Effect of Surfactant Concentration on the Long-Term Properties of a Colloidal Chemical, Biological and Radiological (CBR) Decontamination Gel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Gel Preparation and Aging
2.3. Characterizations
3. Results and Discussion
3.1. Physicochemical Characterization and Stability
3.1.1. Macroscopic Aging of CBR Gel SF1
3.1.2. Rheological Properties of the Gel during Aging
3.2. Impact of the Surfactant Concentration on the Properties of the Gel
3.2.1. Impact of the Surfactant Concentration on Gel Sedimentation
3.2.2. Impact of the Surfactant Concentration on the Rheological Properties of the Gel
3.2.3. Impact of the Surfactant Concentration on the Wetting of a Ceramic Tile
3.2.4. Estimated Effect of the Surfactant Concentration on the Efficiency of the CBR Gel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Faure, S.; Fuentes, P.; Lallot, Y. acuumable Gel for Decontaminating Surfaces and Use Thereof. World Patent WO 2007039598, 12 April 2007. [Google Scholar]
- Ludwig, A.; Goettmann, F.; Frances, F.; Legoff, C.; Tanchou, V. Oxidizing Alkaline Biodecontamination Gel and Surface Biodecontamination Method Using Said Gel. World Patent WO 2014154818, 10 February 2014. [Google Scholar]
- Gossard, A.; Lepeytre, C. An innovative green process for the depollution of Cr (VI)-contaminated surfaces using TiO2-based photocatalytic gels. J. Environ. Chem. Eng. 2017, 5, 5573–5580. [Google Scholar] [CrossRef]
- Lepeytre, C.; Frances, F.; Charvolin, M.S.; Ludwig, A.; Le Toquin, E.; Comoy, E.; Grandjean, A.; Gossard, A. Colloidal gel as an efficient process to treat Chemical, Biological, Radiological (CBR) and prion contaminated solid surfaces. Chem. Eng. Sci. 2021, 246, 116957. [Google Scholar] [CrossRef]
- Castellani, R.; Poulesquen, A.; Goettmann, F.; Marchal, P.; Choplin, L. A topping gel for the treatment of nuclear contaminated small items. Nucl. Eng. Des. 2014, 278, 481–490. [Google Scholar] [CrossRef]
- Castellani, R.; Poulesquen, A.; Goettmann, F.; Marchal, P.; Choplin, L. Efficiency enhancement of decontamination gels by a superabsorbent polymer. Colloid Surf. A-Physicochem. Eng. Asp. 2014, 454, 89–95. [Google Scholar] [CrossRef]
- Yoon, S.B.; Kim, C.K.; Jung, C.H.; Choi, B.S.; Choi, W.K.; Lee, K.W.; Moon, J.K. Effect of Alkyl Alcohol on Viscosity of Silica-Based Chemical Gels for Decontamination of Radioactive Contaminations. Asian J. Chem. 2013, 25, 7023–7027. [Google Scholar] [CrossRef]
- Jung, C.H.; Moon, J.K.; Choi, W.K. Effect of Chemical Formulations for Uranium Decontamination by Chemical Gels. Asian J. Chem. 2016, 6, 1285–1287. [Google Scholar] [CrossRef]
- Lemesre, L.; Frances, F.; Grandjean, A.; Gossard, A. Hybrid colloidal suspensions tailored as gels to remove radioactive bitumen stains. J. Environ. Manag. 2019, 232, 660–665. [Google Scholar] [CrossRef] [PubMed]
- Derjaguin, B.; Landau, L.D. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochimica U.R.S.S. 1941, 14, 633–662. [Google Scholar] [CrossRef]
- Liang, Y.; Hilal, N.; Langston, P.; Starov, V. Interaction forces between colloidal particles in liquid: Theory and experiment. Adv. Colloid Interface Sci. 2007, 134–35, 151–166. [Google Scholar] [CrossRef] [PubMed]
- Verwey, E.J.W.; Overbeek, J.T.G.; Nes, K.V. Theory of the Stability of Lyophobic Colloids: The Interaction of Sol Particles Having an Electric Double Layer; Elsevier Publishing Company: New York, NY, USA, 1948. [Google Scholar]
- Herschel, W.M.; Bulkley, R. Measurement of consistency as applied to rubber-benzene solutions. Proc. Am. Soc. Test. Mater. 1926, 26, 621–633. [Google Scholar]
