Optimizing the Mobile Pump and Its Equipment to Reduce the Risk of Pluvial Flooding
Abstract
:1. Introduction
2. Methodology
2.1. Mobile Pump Deployment Optimization
2.2. Weather Data Collection
3. Results and Discussion
3.1. Assessing Channel Capacity over Flood Occurrences
3.2. Correlation of Parameters
3.3. Weather Prediction and Its Role in Mobile Pump Deployment
3.4. Site Selection and HEC-RAS Simulation for Mobile Pump Deployment
- 1.
- Elevation differences between the mobile pump inlet and outlet: In urban areas, variations in channel elevations are generally minimal.
- 2.
- Friction losses in the mobile pump hose: These depend on hose roughness, length, and diameter.
- 3.
- Hydraulic resistance caused by bends, contractions, and expansions in the hose: These factors contribute to additional head loss.
- 1.
- Pre-deployment checks: Ensuring that the pumps are in working condition, free from debris, and ready for deployment.
- 2.
- Deployment timing: Activating pumps based on real-time weather data (e.g., from BMKG radar) and flood forecasts to preemptively manage flood risks.
- 3.
- Operational monitoring: Continuously assessing pump performance, including inlet and outlet conditions, to maintain optimal functionality.
- 4.
- Post-operation maintenance: Cleaning and storing pumps after use to ensure that they are ready for future flood events.
- Integration with weather prediction tools: Real-time rainfall data from BMKG radar are used to trigger pump activation at the right time and location, ensuring proactive flood management.
- SCADA system coordination: The SOP works alongside SCADA systems to automate pump operations, enabling remote monitoring and control for efficient deployment.
- Location-specific protocols: At high-risk locations like Seskoal Ciledug, the SOP includes tailored procedures for managing debris accumulation and ensuring clear inlet/outlet conditions.
- Performance metrics: The SOP ensures that mobile pumps maintain flood depths below 75 cm and durations under 30 min, as defined in our risk assessment criteria.
4. Conclusions
- Identification of eight priority locations in South Jakarta for mobile pump deployment, determined through a hierarchical selection process based on channel capacity, flood risk, and accessibility.
- Validation of upstream pump placement and parallel configurations as the most effective strategies for reducing flood depths and durations, supported by HEC-RAS simulations.
- Demonstration of the practical value of integrating real-time weather prediction tools (BMKG radar) with hydraulic modeling for urban flood management.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, K.; Guan, M.; Yu, D. Urban Surface Water Flood Modelling—A Comprehensive review of current models and future challenges. Hydrol. Earth Syst. Sci. 2021, 25, 2843–2860. [Google Scholar]
- Patra, J.P.; Kumar, R.; Mani, P. Combined Fluvial and Pluvial Flood Inundation Modelling for a Project Site. Procedia Technol. 2016, 24, 93–100. [Google Scholar] [CrossRef]
