.01 a |
S2 | 3.11 ± 0.01 cde | 4.04 ± 0.01 b | |
S3 | 3.27 ± 0.02 a | 4.04 ± 0.01 b | |
S4 | 3.09 ± 0.01 ef | 3.93 ± 0.01 de | |
S5 | 3.08 ± 0.01 ef | 3.90 ± 0.01 fg | |
S6 | 3.07 ± 0.01 f | 3.89 ± 0.01 g | |
S7 | 3.09 ± 0.01 def | 3.92 ± 0.01 ef | |
S8 | 3.14 ± 0.01 b | 3.97 ± 0.01 c | |
S9 | 3.12 ± 0.01 bc | 3.95 ± 0.01 d | |
Interaction | p Value | r | |
Process | <0.0001 | 0.991 ** | |
Product type | <0.0001 | −0.039 | |
Process × Product type | <0.0001 | -- | |
Total Coliform Group Bacteria | S1 | 2.29 ± 0.02 a | 3.37 ± 0.02 b |
S2 | 2.15 ± 0.05 bc | 3.57 ± 0.03 a | |
S3 | 2.09 ± 0.03 bc | 3.61 ± 0.01 a | |
S4 | 2.11 ± 0.02 bc | 2.44 ± 0.06 d | |
S5 | 2.11 ± 0.04 bc | 2.33 ± 0.02 e | |
S6 | 2.17 ± 0.02 b | 2.23 ± 0.03 f | |
S7 | 2.07 ± 0.05 cd | 2.52 ± 0.03 c | |
S8 | 2.09 ± 0.05 bc | 2.44 ± 0.01 d | |
S9 | 2.00 ± 0.03 d | 2.38 ± 0.02 de | |
Interaction | p Value | r | |
Process | <0.0001 | 0.675 ** | |
Product type | <0.0001 | −0.440 ** | |
Process × Product type | <0.0001 | -- | |
Lactobacillus acidophilus | S4 | 7.16 ± 0.04 a | 8.49 ± 0.02 c |
S5 | 7.22 ± 0.03 a | 8.71 ± 0.02 b | |
S6 | 7.24 ± 0.03 a | 8.90 ± 0.02 a | |
Interaction | p Value | r | |
Process | 0.210 | 0.467 | |
Product type | 0.480 | 0.698 * | |
Process × Product type | 0.954 | -- | |
Lactiplantibacillus plantarum | S7 | 7.20 ± 0.02 b | 8.46 ± 0.04 c |
S8 | 7.26 ± 0.02 a | 8.56 ± 0.03 b | |
S9 | 7.28 ± 0.03 a | 8.91 ± 0.01 a | |
Interaction | p Value | r | |
Process | 0.460 | 0.223 | |
Product type | 0.172 | −0.548 | |
Process × Product type | 0.594 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Atik, İ. Enhancing the Functionality of Beef Burgers Enriched with Hazelnut Skin Powder Through Fermentation. Fermentation 2025, 11, 586. https://doi.org/10.3390/fermentation11100586
Atik İ. Enhancing the Functionality of Beef Burgers Enriched with Hazelnut Skin Powder Through Fermentation. Fermentation. 2025; 11(10):586. https://doi.org/10.3390/fermentation11100586
Chicago/Turabian StyleAtik, İlker. 2025. "Enhancing the Functionality of Beef Burgers Enriched with Hazelnut Skin Powder Through Fermentation" Fermentation 11, no. 10: 586. https://doi.org/10.3390/fermentation11100586
APA StyleAtik, İ. (2025). Enhancing the Functionality of Beef Burgers Enriched with Hazelnut Skin Powder Through Fermentation. Fermentation, 11(10), 586. https://doi.org/10.3390/fermentation11100586