Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights
Abstract
1. Introduction
2. Results and Discussion
2.1. Preparation of MA-Gel and Gelation Time
2.2. Physicochemical Characterization of MA-Gel
2.2.1. Morphological Analysis
2.2.2. pH Values
2.2.3. Swelling and Degradation Tests
2.3. Rheological Characterization: Rotational and Oscillatory Tests
2.3.1. Rotational Test
2.3.2. Oscillatory Test
2.4. Extensibility Test
2.5. Thermal Characterization and Compatibility Studies of MA-Gel by Differential Scanning Calorimetry (DSC)
2.6. In Vitro Release Studies
2.7. Ex Vivo Permeation Studies
2.8. Microbiological Quality Control
2.9. In Vivo Tolerance Study
2.10. Cytotoxicity Studies
2.11. Leishmanicidal Activity in Both Stages of L. infantum Parasite
2.12. Computational Studies
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of MA-Gel
4.3. MA-Gel Gelation Time Test
4.4. Physicochemical Characterization of MA-Gel
4.4.1. Morphological Analysis
4.4.2. pH Values
4.4.3. Swelling and Degradation Test
4.4.4. Porosity Study
4.5. Rheological Measurements
4.5.1. Rotational Test
4.5.2. Oscillatory Test
4.6. Extensibility Test
4.7. Thermal Characterization and Compatibility Studies of MA-Gel by Differential Scanning Calorimetry (DSC)
4.8. In Vitro Release Studies
4.9. Ex Vivo Permeation Studies
4.10. Microbiological Quality Control
4.11. In Vivo Tolerance Study
4.12. In Vitro Cytotoxicity Assay
4.13. In Vitro Antileishmanial Activity Against Promastigotes
4.14. In Vitro Antileishmanial Activity Against Intracellular Amastigotes
4.15. Computational Studies: Molecular Docking Simulations
4.15.1. Pharmacological Target Preparation
4.15.2. Ligand Preparation and Molecular Docking Studies
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cecílio, P.; Cordeiro-da-Silva, A.; Oliveira, F. Sand flies: Basic information on the vectors of leishmaniasis and their interactions with Leishmania parasites. Commun. Biol. 2022, 5, 305. [Google Scholar] [CrossRef]
- Mann, S.; Frasca, K.; Scherrer, S.; Henao-Martínez, A.F.; Newman, S.; Ramanan, P.; Suarez, J.A. A Review of Leishmaniasis: Current Knowledge and Future Directions. Curr. Trop. Med. Rep. 2021, 8, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Marcondes, M.; Day, M.J. Current status and management of canine leishmaniasis in Latin America. Res. Vet. Sci. 2019, 123, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Abadías-Granado, I.; Diago, A.; Cerro, P.A.; Palma-Ruiz, A.M.; Gilaberte, Y. Cutaneous and Mucocutaneous Leishmaniasis. Actas Dermo-Sifiliogr. 2021, 22, 491–502. [Google Scholar] [CrossRef]
- Bezemer, J.M.; van der Ende, J.; Limpens, J.; de Vries, H.J.C.; Schallig, H. Safety and efficacy of allylamines in the treatment of cutaneous and mucocutaneous leishmaniasis: A systematic review. PLoS ONE 2021, 16, e0249628. [Google Scholar] [CrossRef]
- Meireles, C.B.; Maia, L.C.; Soares, G.C.; Teodoro, I.P.P.; Gadelha, M.; da Silva, C.G.L.; de Lima, M.A.P. Atypical presentations of cutaneous leishmaniasis: A systematic review. Acta Trop. 2017, 172, 240–254. [Google Scholar] [CrossRef]
- Remadi, L.; Haouas, N.; Chaara, D.; Slama, D.; Chargui, N.; Dabghi, R.; Jbeniani, H.; Mezhoud, H.; Babba, H. Clinical Presentation of Cutaneous Leishmaniasis caused by Leishmania major. Dermatology 2016, 232, 752–759. [Google Scholar] [CrossRef]
