Effect of Dietary Supplementation with Different Proportions of Amaranthus hypochondriacus Stem and Leaf Powder on Intestinal Digestive Enzyme Activities, Volatile Fatty Acids and Microbiota of Broiler Chickens
Abstract
1. Introduction
2. Materials and Methods
2.1. Experiment Design and Diets
2.2. Animal Management and Sampling
2.3. Digestive Enzyme Activity
2.4. Cecal Volatile Fatty Acids
2.5. 16S rDNA Amplicon Sequencing
2.6. Statistical Analysis
3. Results
3.1. Digestive Enzyme Activity in the Jejunum of Broilers
3.2. Fermentation Parameters of the Cecum in Broilers
3.3. Cecum Microbiota
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Makkar, H.P.S. Review: Feed demand landscape and implications of food-not feed strategy for food security and climate change. Animal 2018, 12, 1744–1754. [Google Scholar] [CrossRef] [PubMed]
- Breene, W.M. Food uses of grain Amaranth. Cereal Foods World 1991, 36, 426–430. [Google Scholar]
- Sánchez-López, F.; Robles-Olvera, V.J.; Hidalgo-Morales, M.; Tsopmo, A. Characterization of Amaranthus hypochondriacus seed protein fractions, and their antioxidant activity after hydrolysis with lactic acid bacteria. J. Cereal Sci. 2020, 15, 103075. [Google Scholar] [CrossRef]
- Joshi, D.C.; Sood, S.; Hosahatti, R.; Kant, L.; Pattanayak, A.; Kumar, A.; Yadav, D.; Stetter, M.G. From zero to hero: The past, present and future of grain amaranth breeding. Theor. Appl. Genet. 2018, 131, 1807–1823. [Google Scholar] [CrossRef]
- Aderibigbe, O.R.; Ezekiel, O.O.; Owolade, S.O.; Korese, J.K.; Sturm, B.; Hensel, O. Exploring the potentials of underutilized grain amaranth (Amaranthus spp.) along the value chain for food and nutrition security: A review. Crit. Rev. Food Sci. 2022, 62, 656–669. [Google Scholar] [CrossRef]
- Mlakar, S.G.; Turinek, M.; Jakop, M.; Bavec, M.; Bavec, F. Nutrition value and use of grain amaranth: Potential future application in bread making. Agricultura 2009, 6, 43–53. [Google Scholar]
- Juan, R.; Pastor, J.; Alaiz, M.; Vioque, J. Electrophoretic characterization of Amaranthus L. seed proteins and its systematic implications. Bot. J. Linn. Soc. 2007, 155, 57–63. [Google Scholar] [CrossRef]
- Sarker, U.; Oba, S.; Daramy, M.A. Nutrients, minerals, antioxidant pigments and phytochemicals, and antioxidant capacity of the leaves of stem amaranth. Sci. Rep. 2020, 10, 3892. [Google Scholar] [CrossRef]
- Peiretti, P. Amaranth in animal nutrition: A review. Livest. Res. Rural Dev. 2018, 30, 1–20. [Google Scholar]
- Mbugua, P.; Mitaru, B.; Ngatia, T.; Kabuage, N. Effect of steam pelleting and inclusion of molasses in amaranth diets on broiler chicken performance, carcass composition and histopathology of some internal organs. Fac. Agric. Vet. Med. 2002, 550, 5480. [Google Scholar]
- Pisarikova, B.; Zraly, Z.; Kracmar, S.; Trckova, M.; Herzig, I. The use of amaranth (genus Amaranthus L.) in the diets for broiler chickens. Vet. Med. Czech 2006, 51, 399–407. [Google Scholar] [CrossRef]
