Enhanced Nutritional Composition of Steam-Exploded Cotton Stalk Through Microbial-Enzyme Synergism Solid-State Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Strains
2.2. Preliminary Experiments
2.3. Single-Factor and Response Surface Optimization Experiments
2.4. Scanning Electron Microscope Characteristics
2.5. Determination of Nutrient Content Determination
2.6. Determination of Mycotoxin and Free Gossypol Content
2.7. Untargeted Metabolomics
2.8. Statistical Analysis
3. Results
3.1. Comparison of Lignocellulose Degradation Capability in Cotton Straw Among Different Groups
3.2. Optimization of Conditions for Synergistic Microbial-Enzymatic Fermentation of Cotton Straw
3.3. Effects of Synergistic Microbial-Enzymatic Fermentation on Cotton Straw
3.4. Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA) of Metabolomics Between Control Group (CK) and Optimized Group (YH)
3.5. Identification of Differential Metabolites Between Control Group (CK) and Optimized Group (YH)
3.6. Hierarchical Clustering Analysis of Differential Metabolites Between Control Group (CK) and Optimized Group (YH)
3.7. Kyoto Encyclopedia of Genes and Genomes (KEGG) Enrichment Analysis of Pathways Between Control Group (CK) and Optimized Group (YH)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
XH005 | Pleurotus ostreatus XH005 |
LP-2 | Lactobacillus plantarum LP-2 |
SSF | solid-state fermentation |
YC | Represents the prediction group |
YZ | Represents the validation group |
CK | Control Group |
YH | Optimized Group |
CP | Crude protein |
CF | Crude fiber |
EE | Crude fat |
Ash | Ash content |
ADF | Acid detergent fiber |
NDF | Neutral detergent fiber |
LA | Lactic acid |
LAB | Lactic acid bacteria |
AFB1 | Aflatoxin B1 |
DON | Deoxynivalenol |
ZEN | Zearalenone |
FG | Free gossypol |
CEL | Cellulose |
LIG | Lignin |
References
- Li, F.; Bai, J.; Zhang, M.; Zhang, R. Yield estimation of high-density cotton fields using low-altitude UAV imaging and deep learning. Plant Methods 2022, 18, 55. [Google Scholar] [CrossRef] [PubMed]
- Petropoulos, S.; Fernandes, Â.; Stojković, D.; Pereira, C.; Taofiq, O.; Di Gioia, F.; Tzortzakis, N.; Soković, M.; Barros, L.; Ferreira, I.C.F.R. Cotton and cardoon byproducts as potential growing media components for Cichorium spinosum L. commercial cultivation. J. Clean. Prod. 2019, 240, 118254. [Google Scholar] [CrossRef]
- Egbuta, M.A.; McIntosh, S.; Waters, D.L.E.; Vancov, T.; Liu, L. Biological Importance of Cotton By-Products Relative to Chemical Constituents of the Cotton Plant. Molecules 2017, 22, 93. [Google Scholar] [CrossRef]
- Li, K.; Xu, Y.; Guo, K.; Cui, W.; Li, Y.; Hou, M. Improving the Nutritional Value and Safety of Cotton Stalk Feed via Response Surface Methodology and Co-Fermentation Techniques. Fermentation 2025, 11, 124. [Google Scholar] [CrossRef]
- Yildirim, O.; Ozkaya, B.; Altinbas, M.; Demir, A. Statistical optimization of dilute acid pretreatment of lignocellulosic biomass by response surface methodology to obtain fermentable sugars for bioethanol production. Int. J. Energy Res. 2021, 45, 8882–8899. [Google Scholar] [CrossRef]
