Dynamics of Nonmagnetic and Magnetic Emulsions in Microchannels of Various Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Setup
2.2. Investigated Fluids
2.3. Microfluidic Device Manufacturing Technology
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Samiei, E.; Tabrizian, M.; Hoorfar, M. A review of digital microfluidics as portable platforms for lab-on a-chip applications. Lab Chip 2016, 16, 2376–2396. [Google Scholar] [CrossRef] [PubMed]
- Nikoleli, G.P.; Siontorou, C.G.; Nikolelis, D.P.; Bratakou, S.; Karapetis, S.; Tzamtzi, N. Biosensors based on microfluidic devices lab-on-a-chip and microfluidic technology. In Nanotechnology and Biosensors, Advanced Nanomaterials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 375–394. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, M.; Lin, Y.; Xu, J. Trapping and control of bubbles in various microfluidic applications. Lab Chip 2020, 20, 4512–4527. [Google Scholar] [CrossRef] [PubMed]
- Holtze, C. Large-scale droplet production in microfluidic devices—An industrial perspective. J. Phys. D Appl. Phys. 2013, 46, 114008. [Google Scholar] [CrossRef]
- Sonnen, K.F.; Merten, C.A. Microfluidics as an emerging precision tool in developmental biology. Dev. Cell 2019, 48, 293–311. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, Y.; Chen, Y.; Tang, H.; Zong, N.; Jiang, X. Microfluidics for biomedical analysis. Small Methods 2020, 4, 1900451. [Google Scholar] [CrossRef]
- Basiri, A.; Heidari, A.; Nadi, M.F.; Fallahy, M.T.P.; Nezamabadi, S.S.; Sedighi, M.; Saghazadeh, A.; Rezae, N. Microfluidic devices for detection of RNA viruses. Rev. Med. Virol. 2021, 31, 1–11. [Google Scholar] [CrossRef]
- Guo, Q.R.; Zhang, L.L.; Liu, J.F.; Li, Z.; Li, J.J.; Zhou, W.M.; Wang, H.; Li, J.Q.; Liu, D.Y.; Yu, X.Y.; et al. Multifunctional microfluidic chip for cancer diagnosis and treatment. Nanotheranostics 2021, 5, 73. [Google Scholar] [CrossRef]
- Carvalho, B.G.; Ceccato, B.T.; Michelon, M.; Han, S.W.; de la Torre, L.G. Advanced microfluidic technologies for lipid nano-microsystems from synthesis to biological application. Pharmaceutics 2022, 14, 141. [Google Scholar] [CrossRef]
- Ran, R.; Sun, Q.; Baby, T.; Wibowo, D.; Middelberg, A.P.J.; Zhao, C.-X. Multiphase microfluidic synthesis of micro-and nanostructures for pharmaceutical applications. Chem. Eng. Sci. 2017, 169, 78–96. [Google Scholar] [CrossRef] [Green Version]
- Raj, M.K.; Chakraborty, S. PDMS microfluidics: A mini review. J. Appl. Polym. Sci. 2020, 137, 48958. [Google Scholar] [CrossRef]
- Au, A.K.; Huynh, W.; Horowitz, L.F.; Folch, A. 3D-printed microfluidics. Angew. Chem. Int. Ed. 2016, 55, 3862–3881. [Google Scholar] [CrossRef]
- Roy, E.; Pallandre, A.; Zribi, B.; Horny, M.C.; Delapierre, F.D.; Cattoni, A.; Gamby, J.; Haghiri-Gosnet, A.-M. Overview of Materials for Microfluidic Applications. In Advances in Microfluidics—New Applications in Biology, Energy, and Materials Sciences; InTech Open: London, UK, 2016; pp. 335–355. [Google Scholar] [CrossRef] [Green Version]
- Scott, S.M.; Ali, Z. Fabrication methods for microfluidic devices: An overview. Micromachines 2021, 12, 319. [Google Scholar] [CrossRef]
- Ren, K.; Zhou, J.; Wu, H. Materials for microfluidic chip fabrication. Acc. Chem. Res. 2013, 46, 2396–2406. [Google Scholar] [CrossRef]
- Gale, B.K.; Jafek, A.R.; Lambert, C.J.; Goenner, B.L.; Moghimifam, H.; Nze, U.C.; Kamarapu, S.K. A review of current methods in microfluidic device fabrication and future commercialization prospects. Inventions 2018, 3, 60. [Google Scholar] [CrossRef] [Green Version]
- Teh, S.Y.; Lin, R.; Hung, L.H.; Lee, A.P. Droplet microfluidics. Lab Chip 2008, 8, 198–220. [Google Scholar] [CrossRef]
- Baroud, C.N.; Gallaire, F.; Dangla, R. Dynamics of microfluidic droplets. Lab Chip 2010, 10, 2032–2045. [Google Scholar] [CrossRef] [Green Version]