- Jůzl, M.; Simeonovová, J.; Písaříková, B. Sensory analysis of meat of cockerels and pullets fed with diets containing Amaranth or fishmeal. Acta Univ. Agric. Silvic. Mendel. Brun. 2005, 53, 79–90. [Google Scholar] [CrossRef]
- Janmohammadi, H.; Hosseintabar-Ghasemabad, B.; Oliyai, M.; Alijani, S.; Gorlov, I.F.; Slozhenkina, M.I.; Mosolov, A.A.; Suarez Ramirez, L.; Seidavi, A.; Laudadio, V.; et al. Effect of Dietary Amaranth (Amaranthus hybridus chlorostachys) Supplemented with Enzyme Blend on Egg Quality, Serum Biochemistry and Antioxidant Status in Laying Hens. Antioxidants 2023, 12, 456. [Google Scholar] [CrossRef] [PubMed]
- Danneskiold-Samsøe, N.B.; Dias de Freitas Queiroz Barros, H.; Santos, R.; Bicas, J.L.; Cazarin, C.B.B.; Madsen, L.; Kristiansen, K.; Pastore, G.M.; Brix, S.; Maróstica Júnior, M.R. Interplay between food and gut microbiota in health and disease. Food Res. Int. 2019, 115, 23–31. [Google Scholar] [CrossRef]
- Laparra, J.M.; Sanz, Y. Interactions of gut microbiota with functional food components and nutraceuticals. Pharmacol. Res. 2010, 61, 219–225. [Google Scholar] [CrossRef]
- Kasubuchi, M.; Hasegawa, S.; Hiramatsu, T.; Ichimura, A.; Kimura, I. Dietary gut microbial metabolites, short-chain fatty acids, and host metabolic regulation. Nutrients 2015, 7, 2839–2849. [Google Scholar] [CrossRef]
- Kongdang, P.; Dukaew, N.; Pruksakorn, D.; Koonrungsesomboon, N. Biochemistry of Amaranthus polyphenols and their potential benefits on gut ecosystem: A comprehensive review of the literature. J. Ethnopharmacol. 2021, 281, 114547. [Google Scholar] [CrossRef]
- Markova, Y.M.; Sidorova, Y.S. Amaranth, quinoa and buckwheat grain products: Role in human nutrition and maintenance of the intestinal microbiome. Vopr. Pitan. 2022, 91, 17–29. [Google Scholar] [CrossRef]
- Ren, Y.; Liu, L.; Zhou, S.; Li, Y.; Wang, Y.; Yang, K.; Chen, W.; Zhao, S. Effects of Different Proportions of Amaranthus hypochondriacus Stem and Leaf Powder Inclusions on Growth Performance, Carcass Traits, and Blood Biochemical Parameters of Broilers. Animals 2023, 13, 2818. [Google Scholar] [CrossRef]
- Roučková, J.; Trckova, M.; Herzig, I. The use of amaranth grain in diets for broiler chickens and its effect on performance and selected biochemical indicators. Czech J. Anim. Sci. 2004, 49, 532–541. [Google Scholar] [CrossRef]
- Manyelo, T.G.; Sebola, N.A.; Ng’ambi, J.W.; Weeks, W.; Mabelebele, M. The Influence of Different Amaranth Leaf Meal Inclusion Levels on Performance, Blood Profiles, and Gut Organ Characteristics of Ross 308 Broiler Chickens. Front. Vet. Sci. 2022, 9, 869149. [Google Scholar] [CrossRef] [PubMed]
- Ravindran, V.; Hood, R.L.; Gill, R.J.; Kneale, C.R.; Bryden, W.L. Nutritional evaluation of grain amaranth (Amaranthus hypochondriacus) in broiler diets. Anim. Feed. Sci. Technol. 1996, 63, 323–331. [Google Scholar] [CrossRef]
- Tillman, P.B.; Waldroup, P.W. Processing Grain Amaranth for Use in Broiler Diets. Poult. Sci. 1986, 65, 1960–1964. [Google Scholar] [CrossRef]