- Tanaka, T.; Kiyohara, K.; Tachikawa, Y. Comparison of fluvial and pluvial flood risk curves in urban cities 582. J. Hydrol. 2020, 584, 124706. [Google Scholar] [CrossRef]
- Yosua, H.; Kusuma, M.B.; Nugroho, J. An assessment of pluvial hazard in South Jakarta based on land use/cover change from 2016 to 2022. Front. Built Environ. 2023, 9, 1345894. [Google Scholar] [CrossRef]
- Edwin, S.S.; Navarun, V.; Zachary, A.S. Evaluation of the normalisasi policy in Jakarta, Indonesia using system dynamics. Landsc. Arch. Front. 2019, 7, 78. [Google Scholar] [CrossRef]
- Kesuma, T.N.A.; Kusuma, M.S.B.; Farid, M.; Kuntoro, A.A.; Rahayu, H.P. An assessment of flood hazards due to the breach of the manggarai flood gate. Int. J. Geomate 2022, 23, 104–111. [Google Scholar] [CrossRef]
- Pratiwi, V.; Yakti, B.P.; Widyanto, B.E. Flood Control Reduction Analysis using HEC-RAS due to Local Floods in Central Jakarta. IOP Conf. Ser. Mater. Sci. Eng. 2020, 879, 12167. [Google Scholar] [CrossRef]
- Sari, V.F.M.; Sutjiningsih, D.; Anggraheni, E. Effectiveness of muara angke polder system in north Jakarta. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 43–47. [Google Scholar]
- Pratama, M.I.; Rohmat, F.I.W.; Farid, M.; Adityawan, M.B.; Kuntoro, A.A.; Moe, I.R. Flood hydrograph simulation to estimate peak discharge in Ciliwung river basin. IOP Conf. Ser. Earth Environ. Sci. 2021, 708, 012028. [Google Scholar]
- Cheng, L.; Lin, H.B.; Zhang, Y.L. Optimization design and analysis of mobile pump truck frame using response surface methodology. PLoS ONE 2023, 18, e0290348. [Google Scholar] [CrossRef]
- Li, S.P.; Lin, H.B.; Zhang, Y.L.; Cheng, L. Static Analysis of Mobile Pump Truck Frame for Four Typical Working Conditions. Appl. Sci. 2023, 13, 7275. [Google Scholar] [CrossRef]
- Kapsiz, M. The efficiency of mobile hydraulic system with diesel engine and axial piston pump analysis. J. Eng. Res. 2022, 10, 216–228. [Google Scholar] [CrossRef]
- Mudhina, M.; Winaya, I.N.A.P.; Parwita, I.G.L.M.; Andayani, K.W. Performance Analysis of Flood Control Buildings Mati River Watershed Area. Int. Res. J. Eng. IT Sci. Res. 2023, 9, 157–172. [Google Scholar] [CrossRef]
- Salim, M.A.; Siswanto, A.B.; Mindiastiwi, T. Study of flood impact handling in Pekalongan District. IOP Conf. Ser. Earth Environ. Sci. 2022, 955, 012014. [Google Scholar] [CrossRef]
- Wu, Y.; She, D.; Xia, J.; Song, J.; Xiao, T.; Zhou, Y. The quantitative assessment of impact of pumping capacity and LID on urban flood susceptibility based on machine learning. J. Hydrol. 2023, 617, 129116. [Google Scholar] [CrossRef]
- Machajski, J.; Kostecki, S. Hydrological analysis of a dyke pumping station for the purpose of improving its functioning conditions. Water 2018, 10, 737. [Google Scholar] [CrossRef]
- Lian, J.J.; Xu, K.; Ma, C. Joint impact of rainfall and tidal level on flood risk in a coastal city with a complex river network: A case study of Fuzhou City, China. Hydrol. Earth Syst. Sci. 2013, 17, 679–689. [Google Scholar] [CrossRef]