- Wehking, J.D.; Gabany, M.; Chew, L.; Kumar, R. Effects of viscosity, interfacial tension, and flow geometry on droplet formation in a microfluidic T-junction. Microfluid. Nanofluid. 2014, 16, 441–453. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, X.; Jiang, S.; Zhu, C.; Ma, Y.; Fu, T. Effects on droplet generation in step-emulsification microfluidic devices. Chem. Eng. Sci. 2021, 246, 116959. [Google Scholar] [CrossRef]
- Zhu, P.; Wang, L. Passive and active droplet generation with microfluidics: A review. Lab Chip 2017, 17, 34–75. [Google Scholar] [CrossRef] [PubMed]
- Alnaimat, F.; Dagher, S.; Mathew, B.; Hilal-Alnqbi, A.; Khashan, S. Microfluidics based magnetophoresis: A review. Chem. Rec. 2018, 18, 1596–1612. [Google Scholar] [CrossRef]
- Pamme, N. Magnetism and microfluidics. Lab Chip 2006, 6, 24–38. [Google Scholar] [CrossRef]
- Rosensweig, R.E. Ferrohydrodynamics; Courier Corporation: Chelmsford, MA, USA, 1985; 348p. [Google Scholar]
- Sokolsky, S.A.; Solovyova, A.Y.; Zverev, V.S.; Hess, M.; Schmidt, A.; Elfimova, E.A. Analysis of the ferrofluid microstructure based on the static magnetic measurements. J. Magn. Magn. Mater. 2021, 537, 168169. [Google Scholar] [CrossRef]
- Ivanov, A.S.; Pshenichnikov, A.F.; Khokhryakova, C.A. Floating of solid non-magnetic bodies in magnetic fluids: Comprehensive analysis in the framework of inductive approach. Phys. Fluids 2020, 32, 112007. [Google Scholar] [CrossRef]
- Zakinyan, A.R.; Zakinyan, A.A. Rotating field induced torque on ferrofluid emulsion with deformable dispersed phase microdrops. Sens. Actuators A Phys. 2020, 314, 112347. [Google Scholar] [CrossRef]
- Yang, R.J.; Hou, H.H.; Wang, Y.N.; Fu, L.M. Micro-magnetofluidics in microfluidic systems: A review. Sens. Actuators B Chem. 2016, 224, 1–15. [Google Scholar] [CrossRef]
- Tan, S.H.; Nguyen, N.T.; Yobas, L.; Kang, T.G. Formation and manipulation of ferrofluid droplets at a microfluidic T-junction. J. Micromech. Microeng. 2010, 20, 045004. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, N.T. Micro-magnetofluidics: Interactions between magnetism and fluid flow on the microscale. Microfluid. Nanofluid. 2012, 12, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Chang, C.W.; Cheng, Y.T.; Tsai, C.Y.; Chien, J.H.; Wang, P.Y.; Chen, P.H. Periodic flow patterns of the magnetic fluid in microchannel. J. Magn. Magn. Mater. 2007, 310, 2844–2846. [Google Scholar] [CrossRef]
- Bijarchi, M.A.; Favakeh, A.; Alborzi, S.; Shafii, M.B. Ferrofluid droplet breakup process and neck evolution under steady and pulse-width modulated magnetic fields. J. Mol. Liq. 2021, 343, 117536. [Google Scholar] [CrossRef]
- Bijarchi, M.A.; Yaghoobi, M.; Favakeh, A.; Shafii, M.B. On-demand ferrofluid droplet formation with non-linear magnetic permeability in the presence of high non-uniform magnetic fields. Sci. Rep. 2022, 12, 10868. [Google Scholar] [CrossRef]
- Bijarchi, M.A.; Favakeh, A.; Shafii, M.B. The effect of a non-uniform pulse-width modulated magnetic field with different angles on the swinging ferrofluid droplet formation. J. Ind. Eng. Chem. 2020, 84, 106–119. [Google Scholar] [CrossRef]
- Bijarchi, M.A.; Shafii, M.B. Experimental investigation on the dynamics of on-demand ferrofluid drop formation under a pulse-width-modulated nonuniform magnetic field. Langmuir 2020, 36, 7724–7740. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, N.T.; Beyzavi, A.; Ng, K.M.; Huang, X. Kinematics and deformation of ferrofluid droplets under magnetic actuation. Microfluid. Nanofluid. 2007, 3, 571–579. [Google Scholar] [CrossRef]
- Favakeh, A.; Bijarchi, M.A.; Shafii, M.B. Ferrofluid droplet formation from a nozzle using alternating magnetic field with different magnetic coil positions. J. Magn. Magn. Mater. 2020, 498, 166134. [Google Scholar] [CrossRef]