- Rideau, N.; Nitzan, Z.; Mongin, P. Activities of amylase, trypsin and lipase in the pancreas and small intestine of the laying hen during egg formation. Br. Poult. Sci. 1983, 24, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.F.; Chen, Y.P.; Jin, R.; Wang, C.; Wen, C.; Zhou, Y.M. A comparison of intestinal integrity, digestive function, and egg quality in laying hens with different ages. Poult. Sci. 2021, 100, 100949. [Google Scholar] [CrossRef]
- Gupta, A. Digestion and Absorption of Carbohydrates. In Comprehensive Biochemistry for Dentistry: Textbook for Dental Students; Gupta, A., Ed.; Springer: Singapore, 2019; pp. 395–401. [Google Scholar]
- Courtois, P.; Meuris, S.; Sener, A.; Malaisse, W.J.; Scott, F.W. Invertase, maltase, lactase, and peroxidase activities in duodenum of BB rats. Endocrine 2002, 19, 293–300. [Google Scholar] [CrossRef]
- Kluge, H.; Broz, J.; Eder, K. Effect of benzoic acid on growth performance, nutrient digestibility, nitrogen balance, gastrointestinal microflora and parameters of microbial metabolism in piglets. J. Anim. Physiol. Anim. Nutr. 2006, 90, 316–324. [Google Scholar] [CrossRef]
- Shang, Q.; Wu, D.; Liu, H.; Mahfuz, S.; Piao, X. The Impact of Wheat Bran on the Morphology and Physiology of the Gastrointestinal Tract in Broiler Chickens. Animals 2020, 10, 1831. [Google Scholar] [CrossRef]
- Chen, H.; Mao, X.B.; Che, L.Q.; Yu, B.; He, J.; Yu, J.; Han, G.Q.; Huang, Z.Q.; Zheng, P.; Chen, D.W. Impact of fiber types on gut microbiota, gut environment and gut function in fattening pigs. Anim. Feed. Sci. Technol. 2014, 195, 101–111. [Google Scholar] [CrossRef]
- Manuel, S.-G.; Isabel Saraid, A.-D. Nutritional Functional Value and Therapeutic Utilization of Amaranth. In Nutritional Value of Amaranth; Viduranga, Y.W., Ed.; IntechOpen: Rijeka, Croatia, 2019; p. 176. [Google Scholar]
- Khokhar, S. Dietary fibers: Their effects on intestinal digestive enzyme activities. J. Nutr. Biochem. 1994, 5, 176–180. [Google Scholar] [CrossRef]
- Tejeda, O.J.; Kim, W.K. Role of Dietary Fiber in Poultry Nutrition. Animals 2021, 11, 461. [Google Scholar] [CrossRef]
- Liu, L.; Li, Q.; Yang, Y.; Guo, A. Biological Function of Short-Chain Fatty Acids and Its Regulation on Intestinal Health of Poultry. Front. Vet. Sci. 2021, 8, 736739. [Google Scholar] [CrossRef] [PubMed]
- Okrathok, S.; Sirisopapong, M.; Mermillod, P.; Khempaka, S. Modified dietary fiber from cassava pulp affects the cecal microbial population, short-chain fatty acid, and ammonia production in broiler chickens. Poult. Sci. 2023, 102, 102265. [Google Scholar] [CrossRef] [PubMed]
- Walugembe, M.; Hsieh, J.C.; Koszewski, N.J.; Lamont, S.J.; Persia, M.E.; Rothschild, M.F. Effects of dietary fiber on cecal short-chain fatty acid and cecal microbiota of broiler and laying-hen chicks. Poult. Sci. 2015, 94, 2351–2359. [Google Scholar] [CrossRef]