- Yosua, H.; Kusuma, M.S.B.; Nugroho, J. Study of flood mitigation system for improving the resilience of pluvial flood control of south Jakarta. (Case study: Ciledug raya, Cipulir.). IOP Conf. Ser. Earth Environ. Sci. 2023, 1169, 012036. [Google Scholar] [CrossRef]
- Nakakita, E.; Sato, H.; Nishiwaki, R.; Yamabe, H.; Yamaguchi, K. Early Detection of Baby-Rain-Cell Aloft in a Severe Storm and Risk Projection for Urban Flash Flood. Adv. Meteorol. 2017, 2017, 5962356. [Google Scholar] [CrossRef]
- Kim, Y.; Hong, S. Very short-term prediction of weather radar-based rainfall distribution and intensity over the Korean peninsula using convolutional long short-term memory network. Asia Pac. J. Atmos Sci. 2022, 58, 489–506. [Google Scholar] [CrossRef]
- Siswanto, S.; van Oldenborgh, G.J.; van der Schrier, G.; Jilderda, R.; van den Hurk, B. Temperature, extreme precipitation, and diurnal rainfall changes in the urbanized Jakarta city during the past 130 years. Int. J. Climatol. 2016, 36, 3207–3225. [Google Scholar] [CrossRef]
- Mori, S.; Hamada, J.I.; Hattori, M.; Wu, P.M.; Katsumata, M.; Endo, N.; Ichiyanagi, K.; Hashiguchi, H.; Arbain, A.A.; Sulistyowati, R.; et al. Meridional march of diurnal rainfall over Jakarta, Indonesia, observed with a C-band Doppler radar: An overview of the HARIMAU2010 campaign. Prog. Earth Planet. Sci. 2018, 5, 47. [Google Scholar] [CrossRef]
- Lestari, S.; Protat, A.; Louf, V.; King, A.; Vincent, C.; Mori, S. Subdaily rain-rate properties in western Java analyzed using C-band Doppler radar. J. Appl. Meteorol. Climatol. 2022, 61, 1199–1219. [Google Scholar] [CrossRef]
- Kumar, P.; Yogeswari, K. Smart Water Management Using SCADA at Water Treatment Plant. Int. J. Innov. Res. Sci. Eng. Technol. 2020, 7, 5369. [Google Scholar]
- Khan, T.A.; Alam, M.; Kadir, K.; Shahid, Z.; Mazliham, M.S. A comparison review based on classifiers and regression models for the investigation of flash floods. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 2019, 10, 352–359. [Google Scholar] [CrossRef]
- Karthik, M.V.; Rahaman, S.A. Flash Flood Warning System Using Scada Systems. Int. J. Mag. Eng. Technol. Manag. Res. 2015, 2, 68. [Google Scholar]
- Fawad, M.; Cassalho, F.; Ren, J.; Chen, L.; Yan, T. State-of-the-Art Statistical Approaches for Estimating Flood Events. Entropy 2022, 24, 898. [Google Scholar] [CrossRef]
- Di Baldassarre, G.; Laio, F.; Montanari, A. Design flood estimation using model selection criteria. Phys. Chem. Earth Parts A/B/C 2008, 34, 606–611. [Google Scholar] [CrossRef]
- Brotowiryatmo, S.H. Review of Rainfall Hourly Distributionon the Island of Java. J. Civ. Eng. Forum 2016, 2, 145. [Google Scholar] [CrossRef]
- Tiyas, N.; Sutjiningsih, D. The influence of land use change and spatial discretization of middle—Lower Ciliwung sub-watershed on flood hydrograph at Manggarai Weir: A preliminary study. Int. J. Eng. Technol. 2018, 7, 497. [Google Scholar] [CrossRef]
Nu | Location | Qr 5 Years (m3/d) | Qr 15 mm/h (m3/d) | Qr 50 mm/h (m3/d) | Qc (m3/d) | Qc/Qr 15 mm/h | Qc/Qr Rank | # Flood Occurrence Frequency in 2022 | # Flood Occurrence Frequency in 2023 |
---|---|---|---|---|---|---|---|---|---|