- Yu, X.; Li, G.; Zhao, H.; Ma, Y.; Li, Q.; Chen, Y.; Li, W. Influence of chemically-modified cotton straw fibers on the properties of asphalt mortar. Case Stud. Constr. Mater. 2023, 18, e01787. [Google Scholar] [CrossRef]
- Li, X.; Shi, Z.; Wang, J.; Jiang, R. Review on the Crop Straw Utilization Technology of China. Am. J. Environ. Sci. Eng. 2020, 4, 61–64. [Google Scholar] [CrossRef]
- Garrido-Galand, S.; Asensio-Grau, A.; Calvo-Lerma, J.; Heredia, A.; Andrés, A. The potential of fermentation on nutritional and technological improvement of cereal and legume flours: A review. Food Res. Int. 2021, 145, 110398. [Google Scholar] [CrossRef] [PubMed]
- Perwez, M.; Al Asheh, S. Valorization of agro-industrial waste through solid-state fermentation: Mini review. Biotechnol. Rep. 2025, 45, e00873. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-industrial wastes and their utilization using solid state fermentation: A review. Bioresour. Bioprocess. 2018, 5, 1. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, L.; Liu, D. Biomass recalcitrance. Part I: The chemical compositions and physical structures affecting the enzymatic hydrolysis of lignocellulose. Biofuels Bioprod. Biorefining 2012, 6, 465–482. [Google Scholar] [CrossRef]
- Gladysheva, E.K. Liquid Hot Water and Steam Explosion Pretreatment Methods for Cellulosic Raw Materials: A Review. Polymers 2025, 17, 1783. [Google Scholar] [CrossRef]
- Wang, Y.; Gou, C.; Chen, L.; Liao, Y.; Zhang, H.; Luo, L.; Ji, J.; Qi, Y. Solid-State Fermentation with White Rot Fungi (Pleurotus Species) Improves the Chemical Composition of Highland Barley Straw as a Ruminant Feed and Enhances In Vitro Rumen Digestibility. J. Fungi 2023, 9, 1156. [Google Scholar] [CrossRef]
- Atiwesh, G.; Parrish, C.C.; Banoub, J.; Le, T.-A.T. Lignin degradation by microorganisms: A review. Biotechnol. Prog. 2022, 38, e3226. [Google Scholar] [CrossRef] [PubMed]
- Lelis, D.L.; Morenz, M.J.; Paciullo, D.S.; Roseira, J.P.; Gomide, C.A.; Pereira, O.G.; Oliveira, J.S.; Lopes, F.C.; da Silva, V.P.; da Silveira, T.C.; et al. Effects of Lactic Acid Bacteria on Fermentation and Nutritional Value of BRS Capiaçu Elephant Grass Silage at Two Regrowth Ages. Animals 2025, 15, 1150. [Google Scholar] [CrossRef]
- Guo, X.; Xu, D.; Li, F.; Bai, J.; Su, R. Current approaches on the roles of lactic acid bacteria in crop silage. Microb. Biotechnol. 2023, 16, 67–87. [Google Scholar] [CrossRef]
- Wu, B.; Ren, T.; Li, C.; Wu, S.; Cao, X.; Mei, H.; Wu, T.; Yong, M.; Wei, M.; Wang, C. Exploring the Fermentation Products, Microbiology Communities, and Metabolites of Big-Bale Alfalfa Silage Prepared with/without Molasses and Lactobacillus rhamnosus. Agriculture 2024, 14, 1560. [Google Scholar] [CrossRef]
- Yusuf, H.A.; Piao, M.; Ma, T.; Huo, R.; Tu, Y. Effect of lactic acid bacteria and yeast supplementation on anti-nutritional factors and chemical composition of fermented total mixed ration containing cottonseed meal or rapeseed meal. Anim. Biosci. 2022, 35, 556–566. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; He, T.; Wang, Z.; Mao, J.; Sha, R.J.F.S.; und-Technologie, T.L.-W. The dynamic analysis of non-targeted metabolomics and antioxidant activity of Dendrobium officinale Kimura et Migo by the synergistic fermentation of bacteria and enzymes. LWT 2024, 203, 116354. [Google Scholar] [CrossRef]
