Turbulence Modeling for Physics-Informed Neural Networks: Comparison of Different RANS Models for the Backward-Facing Step Flow
Abstract
:1. Introduction
2. Backward-Facing Step Flow
3. Methodology
3.1. Flow Prediction with PINNs
3.2. Composed Loss Function
3.3. Governing Equations
4. Experiments
4.1. Turbulence Modeling
4.2. Boundary Conditions
4.3. PINN Training Procedure
4.4. Comparison with DNS Data
4.5. Analyses
5. Results
5.1. Training without Labeled Training Data Inside of the Domain
5.2. Training with Three Lines of Labeled Training Data Inside of the Domain
5.3. Training with Five Lines of Labeled Training Data Inside of the Domain
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Sofos, F.; Stavrogiannis, C.; Exarchou-Kouveli, K.K.; Akabua, D.; Charilas, G.; Karakasidis, T.E. Current Trends in Fluid Research in the Era of Artificial Intelligence: A Review. Fluids 2022, 7, 116. [Google Scholar] [CrossRef]
- Lagaris, I.E.; Likas, A.; Fotiadis, D.I. Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 1998, 9, 987–1000. [Google Scholar] [CrossRef] [PubMed]
- Raissi, M. Physics Informed Deep Learning (Part I): Data-Driven Solutions of Nonlinear Partial Differential Equations. 2017. Available online: http://arxiv.org/pdf/1711.10561v1 (accessed on 29 December 2022).
- Raissi, M. Physics Informed Deep Learning (Part II): Data-Driven Discovery of Nonlinear Partial Differential Equations. 2017. Available online: http://arxiv.org/pdf/1711.10566v1 (accessed on 29 December 2022).
- Raissi, M.; Perdikaris, P.; Karniadakis, G.E. Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [Google Scholar] [CrossRef]
- Raissi, M.; Yazdani, A.; Karniadakis, G.E. Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations. Science 2020, 367, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Gao, H.; Pan, S.; Wang, J.X. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Comput. Methods Appl. Mech. Eng. 2020, 361, 112732. [Google Scholar] [CrossRef]
- Zhu, Y.; Zabaras, N.; Koutsourelakis, P.S.; Perdikaris, P. Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data. J. Comput. Phys. 2019, 394, 56–81. [Google Scholar] [CrossRef]
- Jin, X.; Cai, S.; Li, H.; Karniadakis, G.E. NSFnets (Navier-Stokes flow nets): Physics-informed neural networks for the incompressible Navier-Stokes equations. J. Comput. Phys. 2021, 426, 109951. [Google Scholar] [CrossRef]
- Zhu, Q.; Liu, Z.; Yan, J. Machine learning for metal additive manufacturing: Predicting temperature and melt pool fluid dynamics using physics-informed neural networks. Comput. Mech. 2021, 67, 619–635. [Google Scholar] [CrossRef]
- Wang, R.; Kashinath, K.; Mustafa, M.; Albert, A.; Yu, R. Towards Physics-informed Deep Learning for Turbulent Flow Prediction. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining; Gupta, R., Liu, Y., Shah, M., Rajan, S., Tang, J., Prakash, B.A., Eds.; ACM: New York, NY, USA, 2020; pp. 1457–1466. [Google Scholar] [CrossRef]
- Laubscher, R.; Rousseau, P. Application of a mixed variable physics-informed neural network to solve the incompressible steady-state and transient mass, momentum, and energy conservation equations for flow over in-line heated tubes. Appl. Soft Comput. 2022, 114, 108050. [Google Scholar] [CrossRef]