- Dunne, P.; Adachi, T.; Dev, A.A.; Sorrenti, A.; Giacchetti, L.; Bonnin, A.; Bourdon, C.; Mangin, P.H.; Coey, J.M.D.; Doudin, B.; et al. Liquid flow and control without solid walls. Nature 2020, 581, 58–62. [Google Scholar] [CrossRef]
- Gao, Q.H.; Zhang, W.M.; Zou, H.X.; Li, W.B.; Yan, H.; Peng, Z.K.; Meng, G. Label-free manipulation via the magneto-Archimedes effect: Fundamentals, methodology and applications. Mater. Horiz. 2019, 6, 1359–1379. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Sokolov, E.A.; Postnikov, E.B. Behavior of a gas bubble separating from a cavity formed in magnetic fluid in an inhomogeneous magnetic field. J. Magn. Magn. Mater. 2022, 549, 169067. [Google Scholar] [CrossRef]
- Sokolov, E.A.; Vasilyeva, A.O.; Kalyuzhnaya, D.A.; Ryapolov, P.A. Dynamics of nonmagnetic inclusions in a microchannel with a magnetic fluid in an inhomogeneous magnetic field. AIP Adv. 2022, 12, 035333. [Google Scholar] [CrossRef]
- Ryapolov, P.A.; Polunin, V.M.; Postnikov, E.B.; Bashtovoi, V.G.; Reks, A.G.; Sokolov, E.A. The behaviour of gas inclusions in a magnetic fluid in a non-uniform magnetic field. J. Magn. Magn. Mater. 2020, 497, 165925. [Google Scholar] [CrossRef]
- Polunin, V.M.; Ryapolov, P.A.; Ryabtsev, K.S.; Kobelev, N.S.; Shabanova, I.A.; Yushin, V.V.; Postnikov, E.B. Elasticity of an air cavity in a magnetic fluid on an annular magnet segment with changing magnetic field sign. Russ. Phys. J. 2018, 61, 1347–1357. [Google Scholar] [CrossRef]
- Sokolov, E.A.; Kalyuzhnaya, D.A.; Vasilyeva, A.O.; Ryapolov, P.A. Microfluidic Devices with integrated controlled magnetic field sources. In Proceedings of the 2022 Conference of Russian Young Researchers in Electrical and Electronic Engineering (ElConRus), Saint Petersburg, Russia, 25–28 January 2022; pp. 1612–1615. [Google Scholar]
- Saggiomo, V.; Velders, A.H. Simple 3D printed scaffold-removal method for the fabrication of intricate microfluidic devices. Adv. Sci. 2015, 2, 1500125. [Google Scholar] [CrossRef] [PubMed]
Fluid Parameters | PES-1 | Mineral Oil | Synthetic Oil |
---|---|---|---|
Density ρ, kg/m3 | 877 | 841 | 851 |
Viscosity, η, mPa∙s | 3 | 17 | 435.91 |
Fluid Parameters | MF on Oil |
---|---|
Density ρ, kg/m3 | 853 |
Viscosity, η, mPa∙s | 68.72 |
Volume concentration, φ, % | 0.4 |
Saturation magnetization, Ms, kA/m | 1.8 |
Continuous Phase | Sandwich Chip with Glass Walls (Figure 2b) | ESCARGOT Chip with Silicone walls (Figure 2c) | |
---|---|---|---|
Inverse emulsion | PES-1 | ||
Mineral oil | |||
Synthetic oil |
Continuous Phase | ESCARGOT Chip with Silicone Walls (Figure 2c) | |
---|---|---|
Direct emulsion | PES-1 | |
Mineral oil | ||
Synthetic oil |
d, mm | Untreated Surface of the Scaffolds | Treated Surface of the Scaffolds |
---|---|---|
0.5 | ||
1 | ||
2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalyuzhnaya, D.; Sokolov, E.; Vasilyeva, A.; Sutarina, I.; Ryapolov, P. Dynamics of Nonmagnetic and Magnetic Emulsions in Microchannels of Various Materials. Fluids 2023, 8, 42. https://doi.org/10.3390/fluids8020042
Kalyuzhnaya D, Sokolov E, Vasilyeva A, Sutarina I, Ryapolov P. Dynamics of Nonmagnetic and Magnetic Emulsions in Microchannels of Various Materials. Fluids. 2023; 8(2):42. https://doi.org/10.3390/fluids8020042
Chicago/Turabian StyleKalyuzhnaya, Dariya, Evgeniy Sokolov, Anastasia Vasilyeva, Irina Sutarina, and Petr Ryapolov. 2023. "Dynamics of Nonmagnetic and Magnetic Emulsions in Microchannels of Various Materials" Fluids 8, no. 2: 42. https://doi.org/10.3390/fluids8020042
APA StyleKalyuzhnaya, D., Sokolov, E., Vasilyeva, A., Sutarina, I., & Ryapolov, P. (2023). Dynamics of Nonmagnetic and Magnetic Emulsions in Microchannels of Various Materials. Fluids, 8(2), 42. https://doi.org/10.3390/fluids8020042