Plasma Electrochemical Synthesis of Graphene-Phosphorene Composite and Its Catalytic Activity towards Hydrogen Evolution Reaction
Abstract
1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, B.; Lai, C.; Zeng, G.; Huang, D.; Qin, L.; Zhang, M.; Fu, Y. Black Phosphorus, a Rising Star 2D Nanomaterial in the Post-Graphene Era: Synthesis, Properties, Modifications, and Photocatalysis Applications. Small 2019, 15, 1804565. [Google Scholar] [CrossRef] [PubMed]
- Nilges, T.; Kersting, M.; Pfeifer, T. A Fast Low-Pressure Transport Route to Large Black Phosphorus Single Crystals. J. Solid State Chem. 2008, 181, 1707–1711. [Google Scholar] [CrossRef]
- Bockris, J.O.M. The Hydrogen Economy: Its History. Int. J. Hydrogen Energy 2013, 38, 2579–2588. [Google Scholar] [CrossRef]
- Pudukudy, M.; Yaakob, Z.; Mohammad, M.; Narayanan, B.; Sopian, K. Renewable Hydrogen Economy in Asia—Opportunities and Challenges: An Overview. Renew. Sustain. Energy Rev. 2014, 30, 743–757. [Google Scholar] [CrossRef]
- Miyazaki, J.; Kajiyama, T.; Matsumoto, K.; Fujiwarat, H.; Yatabe, M. Ultra High Purity Hydrogen Gas Supply System with Liquid Hydrogen. Int. J. Hydrogen Energy 1996, 21, 335–341. [Google Scholar] [CrossRef]
- Zhao, G.; Rui, K.; Dou, S.X.; Sun, W. Heterostructures for Electrochemical Hydrogen Evolution Reaction: A Review. Adv. Funct. Mater. 2018, 28, 1803291. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, X.; Lao, M.; Rui, K.; Zheng, X.; Yu, H.; Ma, J.; Dou, S.X.; Sun, W. Electrocatalytically Inactive SnS2 Promotes Water Adsorption/Dissociation on Molybdenum Dichalcogenides for Accelerated Alkaline Hydrogen Evolution. Nano Energy 2019, 64, 103918. [Google Scholar] [CrossRef]
- Lao, M.; Rui, K.; Zhao, G.; Cui, P.; Zheng, X.; Dou, S.X.; Sun, W. Platinum/Nickel Bicarbonate Heterostructures towards Accelerated Hydrogen Evolution under Alkaline Conditions. Angew. Chem. Int. Ed. 2019, 58, 5432–5437. [Google Scholar] [CrossRef]
- He, L.; Lian, P.; Zhu, Y.; Lu, Q.; Wang, C.; Mei, Y. Review on Applications of Black Phosphorus in Catalysis. J. Nanosci. Nanotechnol. 2019, 19, 5361–5374. [Google Scholar] [CrossRef]
- Dinh, K.N.; Zhang, Y.; Zhu, J.; Sun, W. Phosphorene-Based Electrocatalysts. Chem. Eur. J. 2020, 26, 6437–6446. [Google Scholar] [CrossRef]
- Ambrosi, A.; Sofer, Z.; Pumera, M. Electrochemical Exfoliation of Layered Black Phosphorus into Phosphorene. Angew. Chem. Int. Ed. 2017, 56, 10443–10445. [Google Scholar] [CrossRef] [PubMed]
- Xiao, H.; Zhao, M.; Zhang, J.; Ma, X.; Zhang, J.; Hu, T.; Wu, H. Electrochemical Cathode Exfoliation of Bulky Black Phosphorus into Few-Layer Phosphorene Nanosheets. Electrochem. Commun. 2018, 89, 10–13. [Google Scholar] [CrossRef]
- Liu, W.; Zhu, Y.; Xu, X.; Wang, S.; Zhang, X. Preparation of Few-Layer Black Phosphorus by Wet Ball Milling Exfoliation. J. Mater. Sci. Mater. Electron. 2020, 31, 9543–9549. [Google Scholar] [CrossRef]