- Wang, H.; Liu, Y.; Wang, S. Dense velocity reconstruction from particle image velocimetry/particle tracking velocimetry using a physics-informed neural network. Phys. Fluids 2022, 34, 017116. [Google Scholar] [CrossRef]
- Eivazi, H.; Vinuesa, R. Physics-informed deep-learning applications to experimental fluid mechanics. arXiv 2022, arXiv:2203.15402. [Google Scholar]
- Wandel, N.; Weinmann, M.; Klein, R. Teaching the incompressible Navier–Stokes equations to fast neural surrogate models in three dimensions. Phys. Fluids 2021, 33, 047117. [Google Scholar] [CrossRef]
- Hennigh, O.; Narasimhan, S.; Nabian, M.A.; Subramaniam, A.; Tangsali, K.; Fang, Z.; Rietmann, M.; Byeon, W.; Choudhry, S. NVIDIA SimNet™: An AI-Accelerated Multi-Physics Simulation Framework. In Computational Science–ICCS 2021; Lecture Notes in Computer Science; Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M., Eds.; Springer International Publishing: Cham, Switzerland, 2021; Volume 12746, pp. 447–461. [Google Scholar] [CrossRef]
- Eivazi, H.; Tahani, M.; Schlatter, P.; Vinuesa, R. Physics-informed neural networks for solving Reynolds-averaged Navier–Stokes equations. Phys. Fluids 2022, 34, 075117. [Google Scholar] [CrossRef]
- Xu, H.; Zhang, W.; Wang, Y. Explore missing flow dynamics by physics-informed deep learning: The parameterized governing systems. Phys. Fluids 2021, 33, 095116. [Google Scholar] [CrossRef]
- Le, H.; Moin, P.; Kim, J. Direct numerical simulation of turbulent flow over a backward-facing step. J. Fluid Mech. 1997, 330, 349–374. [Google Scholar] [CrossRef]
- Nadge, P.M.; Govardhan, R.N. High Reynolds number flow over a backward-facing step: Structure of the mean separation bubble. Exp. Fluids 2014, 55, 1657. [Google Scholar] [CrossRef]
- Spalart, P.R. Direct simulation of a turbulent boundary layer up to Rθ = 1410. J. Fluid Mech. 1988, 187, 61–98. [Google Scholar] [CrossRef]
- Wilcox, D.C. Reassessment of the scale-determining equation for advanced turbulence models. AIAA J. 1988, 26, 1299–1310. [Google Scholar] [CrossRef]
- European Research Community on Flow, Turbulence and Combustion. Classic Collection Database: Case031 (Backward-Facing Step). Available online: http://cfd.mace.manchester.ac.uk/ercoftac/doku.php?id=cases:case031 (accessed on 9 September 2022).
- Lu, L.; Meng, X.; Mao, Z.; Karniadakis, G.E. DeepXDE: A Deep Learning Library for Solving Differential Equations. SIAM Rev. 2021, 63, 208–228. [Google Scholar] [CrossRef]
- Britter, R. (Ed.) Background and Justification Document to Support the Model Evaluation Guidance and Protocol: COST Action 732 Quality Assurance and Improvement of Microscale Meteorological Models; Meteorological Inst: Hamburg, Germany, 2007. [Google Scholar]
- Oberkampf, W.L.; Trucano, T.G. Verification and validation in computational fluid dynamics. Prog. Aerosp. Sci. 2002, 38, 209–272. [Google Scholar] [CrossRef]
- Meroney, R.; Ohba, R.; Leitl, B.; Kondo, H.; Grawe, D.; Tominaga, Y. Review of CFD Guidelines for Dispersion Modeling. Fluids 2016, 1, 14. [Google Scholar] [CrossRef]
- Ma, H.; Zhang, Y.; Thuerey, N.; Hu, X.; Haidn, O.J. Physics-driven Learning of the Steady Navier-Stokes Equations using Deep Convolutional Neural Networks. 2021. Available online: http://arxiv.org/pdf/2106.09301v1 (accessed on 29 December 2022).