26 | Batu Belah | 3.83 | 3.13 | 10.43 | 0.09 | 0.03 | 1 | 5 | 0 |
25 | Cupang | 4.36 | 0.58 | 1.93 | 0.04 | 0.06 | 2 | 4 | 2 |
24 | Balai Rakyat | 9.15 | 3.16 | 10.54 | 0.19 | 0.06 | 3 | 3 | 2 |
29 | Tebet Barat Dalam | 6.29 | 2.05 | 6.83 | 0.34 | 0.17 | 4 | 4 | 4 |
15 | RW07 Pondok Labu | 3.00 | 0.77 | 2.56 | 0.16 | 0.21 | 5 | 0 | 0 |
8 | Dinas Pendidikan | 8.66 | 2.84 | 9.46 | 0.62 | 0.22 | 6 | 3 | 5 |
28 | Double Track | 7.91 | 3.38 | 11.25 | 1.02 | 0.30 | 7 | 0 | 0 |
17 | Masjid Al Makmur | 2.47 | 0.50 | 1.66 | 0.16 | 0.32 | 8 | 0 | 0 |
19 | Gedung Film | 3.13 | 1.07 | 3.55 | 0.34 | 0.32 | 9 | 0 | 0 |
4 | Terogong Raya | 5.21 | 0.86 | 2.85 | 0.30 | 0.36 | 10 | 1 | 0 |
18 | FO MT Haryono | 3.55 | 0.87 | 2.88 | 0.34 | 0.39 | 11 | 0 | 1 |
12 | Jenderal Sudirman | 11.51 | 1.99 | 6.62 | 0.78 | 0.39 | 12 | 0 | 0 |
6 | Balai Kartini | 8.66 | 2.84 | 9.46 | 1.24 | 0.44 | 13 | 0 | 1 |
9 | Permata Suite | 5.16 | 3.12 | 10.40 | 1.70 | 0.55 | 14 | 2 | 7 |
23 | Komplek Depsos | 2.99 | 0.28 | 0.93 | 0.16 | 0.56 | 15 | 0 | 0 |
21 | JI. HR Rasuna Said | 1.55 | 0.50 | 1.66 | 0.34 | 0.68 | 16 | 1 | 0 |
5 | Karang Tengah | 3.76 | 2.13 | 7.11 | 1.48 | 0.69 | 17 | 4 | 0 |
1 | Gandaria City | 4.44 | 2.65 | 8.82 | 2.41 | 0.91 | 18 | 9 | 8 |
11 | Kapten Tendean | 3.78 | 0.67 | 2.25 | 0.75 | 1.11 | 19 | 1 | 0 |
22 | Semanggi Bawah | 2.43 | 1.02 | 3.40 | 1.45 | 1.42 | 20 | 0 | 0 |
16 | ITC Fatmawati | 6.07 | 1.31 | 4.36 | 2.33 | 1.78 | 21 | 6 | 3 |
20 | Atmajaya | 2.43 | 1.02 | 3.40 | 2.36 | 2.31 | 22 | 0 | 0 |
13 | Terowongan Jend. Sudirman | 2.43 | 1.02 | 3.40 | 2.59 | 2.53 | 23 | 0 | 0 |
10 | Kemang Raya | 5.16 | 0.76 | 2.55 | 2.33 | 3.05 | 24 | 7 | |
27 | Asem Baris Raya | 5.47 | 1.08 | 3.61 | 3.68 | 3.40 | 25 | 2 | 6 |
14 | Dharmawangsa Taman Gajah | 4.27 | 3.74 | 12.46 | 13.06 | 3.49 | 26 | 4 | 1 |
7 | Kemnaker RI | 3.50 | 0.73 | 2.45 | 3.43 | 4.67 | 27 | 3 | 1 |
2 | Seskoal Ciledug | 4.44 | 0.84 | 2.79 | 4.82 | 5.76 | 28 | 16 | 11 |
3 | Mabes Polri | 5.42 | 0.67 | 2.24 | 7.75 | 11.53 | 29 | 2 | 0 |
Nu | Correlation | Coefficient of Determination (R2) | Correlation Coefficient (R) | Correlation Level |
---|---|---|---|---|
1 | A—R | 0.0138 | 0.1174 | Very weak |
2 | R—D | 0.2485 | 0.4985 | Moderate |
3 | A—D | 0.5152 | 0.7178 | Strong |
No Lokasi | Qr 15 mm/h (m3/d) | Qc (m3/d) | Qc-Qr 15 mm/h (m3/d) | Flood Frequency 2022/2023 | Impact Flood Depth and Flood Duration | Pump Mobile Access + Inlet Outlet | Radar | Pump Mobile SOP | Mobile Pump Needs (m3/d) | Placement of Number of Pump Mobile | Number of Pump Mobile | Pump Mobile Stock (m3/d) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(2) | (4) | (4-2) | |||||||||||
1 Gandaria City | 2.64 | 2.4 | −0.23 | 8 | FD | Y | Y | 0.5 | 13 | 1 | 0.1 | ||
2 Seskoal Ciledug | 0.83 | 4.82 | 3.98 | 16 | FD | Y | Y | Y | 0.5 + 0.4 | 14 + 5 | 2 | 0.1 | |
3 Mabes Polri | 0.67 | 7.75 | 7.08 | 0 | 3 | 0.25 | |||||||
4 Terogong Raya | 0.85 | 0.3 | −0.55 | 0 | 4 | 0.25 | |||||||
5 Karang Tengah | 2.13 | 1.48 | −0.65 | 0 | 5 | 0.4 | |||||||
6 Balai Kartini | 2.83 | 1.23 | −1.6 | 0 | 6 | 0.4 | |||||||