- Sofer, Z.; Sedmidubský, D.; Huber, Š.; Luxa, J.; Bouša, D.; Boothroyd, C.; Pumera, M. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties. Angew. Chem. Int. Ed. 2016, 55, 3382–3386. [Google Scholar] [CrossRef]
- Shao, L.; Sun, H.; Miao, L.; Chen, X.; Han, M.; Sun, J.; Chen, J. Facile Preparation of NH2-Functionalized Black Phosphorene for the Electrocatalytic Hydrogen Evolution Reaction. J. Mater. Chem. A 2018, 6, 2494–2499. [Google Scholar] [CrossRef]
- Batmunkh, M.; Bat-Erdene, M.; Shapter, J.G. Phosphorene and Phosphorene-Based Materials—Prospects for Future Applications. Adv. Mater. 2016, 28, 8586–8617. [Google Scholar] [CrossRef]
- Luo, Z.-Z.; Zhang, Y.; Zhang, C.; Tan, H.T.; Li, Z.; Abutaha, A.; Yan, Q. Multifunctional 0D-2D Ni2P Nanocrystals-Black Phosphorus Heterostructure. Adv. Energy Mater. 2016, 7, 1601285. [Google Scholar] [CrossRef]
- Peng, Y.; Lu, B.; Wang, N.; Lu, J.E.; Li, C.; Ping, Y.; Chen, S. Oxygen Reduction Reaction Catalyzed by Black Phosphorus-Supported Metal Nanoparticles: Impacts of Interfacial Charge Transfer. ACS Appl. Mater. Interfaces 2019, 11, 24707–24714. [Google Scholar] [CrossRef]
- Ozawa, A.; Yamamoto, M.; Tanabe, T.; Hosokawa, S.; Yoshida, T. Black Phosphorus Synthesized by Solvothermal Reaction from Red Phosphorus and Its Catalytic Activity for Water Splitting. J. Mater. Chem. A 2020, 8, 7368–7376. [Google Scholar] [CrossRef]
- Wang, Y.; He, M.; Ma, S.; Yang, C.; Yu, M.; Yin, G.; Zuo, P. Low-Temperature Solution Synthesis of Black Phosphorus from Red Phosphorus: Crystallization Mechanism and Lithium Ion Battery Spplications. J. Phys. Chem. Lett. 2020, 11, 2708–2716. [Google Scholar] [CrossRef]
- Krivenko, A.G.; Manzhos, R.A.; Kotkin, A.S.; Kochergin, V.K.; Piven, N.P.; Manzhos, A.P. Production of Few-Layer Graphene Structures in Different Modes of Electrochemical Exfoliation of Graphite by Voltage Pulses. Instrum. Sci. Technol. 2019, 47, 535–544. [Google Scholar] [CrossRef]
- Shirley, D.A. Hyperfine Interactions and ESCA Data. Phys. Scr. 1975, 11, 117–120. [Google Scholar] [CrossRef]
- Vasiliev, V.P.; Kotkin, A.S.; Kochergin, V.K.; Manzhos, R.A.; Krivenko, A.G. Oxygen Reduction Reaction at Few-Layer Graphene Structures Obtained via Plasma-Assisted Electrochemical Exfoliation of Graphite. J. Electroanal. Chem. 2019, 851, 113440. [Google Scholar] [CrossRef]
- Vasiliev, V.P.; Manzhos, R.A.; Krivenko, A.G. Electrical Conductivity of Films Formed by Few-Layer Graphene Structures Obtained by Plasma-Assisted Electrochemical Exfoliation of Graphite. Int. J. Electrochem. 2019, 2019, 6478708. [Google Scholar] [CrossRef]
- Doniach, S.; Sunjic, M. Many-Electron Singularity in X-ray Photoemission and X-ray Line Spectra from Metals. J. Phys. C Solid State Phys. 1970, 3, 285–291. [Google Scholar] [CrossRef]
- Yamada, Y.; Yasuda, H.; Murota, K.; Nakamura, M.; Sodesawa, T.; Sato, S. Analysis of Heat-Treated Graphite Oxide by X-ray Photoelectron Spectroscopy. J. Mater. Sci. 2013, 48, 8171–8198. [Google Scholar] [CrossRef]