- Ciudad-Mulero, M.; Fernández-Ruiz, V.; Matallana-González, M.C.; Morales, P. Dietary fiber sources and human benefits: The case study of cereal and pseudocereals. Adv. Food Nutr. Res. 2019, 90, 83–134. [Google Scholar] [CrossRef]
- Rivera-Chávez, F.; Zhang, L.F.; Faber, F.; Lopez, C.A.; Byndloss, M.X.; Olsan, E.E.; Xu, G.; Velazquez, E.M.; Lebrilla, C.B.; Winter, S.E.; et al. Depletion of Butyrate-Producing Clostridia from the Gut Microbiota Drives an Aerobic Luminal Expansion of Salmonella. Cell Host Microbe 2016, 19, 443–454. [Google Scholar] [CrossRef]
- Shang, Y.; Kumar, S.; Thippareddi, H.; Kim, W.K. Effect of Dietary Fructooligosaccharide (FOS) Supplementation on Ileal Microbiota in Broiler Chickens. Poult. Sci. 2018, 97, 3622–3634. [Google Scholar] [CrossRef]
- Mahmood, T.; Guo, Y. Dietary fiber and chicken microbiome interaction: Where will it lead to? Anim. Nutr. 2020, 6, 1–8. [Google Scholar] [CrossRef]
- Suen, G.; Stevenson, D.M.; Bruce, D.C.; Chertkov, O.; Copeland, A.; Cheng, J.F.; Detter, C.; Detter, J.C.; Goodwin, L.A.; Han, C.S.; et al. Complete genome of the cellulolytic ruminal bacterium Ruminococcus albus 7. J. Bacteriol. 2011, 193, 5574–5575. [Google Scholar] [CrossRef]
- Wu, J.; Wang, K.; Wang, X.; Pang, Y.; Jiang, C. The role of the gut microbiome and its metabolites in metabolic diseases. Protein Cell 2021, 12, 360–373. [Google Scholar] [CrossRef]
- Li, C.J.; Zhang, Z.; Zhan, P.C.; Lv, A.P.; Li, P.P.; Liu, L.; Li, W.J.; Yang, L.L.; Zhi, X.Y. Comparative genomic analysis and proposal of Clostridium yunnanense sp. nov., Clostridium rhizosphaerae sp. nov., and Clostridium paridis sp. nov., three novel Clostridium sensu stricto endophytes with diverse capabilities of acetic acid and ethanol production. Anaerobe 2023, 79, 102686. [Google Scholar] [CrossRef] [PubMed]
Items | 0–21 d | 22–42 d | ||||||
---|---|---|---|---|---|---|---|---|
Control | 3% AHSL | 6% AHSL | 9% AHSL | Control | 5% AHSL | 10% AHSL | 15% AHSL | |
Ingredient composition (%) | ||||||||
Corn | 55.6 | 52.17 | 48.58 | 44.95 | 59.88 | 54.1 | 48.16 | 42.06 |
Soybean meal | 38.57 | 38.08 | 37.61 | 37.15 | 33.38 | 32.56 | 31.78 | 31.03 |
Soybean oil | 2.61 | 3.7 | 4.95 | 6.16 | 3.5 | 5.38 | 7.37 | 9.5 |
AHSL | 0 | 3 | 6 | 9 | 0 | 5 | 10 | 15 |
CaHPO4 | 1.3 | 1.34 | 1.38 | 1.415 | 1.05 | 1.1 | 1.2 | 1.26 |
Limestone meal | 1.33 | 1.12 | 0.92 | 0.705 | 1.45 | 1.12 | 0.75 | 0.41 |
NaCl | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 | 0.35 |
Multi vitamin 1 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 |
Methionine | 0.2 | 0.2 | 0.2 | 0.2 | 0.15 | 0.15 | 0.15 | 0.15 |
Mineral meal | 0.2 | 0.2 | 0.2 | 0.2 | ||||
Total | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
Nutrient level | ||||||||
ME, MJ/kg | 12.20 | 12.17 | 12.18 | 12.19 | 12.58 | 12.55 | 12.55 | 12.57 |
CF, % | 2.16 | 2.69 | 3.22 | 3.75 | 2.06 | 3.65 | 5.24 | 6.83 |
CP, % | 21.51 | 21.51 | 21.51 | 21.51 | 19.51 | 19.51 | 19.51 | 19.51 |