7 Kemnaker RI | 0.73 | 3.43 | 2.69 | 3 | FD | Y | Y | 0.1 | 2 | 7 | 0.4 | ||
8 Dinas Pendidikan | 2.83 | 0.62 | −2.21 | 5 | FD | Y | Y | 0.5 + 0.4 + 0.4 | 10 + 6 + 7 | 8 | 0.4 | ||
9 Permata Suite | 3.12 | 1.7 | −1.41 | 7 | FD | Y | Y | 0.5 + 0.4 | 11 + 8 | 9 | 0.4 | ||
10 Kemang Raya | 0.76 | 2.33 | 1.56 | 0 | 10 | 0.5 | |||||||
11 Kapten Tendean | 0.67 | 0.75 | 0.07 | 0 | 11 | 0.5 | |||||||
12 Jenderal Sudirman | 1.98 | 0.78 | −1.2 | 0 | 12 | 0.5 | |||||||
13 Terowongan Jend. Sudirman | 1.02 | 2.58 | 1.56 | 0 | 13 | 0.5 | |||||||
14 Dharmawangsa Taman Gajah | 3.73 | 13.05 | 9.32 | 4 | FD | 0.1 | 1 | 14 | 0.5 | ||||
15 RW07 Pondok Labu | 0.76 | 0.15 | −0.6 | 0 | TOTAL CAP. | 5.2 | |||||||
16 ITC Fatmawati | 1.3 | 2.33 | 1.02 | 6 | FD | Y | Y | Y | 0.25 | 3 | |||
17 Masjid Al Makmur | 0.49 | 0.15 | −0.34 | 0 | |||||||||
18 FO MT Haryono | 0.86 | 0.33 | −0.52 | 0 | |||||||||
19 Gedung film | 1.06 | 0.33 | −0.72 | 0 | |||||||||
20 Atmajaya | 1.02 | 2.36 | 1.34 | 0 | |||||||||
21 Jl. HR Rasuna Said | 0.49 | 0.33 | −0.16 | 0 | |||||||||
22 Semanggi Bawah | 1.02 | 1.44 | 0.42 | 0 | |||||||||
23 Komplek Depsos | 0.27 | 0.15 | −0.12 | 0 | |||||||||
24 Balai Rakyat | 3.16 | 0.19 | −2.96 | 2 | FD | N | |||||||
25 Cupang | 0.58 | 0.03 | −0.54 | 2 | FD | N | |||||||
26 Batu Belah | 3.12 | 0.08 | −3.04 | 0 | |||||||||
27 Asem Baris Raya | 1.08 | 3.67 | 2.59 | 6 | FD | Y | Y | Y | 0.25 + 0.4 | 4 + 9 | |||
28 Double Track | 3.37 | 1.02 | −2.35 | 0 | |||||||||
29 Tebet Barat Dalam | 2.05 | 0.33 | −1.71 | 2 | FD | Y | N | 0.5 | 12 |
Nu | Condition | STA 0 | STA 68 | STA 140 |
---|---|---|---|---|
1 | Flood PF discharge 4.4 m3/d in cm | 32 | 27 | 22 |
2 | Pump at STA 17 (downstream) out of system in cm | 0 | 5 | 10 |
3 | Pump at STA 25 (downstream) out of system in cm | 0 | 0 | 10 |
4 | Pump at STA 25 (downstream) outlet 17 m STA 8 in cm | 20 | 30 | 30 |
5 | Pump at STA 68 (middle stream) out of system in cm | 0 | 0 | 0 |
6 | Pump at STA 68 (middle stream) outlet 30 m in cm | 30 | 25 | 50 |
7 | Pump at STA 131 (upstream) out of system in cm | 0 | 0 | 0 |
8 | Pump at STA 131 (upstream) outlet 30 m in cm | 32 | 27 | 22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yosua, H.; Kusuma, M.S.B.; Nugroho, J.; Nugroho, E.O.; Septiadi, D. Optimizing the Mobile Pump and Its Equipment to Reduce the Risk of Pluvial Flooding. Fluids 2025, 10, 119. https://doi.org/10.3390/fluids10050119
Yosua H, Kusuma MSB, Nugroho J, Nugroho EO, Septiadi D. Optimizing the Mobile Pump and Its Equipment to Reduce the Risk of Pluvial Flooding. Fluids. 2025; 10(5):119. https://doi.org/10.3390/fluids10050119
Chicago/Turabian StyleYosua, Horas, Muhammad Syahril Badri Kusuma, Joko Nugroho, Eka Oktariyanto Nugroho, and Deni Septiadi. 2025. "Optimizing the Mobile Pump and Its Equipment to Reduce the Risk of Pluvial Flooding" Fluids 10, no. 5: 119. https://doi.org/10.3390/fluids10050119
APA StyleYosua, H., Kusuma, M. S. B., Nugroho, J., Nugroho, E. O., & Septiadi, D. (2025). Optimizing the Mobile Pump and Its Equipment to Reduce the Risk of Pluvial Flooding. Fluids, 10(5), 119. https://doi.org/10.3390/fluids10050119