- Golubev, Y.A.; Rozhkova, N.N.; Kabachkov, E.N.; Shul’ga, Y.M.; Natkaniec-Hołderna, K.; Natkaniec, I.; Antonets, I.V.; Makeev, B.A.; Popova, N.A.; Popova, V.A.; et al. Sp2 Amorphous Carbons in View of Multianalytical Consideration: Normal, Expected and New. J. Non-Cryst. Solids 2019, 524, 8171–8198. [Google Scholar] [CrossRef]
- Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of Graphene-Based Nanosheets via Chemical Reduction of Exfoliated Graphite Oxide. Carbon 2007, 45, 1558–1565. [Google Scholar] [CrossRef]
- Stobinski, L.; Lesiak, B.; Malolepszy, A.; Mazurkiewicz, M.; Mierzwa, B.; Zemek, J.; Jiricek, P.; Bieloshapka, I. Graphene Oxide and Reduced Graphene Oxide Studied by the XRD, TEM and Electron Spectroscopy Methods. J. Electron. Spectrosc. Relat. Phenom. 2014, 195, 145–154. [Google Scholar] [CrossRef]
- Voylov, D.N.; Agapov, A.L.; Sokolov, A.P.; Shulga, Y.M.; Arbuzov, A.A. Room Temperature Reduction of Multilayer Graphene Oxide Film on a Copper Substrate: Penetration and Participation of Copper Phase in Redox Reactions. Carbon 2014, 69, 563–570. [Google Scholar] [CrossRef]
- Yang, H.; Guo, P.; Wang, R.; Chen, Z.; Xu, H.; Pan, H.; Sun, D.; Fang, F.; Wu, R. Sequential Phase Conversion-Induced Phosphides Heteronanorod Arrays for Superior Hydrogen Evolution Performance to Pt in Wide pH Media. Adv. Mater. 2022, 34, 2107548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.-W.; Cao, L.; Tang, C.; Tan, C.; Cheng, N.; Lai, W.-H.; Wang, Y.-X.; Cheng, Z.-X.; Dong, J.; Kong, Y.; et al. Atomically Dispersed Dual-Site Cathode with a Record High Sulfur Mass Loading for High-Performance Room-Temperature Sodium–Sulfur Batteries. Adv. Mater. 2022, 34, 2206828. [Google Scholar] [CrossRef] [PubMed]
C, at.% | O, at.% | P, at.% | S, at.% |
---|---|---|---|
68.6 | 19.4 | 10.9 | 1.1 |
C–O–C, at.% | C=O, at.% | COOH, at.% |
---|---|---|
12.5 | 4.9 | 1.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kochergin, V.K.; Komarova, N.S.; Kotkin, A.S.; Manzhos, R.A.; Vasiliev, V.P.; Krivenko, A.G. Plasma Electrochemical Synthesis of Graphene-Phosphorene Composite and Its Catalytic Activity towards Hydrogen Evolution Reaction. C 2022, 8, 79. https://doi.org/10.3390/c8040079
Kochergin VK, Komarova NS, Kotkin AS, Manzhos RA, Vasiliev VP, Krivenko AG. Plasma Electrochemical Synthesis of Graphene-Phosphorene Composite and Its Catalytic Activity towards Hydrogen Evolution Reaction. C. 2022; 8(4):79. https://doi.org/10.3390/c8040079
Chicago/Turabian StyleKochergin, Valeriy K., Natal’ya S. Komarova, Alexander S. Kotkin, Roman A. Manzhos, Vladimir P. Vasiliev, and Alexander G. Krivenko. 2022. "Plasma Electrochemical Synthesis of Graphene-Phosphorene Composite and Its Catalytic Activity towards Hydrogen Evolution Reaction" C 8, no. 4: 79. https://doi.org/10.3390/c8040079
APA StyleKochergin, V. K., Komarova, N. S., Kotkin, A. S., Manzhos, R. A., Vasiliev, V. P., & Krivenko, A. G. (2022). Plasma Electrochemical Synthesis of Graphene-Phosphorene Composite and Its Catalytic Activity towards Hydrogen Evolution Reaction. C, 8(4), 79. https://doi.org/10.3390/c8040079