- Ovarlez, G.; Cohen-Addad, S.; Krishan, K.; Goyon, J.; Coussot, P. On the existence of a simple yield stress fluid behavior. J. Non-Newton. Fluid Mech. 2013, 193, 68–79. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.H.; Li, J.Y.; Cao, J.G. Effects of fumed silica weight fraction on rheological properties of magnetorheological polishing fluids. Colloid Polym. Sci. 2018, 296, 1145–1156. [Google Scholar] [CrossRef]
- Gossard, A.; Frances, F.; Aloin, C. Rheological properties of TiO2 suspensions varied by shifting the electrostatic inter-particle interactions with an organic co-solvent. Colloid Surf. A-Physicochem. Eng. Asp. 2017, 522, 425–432. [Google Scholar] [CrossRef]
- Zhou, Z.W.; Scales, P.J.; Boger, D.V. Chemical and physical control of the theology of concentrated metal oxide suspensions. Chem. Eng. Sci. 2001, 56, 2901–2920. [Google Scholar] [CrossRef]
- Castellani, R.; Poulesquen, A.; Goettmann, F.; Marchal, P.; Choplin, L. Ions effects on sol-gel transition and rheological behavior in alumina slurries. Colloid Surf. A-Physicochem. Eng. Asp 2013, 430, 39–45. [Google Scholar] [CrossRef]
- Sakar-Deliormanli, A.; Polat, H.; Ciftcioglu, M. Alumina/water suspensions in the presence of PEO-PPO-PEO triblock copolymers. J. Eur. Ceram. Soc. 2004, 24, 3063–3072. [Google Scholar] [CrossRef] [Green Version]
- Bleta, R.; Alphonse, P.; Pin, L.; Gressier, M.; Menu, M.J. An efficient route to aqueous phase synthesis of nanocrystalline gamma-Al2O3 with high porosity: From stable boehmite colloids to large pore mesoporous alumina. J. Colloid Interface Sci. 2012, 367, 120–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fulvio, P.F.; Brosey, R.I.; Jaroniec, M. Synthesis of Mesoporous Alumina from Boehmite in the Presence of Triblock Copolyme. ACS Appl. Mater. Interfaces 2010, 2, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Yang, S.Y.; Hu, B.; Yuan, Z.L.; Wu, H.; Yang, L.J. Evaluating of the performance of a composite wetting dust suppressant on lignite dust. Powder Technol. 2018, 339, 882–893. [Google Scholar] [CrossRef]
- Wang, H.T.; Wei, X.B.; Du, Y.H.; Wang, D.M. Effect of water-soluble polymers on the performance of dust-suppression foams: Wettability, surface viscosity and stability. Colloid Surf. A-Physicochem. Eng. Asp. 2019, 568, 92–98. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gossard, A.; Frances, F.; Aloin, C.; Penavayre, C.; Fabrègue, N.; Lepeytre, C. Effect of Surfactant Concentration on the Long-Term Properties of a Colloidal Chemical, Biological and Radiological (CBR) Decontamination Gel. Fluids 2021, 6, 410. https://doi.org/10.3390/fluids6110410
Gossard A, Frances F, Aloin C, Penavayre C, Fabrègue N, Lepeytre C. Effect of Surfactant Concentration on the Long-Term Properties of a Colloidal Chemical, Biological and Radiological (CBR) Decontamination Gel. Fluids. 2021; 6(11):410. https://doi.org/10.3390/fluids6110410
Chicago/Turabian StyleGossard, Alban, Fabien Frances, Camille Aloin, Clara Penavayre, Nicolas Fabrègue, and Célia Lepeytre. 2021. "Effect of Surfactant Concentration on the Long-Term Properties of a Colloidal Chemical, Biological and Radiological (CBR) Decontamination Gel" Fluids 6, no. 11: 410. https://doi.org/10.3390/fluids6110410
APA StyleGossard, A., Frances, F., Aloin, C., Penavayre, C., Fabrègue, N., & Lepeytre, C. (2021). Effect of Surfactant Concentration on the Long-Term Properties of a Colloidal Chemical, Biological and Radiological (CBR) Decontamination Gel. Fluids, 6(11), 410. https://doi.org/10.3390/fluids6110410