# Turbulence Intensity Modulation by Micropolar Fluids

^{1}

^{2}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### Governing Equations

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Lumley, J.L. Drag reduction by additives. Annu. Rev. Fluid Mech.
**1969**, 1, 367. [Google Scholar] [CrossRef] - Dallas, V.; Vassilicos, J.C.; Hewitt, G.F. Strong polymer-turbulence interactions in viscoelastic turbulent channel flow. Phys. Rev. E
**2010**, 82, 066303. [Google Scholar] [CrossRef][Green Version] - Toms, B.A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers. In Proceedings of the 1st International Congress on Rheology, North-Holland, Amsterdam, 1 January 1949; Volume 2, p. 135. [Google Scholar]
- Graham, M.D. Drag reduction in turbulent flow of polymer solutions. Rheol. Rev.
**2004**, 2, 143–170. [Google Scholar] - White, C.M.; Mungal, G. Mechanics and prediction of turbulent drag reduction with polymer additives. Annu. Rev. Fluid Mech.
**2008**, 40, 235. [Google Scholar] [CrossRef] - Picano, F.; Breugem, W.P.; Brandt, L. Turbulent channel flow of dense suspensions of neutrally buoyant spheres. J. Fluid Mech.
**2015**, 764, 463–487. [Google Scholar] [CrossRef][Green Version] - Matas, J.P.; Morris, J.F.; Guazzelli, E. Transition to turbulence in particulate pipe flow. Phys. Rev. Lett.
**2003**, 90, 014501. [Google Scholar] [CrossRef][Green Version] - Yu, Z.; Wu, T.; Shao, X.; Lin, J. Numerical studies of the effects of large neutrally buoyant particles on the flow instability and transition to turbulence in pipe flow. Phys. Fluids
**2013**, 25, 043305. [Google Scholar] [CrossRef] - Zhao, L.H.; Andersson, H.I.; Gillisen, J.J.J. Turbulence modulation and drag reduction by spherical particles. Phys. Fluids
**2010**, 22, 081702. [Google Scholar] [CrossRef][Green Version] - Gore, R.A.; Crowe, C.T. Modulation of turbulence by a dispersed phase. Trans. ASME J. Fluids Eng.
**1991**, 113, 304. [Google Scholar] [CrossRef] - Eringen, A.C. Theory of Micropolar Fluids; Technical Report; Purdue University: West Lafayette, Indiana, 1965; Volume 27. [Google Scholar]
- Mitarai, N.; Hayakawa, H.; Nakanishi, H. Collisional granular flow as a micropolar fluid. Phys. Rev. Lett.
**2002**, 88, 174301-1. [Google Scholar] [CrossRef][Green Version] - Lukaszewicz, G. Micropolar Fluids: Theory and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Kulick, J.D.; Fessler, J.R.; Eaton, J.K. Particle response and turbulence modification in fully developed channel flow. J. Fluid Mech.
**1994**, 277, 109–134. [Google Scholar] [CrossRef] - Pan, Y.; Banerjee, S. Numerical simulation of particle interactions with wall turbulence. Phys. Fluids
**1996**, 8, 2733–2755. [Google Scholar] [CrossRef] - Eringen, A.C. Theory of micropolar fluids. J. Math. Mech.
**1966**, 16, 1–18. [Google Scholar] [CrossRef] - Cheikh, M.I.; Chen, J.; Wei, M. Small-scale energy cascade in homogeneous isotropic turbulence. Phys. Rev. Fluids
**2019**, 4, 104610. [Google Scholar] [CrossRef] - Ariman, T.; Turk, M.A.; Sylvester, N.D. On steady and pulsatile flow of blood. J. Appl. Mech.
**1974**, 41. [Google Scholar] [CrossRef] - Karvelas, E.G.; Tsiantis, A.; Papathanasiou, T.D. Effect of micropolar fluid properties on the hydraulic permeability of fibrous biomaterials. Comput. Methods Programs Biomed.
**2020**, 185, 105135. [Google Scholar] [CrossRef] [PubMed] - Wanik, A.; Schnell, U. Some remarks on the PISO and SIMPLE algorithms for steady turbulent flow problems. Comput. Fluids
**1989**, 17, 555–570. [Google Scholar] [CrossRef] - Barton, I.E. Comparison of SIMPLE-and PISO-type algorithms for transient flows. Int. J. Numer. Methods Fluids
**1998**, 26, 459–483. [Google Scholar] [CrossRef] - Tsukahara, T.; Seki, Y.; Kawamura, H.; Tochio, D. DNS of turbulent channel flow at very low Reynolds numbers. In Fourth International Symposium on Turbulence and Shear Flow Phenomena; Begel House Inc.: Danbury, CT, USA, 2005. [Google Scholar]
- Kim, J.; Moin, P.; Moser, R. Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech.
**1987**, 177, 133–166. [Google Scholar] [CrossRef][Green Version] - Moser, R.D.; Kim, J.; Mansour, N.N. Direct numerical simulation of turbulent channel flow up to Re
_{τ}= 590. Phys. Fluids**1999**, 11, 943–945. [Google Scholar] [CrossRef] - Rashidi, M.; Hetsroni, G.; Banerjee, S. Particle-turbulence interaction in a boundary layer. Int. J. Multiph. Flow
**1990**, 16, 935–949. [Google Scholar] [CrossRef] - Ardekani, M.N.; Brandt, L. Turbulence modulation in channel flow of finite-size spheroidal particles. J. Fluid Mech.
**2019**, 859, 887–901. [Google Scholar] [CrossRef][Green Version] - Abe, H.; Kawamura, H.; Matsuo, Y. Direct numerical simulation of a fully developed turbulent channel flow with respect to the Reynolds number dependence. J. Fluids Eng.
**2001**, 123, 382–393. [Google Scholar] [CrossRef]