- Ma, L.; Li, J.; Zhao, W.; Wang, J.; Li, Y.; Xiong, Y.; He, Y.; Chu, X.; Liu, Q. Key cellulase components synergizing with lactic acid bacteria to degrade alfalfa lignocellulose to improve lactic acid fermentation. Front. Microbiol. 2025, 16, 1566973. [Google Scholar] [CrossRef]
- Yang, S.; Yan, Z.; Fu, T.; Zhang, L.; Xiulan, C.; Li, P.; Gong, C.; Cao, L. Quality and microbial community analysis of solid-state fermented feed with mixed bacteria from corn silage. Anim. Biotechnol. 2025, 36, 2507905. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Han, K.J.; Collins, M.; Vanzant, E.S.; Dougherty, C.T. Bale Density and Moisture Effects on Alfalfa Round Bale Silage. Crop Sci. 2004, 44, 914–919. [Google Scholar] [CrossRef]
- Li, J.; Gao, T.; Hao, Z.; Guo, X.; Zhu, B. Anaerobic solid-state fermentation with Bacillus subtilis for digesting free gossypol and improving nutritional quality in cottonseed meal. Front. Nutr. 2022, 9, 1017637. [Google Scholar] [CrossRef]
- Zhang, A.; He, W.; Han, Y.; Zheng, A.; Chen, Z.; Meng, K.; Yang, P.; Liu, G. Cooperative Fermentation Using Multiple Microorganisms and Enzymes Potentially Enhances the Nutritional Value of Spent Mushroom Substrate. Agriculture 2024, 14, 629. [Google Scholar] [CrossRef]
- Heng, X.; Chen, H.; Lu, C.; Feng, T.; Li, K.; Gao, E. Study on synergistic fermentation of bean dregs and soybean meal by multiple strains and proteases. LWT 2022, 154, 112626. [Google Scholar] [CrossRef]
- Lv, L.; Xiong, F.; Pei, S.; He, S.; Li, B.; Wu, L.; Cao, Z.; Li, S.; Yang, H. Synergistic fermentation of cottonseed meal using Lactobacillus mucosae LLK-XR1 and acid protease: Sustainable production of cottonseed peptides and depletion of free gossypol. Food Chem. 2025, 493, 145848. [Google Scholar] [CrossRef]
- He, D.; Duan, D.; Lv, X.; Xiong, B.; Li, Z.; Zhang, S.; Cai, J.; Qiao, X.; Chen, Q. Optimization of Solid-State Fermentation Process of Radix Ranunculi ternate Using Response Surface Method and Addressing Its Antioxidant and Hypoglycemic Activity. Fermentation 2024, 10, 153. [Google Scholar] [CrossRef]
- Su, J.; Fu, X.; Zhang, R.; Li, X.; Li, Y.; Chu, X. Exploring the Effects of Solid-State Fermentation on Polyphenols in Acanthopanax senticosus Based on Response Surface Methodology and Nontargeted Metabolomics Techniques. J. Food Biochem. 2023, 2023, 6711132. [Google Scholar] [CrossRef]
- Nadeem, F.; Mehmood, T.; Anwar, Z.; Saeed, S.; Bilal, M.; Meer, B. Optimization of bioprocess steps through response surface methodology for the production of immobilized lipase using Chaetomium globosum via solid-state fermentation. Biomass Convers. Biorefinery 2023, 13, 10539–10550. [Google Scholar] [CrossRef]
- Murai, T.; Annor, G.A. Improving the Nutritional Profile of Intermediate Wheatgrass by Solid-State Fermentation with Aspergillus oryzae Strains. Foods 2025, 14, 395. [Google Scholar] [CrossRef]