Ca, % | 1.00 | 1.00 | 1.00 | 1.00 | 0.95 | 0.95 | 0.96 | 0.96 |
P, % | 0.69 | 0.68 | 0.68 | 0.68 | 0.61 | 0.60 | 0.61 | 0.60 |
Lysine, % | 1.29 | 1.26 | 1.24 | 1.22 | 1.14 | 1.10 | 1.07 | 1.03 |
Items | Control | 5% AHSL | 10% AHSL | 15% AHSL | SEM | P | ||
---|---|---|---|---|---|---|---|---|
Treat | Linear | Quadratic | ||||||
Jejunal mucosa, U/mg protein | ||||||||
Maltase | 531.91 | 547.64 | 541.92 | 568.23 | 36.852 | 0.989 | 0.944 | 0.972 |
Sucrase | 186.89 ab | 212.92 a | 142.66 b | 154.25 b | 9.495 | 0.026 | 0.221 | 0.477 |
Jejunal chyme, U/mg protein | ||||||||
Amylase | 1.21 | 1.03 | 1.04 | 1.07 | 0.099 | 0.925 | 0.977 | 0.625 |
Trypsase | 3470.73 | 3204.83 | 3263.79 | 3316.08 | 76.379 | 0.664 | 0.446 | 0.749 |
Items | Control | 5% AHSL | 10% AHSL | 15% AHSL | SEM | p Value | ||
---|---|---|---|---|---|---|---|---|
Treat | Linear | Quadratic | ||||||
pH | 7.32 a | 7.06 ab | 6.65 b | 6.66 b | 0.084 | 0.005 | 0.001 | 0.002 |
Acetate, μg/g | 1150.00 b | 1419.73 b | 2616.83 a | 2633.51 a | 147.81 | 0.001 | 0.001 | 0.001 |
Propionate, μg/g | 298.72 b | 493.47 a | 447.2 a | 442.70 a | 18.72 | 0.001 | 0.414 | 0.004 |
Iso-butyrate, μg/g | 98.00 a | 94.93 a | 97.18 a | 76.96 b | 2.6 | 0.008 | 0.056 | 0.113 |
Butyrate, μg/g | 261.31 b | 336.93 b | 461.65 a | 439.30 a | 22.34 | 0.001 | 0.004 | 0.001 |
Iso-valerate, μg/g | 143.55 a | 151.64 a | 141.05 a | 109.73 b | 4.69 | 0.005 | 0.021 | 0.021 |
Valerate, μg/g | 102.42 b | 112.15 b | 115.50 a | 115.28 a | 1.87 | 0.042 | 0.133 | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, Q.; Yang, Y.; Chen, H.; Zhou, S.; Zhao, S.; Chen, W. Effect of Dietary Supplementation with Different Proportions of Amaranthus hypochondriacus Stem and Leaf Powder on Intestinal Digestive Enzyme Activities, Volatile Fatty Acids and Microbiota of Broiler Chickens. Fermentation 2024, 10, 511. https://doi.org/10.3390/fermentation10100511
Sun Q, Yang Y, Chen H, Zhou S, Zhao S, Chen W. Effect of Dietary Supplementation with Different Proportions of Amaranthus hypochondriacus Stem and Leaf Powder on Intestinal Digestive Enzyme Activities, Volatile Fatty Acids and Microbiota of Broiler Chickens. Fermentation. 2024; 10(10):511. https://doi.org/10.3390/fermentation10100511
Chicago/Turabian StyleSun, Qianqian, Ying Yang, Huiru Chen, Shilong Zhou, Shengjun Zhao, and Wenxun Chen. 2024. "Effect of Dietary Supplementation with Different Proportions of Amaranthus hypochondriacus Stem and Leaf Powder on Intestinal Digestive Enzyme Activities, Volatile Fatty Acids and Microbiota of Broiler Chickens" Fermentation 10, no. 10: 511. https://doi.org/10.3390/fermentation10100511
APA StyleSun, Q., Yang, Y., Chen, H., Zhou, S., Zhao, S., & Chen, W. (2024). Effect of Dietary Supplementation with Different Proportions of Amaranthus hypochondriacus Stem and Leaf Powder on Intestinal Digestive Enzyme Activities, Volatile Fatty Acids and Microbiota of Broiler Chickens. Fermentation, 10(10), 511. https://doi.org/10.3390/fermentation10100511