- Mokni, M. Leishmanioses cutanées. Ann. Dermatol. Venereol. 2019, 146, 232–246. [Google Scholar] [CrossRef] [PubMed]
- Scott, P.; Novais, F.O. Cutaneous leishmaniasis: Immune responses in protection and pathogenesis. Nat. Rev. Immunol. 2016, 16, 581–592. [Google Scholar] [CrossRef]
- Elmahallawy, E.K.; Alkhaldi, A.A.M.; Saleh, A.A. Host immune response against leishmaniasis and parasite persistence strategies: A review and assessment of recent research. Biomed. Pharmacother. Biomed. Pharmacother. 2021, 139, 111671. [Google Scholar] [CrossRef]
- Carvalho, S.H.; Frézard, F.; Pereira, N.P.; Moura, A.S.; Ramos, L.; Carvalho, G.B.; Rocha, M.O.C. American tegumentary leishmaniasis in Brazil: A critical review of the current therapeutic approach with systemic meglumine antimoniate and short-term possibilities for an alternative treatment. Trop. Med. Int. Health 2019, 24, 380–391. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, H.J.; da Silva, R.E.; Ramalho, D.B.; Aguiar, M.G.; Silveira, J.N.; Cota, G. Safety profile of meglumine antimoniate intralesional infiltration for cutaneous leishmaniasis. Expert Rev. Anti-Infect. Ther. 2020, 18, 381–387. [Google Scholar] [CrossRef]
- Zarrintaj, P.; Ramsey, J.D.; Samadi, A.; Atoufi, Z.; Yazdi, M.K.; Ganjali, M.R.; Amirabad, L.M.; Zangene, E.; Farokhi, M.; Formela, K.; et al. Poloxamer: A versatile tri-block copolymer for biomedical applications. Acta Biomater. 2020, 110, 37–67. [Google Scholar] [CrossRef]
- Martins, P.S.; Ochoa, R.; Pimenta, A.M.C.; Ferreira, L.A.M.; Melo, A.L.; da Silva, J.B.B.; Sinisterra, R.D.; Demicheli, C.; Frézard, F. Mode of action of β-cyclodextrin as an absorption enhancer of the water-soluble drug meglumine antimoniate. Int. J. Pharm. 2006, 325, 39–47. [Google Scholar] [CrossRef]
- Jaser, M.A.; El-Yazigi, A.; Croft, S.L. Pharmacokinetics of antimony in patients treated with sodium stibogluconate for cutaneous leishmaniasis. Pharm. Res. 1995, 12, 113–116. [Google Scholar] [CrossRef]
- Cortez-Maya, S.; Moreno-Herrera, A.; Palos, I.; Rivera, G. Old Antiprotozoal Drugs: Are They Still Viable Options for Parasitic Infections or New Options for Other Diseases? Curr. Med. Chem. 2020, 27, 5403–5428. [Google Scholar] [CrossRef] [PubMed]
- de Vries, H.J.C.; Schallig, H.D. Cutaneous Leishmaniasis: A 2022 Updated Narrative Review into Diagnosis and Management Developments. Am. J. Clin. Dermatol. 2022, 23, 823–840. [Google Scholar] [CrossRef] [PubMed]
- Singh Malik, D.; Mital, N.; Kaur, G. Topical drug delivery systems: A patent review. Expert Opin. Ther. Pat. 2016, 26, 213–228. [Google Scholar] [CrossRef]
- Berenguer, D.; Sosa, L.; Alcover, M.; Sessa, M.; Halbaut, L.; Guillén, C.; Fisa, R.; Calpena-Campmany, A.C.; Riera, C. Development and Characterization of a Semi-Solid Dosage Form of Meglumine Antimoniate for Topical Treatment of Cutaneous Leishmaniasis. Pharmaceutics 2019, 11, 613. [Google Scholar] [CrossRef]
- Aragão Horoiwa, T.; Cortez, M.; Sauter, I.P.; Migotto, A.; Bandeira, C.L.; Cerize, N.N.P.; de Oliveira, A.M. Sugar-based colloidal nanocarriers for topical meglumine antimoniate application to cutaneous leishmaniasis treatment: Ex vivo cutaneous retention and in vivo evaluation. Eur. J. Pharm. Sci. Off. J. Eur. Fed. Pharm. Sci. 2020, 147, 105295. [Google Scholar] [CrossRef]