- Gupta, S.; Lee, J.J.L.; Chen, W.N. Analysis of Improved Nutritional Composition of Potential Functional Food (Okara) after Probiotic Solid-State Fermentation. J. Agric. Food Chem. 2018, 66, 5373–5381. [Google Scholar] [CrossRef] [PubMed]
- Sasu, P.; Attoh-Kotoku, V.; Anim-Jnr, A.S.; Osman, A.; Adjei, O.; Adjei-Mensah, B.; Edinam Aku Akoli, D.; Adjima Tankouano, R.; Kwaku, M.; Obloni Kweitsu, D. Comparative nutritional evaluation of the leaves of selected plants from the Poaceae family (bamboos and grasses) for sustainable livestock production in Ghana. Front. Sustain. Food Syst. 2023, 7, 2263960. [Google Scholar] [CrossRef]
- Beyzi, S.B.; Ülger, İ.; Konca, Y. Chemical, Fermentative, Nutritive and Anti-nutritive Composition of Common Reed (Phragmites australis) Plant and Silage. Waste Biomass Valorization 2023, 14, 927–936. [Google Scholar] [CrossRef]
- Van der Fels-Klerx, H.J.; Adamse, P.; Punt, A.; Van Asselt, E.D. Data Analyses and Modelling for Risk Based Monitoring of Mycotoxins in Animal Feed. Toxins 2018, 10, 54. [Google Scholar] [CrossRef]
- Ndiaye, S.; Zhang, M.; Fall, M.; Ayessou, N.M.; Zhang, Q.; Li, P. Current Review of Mycotoxin Biodegradation and Bioadsorption: Microorganisms, Mechanisms, and Main Important Applications. Toxins 2022, 14, 729. [Google Scholar] [CrossRef]
- Guo, Y.; Qin, X.; Tang, Y.; Ma, Q.; Zhang, J.; Zhao, L. CotA laccase, a novel aflatoxin oxidase from Bacillus licheniformis, transforms aflatoxin B1 to aflatoxin Q1 and epi-aflatoxin Q1. Food Chem. 2020, 325, 126877. [Google Scholar] [CrossRef]
- He, M.; Li, Y.; Pi, F.; Ji, J.; He, X.; Zhang, Y.; Sun, X. A novel detoxifying agent: Using rice husk carriers to immobilize zearalenone-degrading enzyme from Aspergillus niger FS10. Food Control 2016, 68, 271–279. [Google Scholar] [CrossRef]
- Rachappanavar, V.; Padiyal, A.; Sharma, J.K.; Gupta, S.K. Plant hormone-mediated stress regulation responses in fruit crops- a review. Sci. Hortic. 2022, 304, 111302. [Google Scholar] [CrossRef]
- Ennab, H.A.; El-Shemy, M.A.; Alam-Eldein, S.M. Salicylic Acid and Putrescine to Reduce Post-Harvest Storage Problems and Maintain Quality of Murcott Mandarin Fruit. Agronomy 2020, 10, 115. [Google Scholar] [CrossRef]
- Kumar, A.; Kothari, J.; Lokhande, K.B.; Seethamma, T.N.; Venkateswara Swamy, K.; Sharma, N.K. Novel Antiproliferative Tripeptides Inhibit AP-1 Transcriptional Complex. Int. J. Pept. Res. Ther. 2021, 27, 2163–2182. [Google Scholar] [CrossRef]
- Yilmaz, G.; Celik, S.; Erbolukbas Ozel, A.; Akyuz, S. Molecular docking and molecular dynamics studies of Glu-Glu-Arg, Glu-Pro-Arg, and Pro-Arg-Pro tripeptides to reveal their anticancer and antiviral potentials. J. Chin. Chem. Soc. 2024, 71, 1021–1035. [Google Scholar] [CrossRef]
- Amjad, E.; Sokouti, B.; Asnaashari, S. A systematic review of anti-cancer roles and mechanisms of kaempferol as a natural compound. Cancer Cell Int. 2022, 22, 260. [Google Scholar] [CrossRef]
- Imran, M.; Saeed, F.; Gilani, S.A.; Shariati, M.A.; Imran, A.; Afzaal, M.; Atif, M.; Tufail, T.; Anjum, F.M. Fisetin: An anticancer perspective. Food Sci. Nutr. 2021, 9, 3–16. [Google Scholar] [CrossRef]