- Huang, Y.; Zhang, Z.; Zhang, X. A Direct-Forcing Immersed Boundary Method for Incompressible Flows Based on Physics-Informed Neural Network. Fluids 2022, 7, 56. [Google Scholar] [CrossRef]
- Kim, J.Y.; Ghajar, A.J.; Tang, C.; Foutch, G.L. Comparison of near-wall treatment methods for high Reynolds number backward-facing step flow. Int. J. Comput. Fluid Dyn. 2005, 19, 493–500. [Google Scholar] [CrossRef]
- Harmening, J.H.; Pioch, F.; Schramm, D. Physics Informed Neural Networks as Multidimensional Surrogate Models of CFD Simulations. In Proceedings of the Machine Learning und Artificial Intelligence in Strömungsmechanik und Strukturanalyse, Wiesbaden, Germany, 16–17 May 2022; pp. 71–80. [Google Scholar]
- Rakhsha, M.; Kees, C.E.; Negrut, D. Lagrangian vs. Eulerian: An Analysis of Two Solution Methods for Free-Surface Flows and Fluid Solid Interaction Problems. Fluids 2021, 6, 460. [Google Scholar] [CrossRef]
Parameter | Value/Setting |
---|---|
Architecture | Five hidden layers with 128 neurons each |
Optimizer | Adam, L-BFGS-B |
Epochs | 30,000 (Adam) |
Learning rate | (10,000 epochs) and (20,000 epochs) |
Activation function | tanh |
Number of training points BC and data | 2000 |
Number of training points PDE | 2000 |
Model | Metric | |||||
---|---|---|---|---|---|---|
k- | NMSE | 1.3 | 4.6 | 7.5 | 2.6 | 1.1 |
FAC2 | 9.6 | 8.8 | 9.8 | 9.8 | 9.7 | |
FB | 4.5 | 3.9 | 9.0 | 3.7 | 2.5 | |
V | 9.1 | 8.3 | 9.5 | 9.3 | 9.5 | |
mixing | NMSE | 1.4 | 4.1 | 1.3 | 1.9 | 6.8 |
length | FAC2 | 9.8 | 9.2 | 9.9 | 9.5 | 10 |
FB | 8.5 | 4.0 | 9.2 | 3.0 | 9.3 | |
V | 9.7 | 8.4 | 9.9 | 9.3 | 9.9 | |
NMSE | 3.4 | 1.0 | 1.3 | 5.0 | 6.6 | |
FAC2 | 9.7 | 8.6 | 9.8 | 9.8 | 9.9 | |
FB | 3.3 | 4.1 | 3.2 | 4.2 | 2.3 | |
V | 9.5 | 8.3 | 9.7 | 9.6 | 9.8 | |
pseudo | NMSE | 1.3 | 1.4 | 4.0 | 5.1 | 9.0 |
Reynolds | FAC2 | 9.9 | 9.7 | 10 | 10 | 10 |
stress | FB | 8.6 | 5.0 | 4.9 | 1.2 | 4.4 |
V | 9.6 | 9.1 | 9.8 | 9.9 | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pioch, F.; Harmening, J.H.; Müller, A.M.; Peitzmann, F.-J.; Schramm, D.; el Moctar, O. Turbulence Modeling for Physics-Informed Neural Networks: Comparison of Different RANS Models for the Backward-Facing Step Flow. Fluids 2023, 8, 43. https://doi.org/10.3390/fluids8020043
Pioch F, Harmening JH, Müller AM, Peitzmann F-J, Schramm D, el Moctar O. Turbulence Modeling for Physics-Informed Neural Networks: Comparison of Different RANS Models for the Backward-Facing Step Flow. Fluids. 2023; 8(2):43. https://doi.org/10.3390/fluids8020043
Chicago/Turabian StylePioch, Fabian, Jan Hauke Harmening, Andreas Maximilian Müller, Franz-Josef Peitzmann, Dieter Schramm, and Ould el Moctar. 2023. "Turbulence Modeling for Physics-Informed Neural Networks: Comparison of Different RANS Models for the Backward-Facing Step Flow" Fluids 8, no. 2: 43. https://doi.org/10.3390/fluids8020043
APA StylePioch, F., Harmening, J. H., Müller, A. M., Peitzmann, F. -J., Schramm, D., & el Moctar, O. (2023). Turbulence Modeling for Physics-Informed Neural Networks: Comparison of Different RANS Models for the Backward-Facing Step Flow. Fluids, 8(2), 43. https://doi.org/10.3390/fluids8020043