- Pereira, M.B.; Sydor, B.G.; Memare, K.G.; Verzignassi Silveira, T.G.; Alessi Aristides, S.M.; Dalmarco, E.M.; Vieira Teixeira, J.J.; Campana Lonardoni, M.V.; Demarchi, I.G. In vivo efficacy of meglumine antimoniate-loaded nanoparticles for cutaneous leishmaniasis: A systematic review. Nanomedicine 2021, 16, 1505–1518. [Google Scholar] [CrossRef]
- Kumari, P.; Kant, V.; Chandratre, G.A.; Ahuja, M. Formulation and Evaluation of Pluronic F-127 Thermoresponsive Nanogels Containing Juglone for In vivo Wound Healing Potential. BioNanoScience 2024, 14, 4710–4732. [Google Scholar] [CrossRef]
- Suman, K.; Sourav, S.; Joshi, Y.M. Rheological signatures of gel–glass transition and a revised phase diagram of an aqueous triblock copolymer solution of Pluronic F127. Phys. Fluids 2021, 33, 073610. [Google Scholar] [CrossRef]
- Sosa, L.; Espinoza, L.C.; Silva-Abreu, M.; Jaramillo-Fierro, X.; Berenguer, D.; Riera, C.; Rincón, M.; Calpena, A.C. In Vitro Efficacy and Toxicity Assessment of an Amphotericin B Gel for the Treatment of Cutaneous Leishmaniasis. Pharmaceuticals 2025, 18, 427. [Google Scholar] [CrossRef] [PubMed]
- Sosa, L.; Calpena, A.C.; Silva-Abreu, M.; Espinoza, L.C.; Rincón, M.; Bozal, N.; Domenech, O.; Rodríguez-Lagunas, M.J.; Clares, B. Thermoreversible Gel-Loaded Amphotericin B for the Treatment of Dermal and Vaginal Candidiasis. Pharmaceutics 2019, 11, 312. [Google Scholar] [CrossRef]
- Espinoza, L.C.; Guaya, D.; Calpena, A.C.; Perotti, R.M.; Halbaut, L.; Sosa, L.; Brito-Llera, A.; Mallandrich, M. Comparative Study of Donepezil-Loaded Formulations for the Treatment of Alzheimer’s Disease by Nasal Administration. Gels 2022, 8, 715. [Google Scholar] [CrossRef]
- Foudazi, R.; Zowada, R.; Manas-Zloczower, I.; Feke, D.L. Porous Hydrogels: Present Challenges and Future Opportunities. Langmuir ACS J. Surf. Colloids 2023, 39, 2092–2111. [Google Scholar] [CrossRef]
- Roberge, C.L.; Kingsley, D.M.; Cornely, L.R.; Spain, C.J.; Fortin, A.G.; Corr, D.T. Viscoelastic Properties of Bioprinted Alginate Microbeads Compared to Their Bulk Hydrogel Analogs. J. Biomech. Eng. 2023, 145, 031002. [Google Scholar] [CrossRef]
- Silva-Abreu, M.; Sosa, L.; Espinoza, L.C.; Fábrega, M.-J.; Rodríguez-Lagunas, M.J.; Mallandrich, M.; Calpena, A.C.; Garduño-Ramírez, M.L.; Rincón, M. Efficacy of Apremilast Gels in Mouse Model of Imiquimod-Induced Psoriasis Skin Inflammation. Pharmaceutics 2023, 15, 2403. [Google Scholar] [CrossRef]
- Lupu, A.; Gradinaru, L.M.; Rusu, D.; Bercea, M. Self-Healing of Pluronic® F127 Hydrogels in the Presence of Various Polysaccharides. Gels 2023, 9, 719. [Google Scholar] [CrossRef] [PubMed]
- White, J.M.; Garza, A.; Griebler, J.J.; Bates, F.S.; Calabrese, M.A. Engineering the Structure and Rheological Properties of P407 Hydrogels via Reverse Poloxamer Addition. Langmuir ACS J. Surf. Colloids 2023, 39, 5084–5094. [Google Scholar] [CrossRef]
- Grassi, G.; Crevatin, A.; Farra, R.; Guarnieri, G.; Pascotto, A.; Rehimers, B.; Lapasin, R.; Grassi, M. Rheological properties of aqueous Pluronic–alginate systems containing liposomes. J. Colloid Interface Sci. 2006, 301, 282–290. [Google Scholar] [CrossRef]
- Balestrieri, F.; Magrì, A.D.; Magrì, A.L.; Marini, D.; Sacchini, A. Application of differential scanning calorimetry to the study of drug-excipient compatibility. Thermochim. Acta 1996, 285, 337–345. [Google Scholar] [CrossRef]