- Shen, H.; Huang, L.; Dou, H.; Yang, Y.; Wu, H. Effect of Trilobatin from Lithocarpus polystachyus Rehd on Gut Microbiota of Obese Rats Induced by a High-Fat Diet. Nutrients 2021, 13, 891. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhou, W.; Bian, C.; Wang, L.; Li, Y.; Li, B. Degradation and Pathways of Carvone in Soil and Water. Molecules 2022, 27, 2415. [Google Scholar] [CrossRef]
- Kang, W.; Choi, D.; Park, S.; Park, T. Carvone Decreases Melanin Content by Inhibiting Melanoma Cell Proliferation via the Cyclic Adenosine Monophosphate (cAMP) Pathway. Molecules 2020, 25, 5191. [Google Scholar] [CrossRef] [PubMed]
Level | Factors | |||
---|---|---|---|---|
XH005 Inoculum % | LP-2 Inoculum % | Material-Water Ratio | Cellulase % | |
−1 | 6 | 1.5 | 1:0.4 | 0.4 |
0 | 8 | 2.0 | 1:0.5 | 0.6 |
1 | 10 | 2.5 | 1:0.6 | 0.8 |
Item | Lignin Content (%) | Cellulose Content (%) |
---|---|---|
CK | 21.70 ± 0.37 A | 25.73 ± 0.50 A |
M | 21.37 ± 0.45 AB | 23.33 ± 0.93 B |
P | 19.45 ± 0.60 C | 21.26 ± 0.35 CD |
L | 20.70 ± 0.69 B | 22.87 ± 0.90 BC |
P+L | 19.11 ± 0.39 C | 20.34 ± 0.48 D |
Item | YC | YZ | p |
---|---|---|---|
Cellulose content(%) | 13.27 ± 0.49 | 13.64 ± 0.66 | 0.92 |
Lignin content(%) | 15.73 ± 0.37 | 15.78 ± 0.32 | 0.96 |
Item | CK | YH | p |
---|---|---|---|
CP(%) | 15.26 ± 0.46 | 19.79 ± 0.59 | 0.002 |
EE(%) | 7.32 ± 0.31 | 6.39 ± 0.70 | 0.132 |
CF(%) | 33.92 ± 0.47 | 27.69 ± 0.94 | 0.001 |
Ash(%) | 7.93 ± 0.24 | 7.64 ± 0.14 | 1.00 |
ADF(%) | 43.54 ± 0.70 | 38.05 ± 0.66 | <0.001 |
NDF(%) | 57.47 ± 0.93 | 48.92 ± 1.85 | 0.004 |
pH | 6.99 ± 0.26 | 4.93 ± 0.34 | <0.001 |
LA(mg/g) | 2.86 ± 0.11 | 8.87 ± 0.09 | <0.001 |
Item | CK | YH | p |
---|---|---|---|
DON (ug/kg) | 0.81 ± 0.09 | 0.45 ± 0.03 | <0.001 |
AFB1 (ug/kg) | 1.88 ± 0.12 | 0.91 ± 0.06 | <0.001 |
ZEN (ug/kg) | 1.48 ± 0.15 | 0.84 ± 0.07 | <0.001 |
FG (mg/kg) | 13.57 ± 1.36 | 5.94 ± 0.83 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, D.; Yao, H.; Aihemaiti, M.; Ainizirehong, G.; Li, Y.; Yan, Y.; Huang, X.; Hou, M.; Cui, W. Enhanced Nutritional Composition of Steam-Exploded Cotton Stalk Through Microbial-Enzyme Synergism Solid-State Fermentation. Fermentation 2025, 11, 551. https://doi.org/10.3390/fermentation11100551
Dong D, Yao H, Aihemaiti M, Ainizirehong G, Li Y, Yan Y, Huang X, Hou M, Cui W. Enhanced Nutritional Composition of Steam-Exploded Cotton Stalk Through Microbial-Enzyme Synergism Solid-State Fermentation. Fermentation. 2025; 11(10):551. https://doi.org/10.3390/fermentation11100551
Chicago/Turabian StyleDong, Deli, Huaibing Yao, Maierhaba Aihemaiti, Gulinigeer Ainizirehong, Yang Li, Yuanyuan Yan, Xin Huang, Min Hou, and Weidong Cui. 2025. "Enhanced Nutritional Composition of Steam-Exploded Cotton Stalk Through Microbial-Enzyme Synergism Solid-State Fermentation" Fermentation 11, no. 10: 551. https://doi.org/10.3390/fermentation11100551
APA StyleDong, D., Yao, H., Aihemaiti, M., Ainizirehong, G., Li, Y., Yan, Y., Huang, X., Hou, M., & Cui, W. (2025). Enhanced Nutritional Composition of Steam-Exploded Cotton Stalk Through Microbial-Enzyme Synergism Solid-State Fermentation. Fermentation, 11(10), 551. https://doi.org/10.3390/fermentation11100551