Rayleigh–Bénard Instability of an Ellis Fluid Saturated Porous Channel with an Isoflux Boundary
Abstract
:1. Introduction
2. Mathematical Formulation
2.1. Rheological Model
2.2. Generalization of Darcy’s Law
2.3. Governing Equations
2.4. Basic State
2.5. Linear Stability Analysis
2.6. Normal Modes
3. Results and Discussion
4. Conclusions
- The transverse rolls turned out to be the most unstable modes.
- The neutral stability curves display, qualitatively, the same shape when changing the fluid flow parameters.
- The effect of decreasing the value of n on the threshold value for the onset of the instability is similar to the effect of increasing the value of the modified Ellis number, : both decreasing n or increasing yield a destabilising effect.
- When , the onset of the instability is not affected by n and the critical values of the governing parameter match the values reported in the literature for Newtonian fluids, namely and .
Author Contributions
Funding
Conflicts of Interest
Appendix A. A Proof That
Appendix B. Dominant Modes
Appendix C. Numerical Method
References
- Nield, D.A.; Bejan, A. Convection in Porous Media, 5th ed.; Springer: New York, NY, USA, 2017. [Google Scholar]
- Straughan, B. Stability and Wave Motion in Porous Media; Springer: New York, NY, USA, 2008. [Google Scholar]
- Barletta, A. Routes to Absolute Instability in Porous Media; Springer: New York, NY, USA, 2019. [Google Scholar]
- Kim, M.C.; Lee, S.B.; Kim, S.; Chung, B.J. Thermal instability of viscoelastic fluids in porous media. Int. J. Heat Mass Transf. 2003, 46, 5065–5072. [Google Scholar] [CrossRef]
- Hirata, S.C.; Ouarzazi, M.N. Three–dimensional absolute and convective instabilities in mixed convection of a viscoelastic fluid through a porous medium. Phys. Lett. A 2010, 374, 2661–2666. [Google Scholar] [CrossRef]
- Pallavi, G.; Hemanthkumar, C.; Shivakumara, I.S.; Rushikumar, B. Oscillatory Darcy–Bénard–Poiseuille mixed convection in an Oldroyd–B fluid–saturated porous layer. In Advances in Fluid Dynamics; Springer: New York, NY, USA, 2021; pp. 827–837. [Google Scholar]
- Rees, D.A.S. Darcy–Bénard–Bingham convection. Phys. Fluids 2020, 32, 084107. [Google Scholar] [CrossRef]
- Barletta, A.; Nield, D. Linear instability of the horizontal throughflow in a plane porous layer saturated by a power–law fluid. Phys. Fluids 2011, 23, 013102. [Google Scholar] [CrossRef]
- Alves, L.S.d.B.; Barletta, A. Convective instability of the Darcy–Bénard problem with through flow in a porous layer saturated by a power–law fluid. Int. J. Heat Mass Transf. 2013, 62, 495–506. [Google Scholar] [CrossRef]
- Celli, M.; Barletta, A.; Longo, S.; Chiapponi, L.; Ciriello, V.; Di Federico, V.; Valiani, A. Thermal instability of a power–law fluid flowing in a horizontal porous layer with an open boundary: A two–dimensional analysis. Transp. Porous Media 2017, 118, 1–23. [Google Scholar] [CrossRef]
- Petrolo, D.; Chiapponi, L.; Longo, S.; Celli, M.; Barletta, A.; Di Federico, V. Onset of Darcy–Bénard convection under throughflow of a shear–thinning fluid. J. Fluid Mech. 2020, 889, R2. [Google Scholar] [CrossRef]
- Brandão, P.V.; Ouarzazi, M.N. Darcy–Carreau model and nonlinear natural convection for pseudoplastic and dilatant fluids in porous media. Transp. Porous Media 2021, 136, 521–539. [Google Scholar] [CrossRef]
- Brandão, P.V.; Ouarzazi, M.N.; Hirata, S.C.; Barletta, A. Darcy–Carreau–Yasuda rheological model and onset of inelastic non–Newtonian mixed convection in porous media. Phys. Fluids 2021, 33, 044111. [Google Scholar] [CrossRef]
- Celli, M.; Barletta, A.; Brandão, P.V. Rayleigh–Bénard instability of an Ellis fluid saturating a porous medium. Transp. Porous Media 2021, 138, 679–692. [Google Scholar] [CrossRef]
- Sochi, T. Non–Newtonian flow in porous media. Polymer 2010, 51, 5007–5023. [Google Scholar] [CrossRef] [Green Version]
- Sadowski, T.J.; Bird, R.B. Non–Newtonian flow through porous Media. I. Theoretical. Trans. Soc. Rheol. 1965, 9, 243–250. [Google Scholar] [CrossRef]
- Sadowski, T.J. Non–Newtonian flow through porous media. II. Experimental. Trans. Soc. Rheol. 1965, 9, 251–271. [Google Scholar] [CrossRef]
- Alves, L.D.B.; Hirata, S.D.C.; Schuabb, M.; Barletta, A. Identifying linear absolute instabilities from differential eigenvalue problems using sensitivity analysis. J. Fluid Mech. 2019, 870, 941–969. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandão, P.V.; Celli, M.; Barletta, A. Rayleigh–Bénard Instability of an Ellis Fluid Saturated Porous Channel with an Isoflux Boundary. Fluids 2021, 6, 450. https://doi.org/10.3390/fluids6120450
Brandão PV, Celli M, Barletta A. Rayleigh–Bénard Instability of an Ellis Fluid Saturated Porous Channel with an Isoflux Boundary. Fluids. 2021; 6(12):450. https://doi.org/10.3390/fluids6120450
Chicago/Turabian StyleBrandão, Pedro Vayssière, Michele Celli, and Antonio Barletta. 2021. "Rayleigh–Bénard Instability of an Ellis Fluid Saturated Porous Channel with an Isoflux Boundary" Fluids 6, no. 12: 450. https://doi.org/10.3390/fluids6120450
APA StyleBrandão, P. V., Celli, M., & Barletta, A. (2021). Rayleigh–Bénard Instability of an Ellis Fluid Saturated Porous Channel with an Isoflux Boundary. Fluids, 6(12), 450. https://doi.org/10.3390/fluids6120450