**Figure 2.**Drag increase percentage values ($D\%$) for: $Re=3300,5600$ and 13,800 of the present: $m=0,0.1,0.4$ and $0.9$ cases.

**Figure 3.**Integral values (S) of: (■) Velocity gradient production term, (▲) micropolar production term; (red line) $m=0.2$, (blue line) $m=0.9$ plotted along $Re=3300,5600$ and 13,800.

**Figure 4.**Normalized spanwise micropolar velocity (${\omega}_{z}^{+}$) for: $Re=3300$ and 5600 of the present: $m=0.2,0.4$ and $0.9$ cases.

**Figure 5.**Fluid flow snapshots of streamwise velocity via 2D graphs in the $Z-Y$ plane, from top to bottom: $m=0,Re=3300$; $m=0.9,Re=3300$; $m=0,Re=\mathrm{13,800}$ and $m=0.9,Re=\mathrm{13,800}$. Contour levels: $0;0.1;1$.

**Figure 6.**Fluid flow snapshots of streamwise micropolar velocity via 2D graphs in the $Z-Y$ plane, from top to bottom: $m=0,Re=3300$; $m=0.9,Re=3300$; $m=0,Re=\mathrm{13,800}$ and $m=0.9,Re=\mathrm{13,800}$. Contour levels: $-6;1;6$.

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Sofiadis, G.; Sarris, I.
Turbulence Intensity Modulation by Micropolar Fluids. *Fluids* **2021**, *6*, 195.
https://doi.org/10.3390/fluids6060195

**AMA Style**

Sofiadis G, Sarris I.
Turbulence Intensity Modulation by Micropolar Fluids. *Fluids*. 2021; 6(6):195.
https://doi.org/10.3390/fluids6060195

**Chicago/Turabian Style**

Sofiadis, George, and Ioannis Sarris.
2021. "Turbulence Intensity Modulation by Micropolar Fluids" *Fluids* 6, no. 6: 195.
https://doi.org/10.3390/fluids6060195