- Mura, P.; Manderioli, A.; Bramanti, G.; Furlanetto, S.; Pinzauti, S. Utilization of differential scanning calorimetry as a screening technique to determine the compatibility of ketoprofen with excipients. Int. J. Pharm. 1995, 119, 71–79. [Google Scholar] [CrossRef]
- Gill, P.; Moghadam, T.T.; Ranjbar, B. Differential scanning calorimetry techniques: Applications in biology and nanoscience. J. Biomol. Tech. JBT 2010, 21, 167–193. [Google Scholar]
- Giron, D. Applications of thermal analysis in the pharmaceutical industry. J. Pharm. Biomed. Anal. 1986, 4, 755–770. [Google Scholar] [CrossRef]
- Dar, M.J.; Din, F.U.; Khan, G.M. Sodium stibogluconate loaded nano-deformable liposomes for topical treatment of leishmaniasis: Macrophage as a target cell. Drug Deliv. 2018, 25, 1595–1606. [Google Scholar] [CrossRef] [PubMed]
- Moosavian Kalat, S.A.; Khamesipour, A.; Bavarsad, N.; Fallah, M.; Khashayarmanesh, Z.; Feizi, E.; Neghabi, K.; Abbasi, A.; Jaafari, M.R. Use of topical liposomes containing meglumine antimoniate (Glucantime) for the treatment of L. major lesion in BALB/c mice. Exp. Parasitol. 2014, 143, 5–10. [Google Scholar] [CrossRef]
- Ricci, E.J.; Bentley, M.V.L.B.; Farah, M.; Bretas, R.E.S.; Marchetti, J.M. Rheological characterization of Poloxamer 407 lidocaine hydrochloride gels. Eur. J. Pharm. Sci. 2002, 17, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Koffi, A.A.; Agnely, F.; Ponchel, G.; Grossiord, J.L. Modulation of the rheological and mucoadhesive properties of thermosensitive poloxamer-based hydrogels intended for the rectal administration of quinine. Eur. J. Pharm. Sci. 2006, 27, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-G.; Lee, M.-K.; Kim, M.-H.; Kim, C.-K. Effect of additives on the physicochemical properties of liquid suppository bases. Int. J. Pharm. 1999, 190, 13–19. [Google Scholar] [CrossRef]
- Park, Y.-J.; Yong, C.S.; Kim, H.-M.; Rhee, J.-D.; Oh, Y.-K.; Kim, C.-K.; Choi, H.-G. Effect of sodium chloride on the release, absorption and safety of diclofenac sodium delivered by poloxamer gel. Int. J. Pharm. 2003, 263, 105–111. [Google Scholar] [CrossRef]
- Li, X.; Li, A.; Feng, F.; Jiang, Q.; Sun, H.; Chai, Y.; Yang, R.; Wang, Z.; Hou, J.; Li, R. Effect of the hyaluronic acid-poloxamer hydrogel on skin-wound healing: In vitro and in vivo studies. Anim. Models Exp. Med. 2019, 2, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Cui, N.; Dai, C.-Y.; Mao, X.; Lv, X.; Gu, Y.; Lee, E.-S.; Jiang, H.-B.; Sun, Y. Poloxamer-Based Scaffolds for Tissue Engineering Applications: A Review. Gels 2022, 8, 360. [Google Scholar] [CrossRef] [PubMed]
- Brugués, A.P.; Naveros, B.C.; Calpena Campmany, A.C.; Pastor, P.H.; Saladrigas, R.F.; Lizandra, C.R. Developing cutaneous applications of paromomycin entrapped in stimuli-sensitive block copolymer nanogel dispersions. Nanomedicine 2015, 10, 227–240. [Google Scholar] [CrossRef]
- Bora, K.; Sarma, M.; Kanaujia, S.P.; Dubey, V.K. Development of novel dual-target drugs against visceral leishmaniasis and combinational study with miltefosine. Free Radic. Biol. Med. 2024, 225, 275–285. [Google Scholar] [CrossRef]
- Exertier, C.; Salerno, A.; Antonelli, L.; Fiorillo, A.; Ocello, R.; Seghetti, F.; Caciolla, J.; Uliassi, E.; Masetti, M.; Fiorentino, E.; et al. Fragment Merging, Growing, and Linking Identify New Trypanothione Reductase Inhibitors for Leishmaniasis. J. Med. Chem. 2024, 67, 402–419. [Google Scholar] [CrossRef]
- Hargrove, T.Y.; Wawrzak, Z.; Liu, J.; Nes, W.D.; Waterman, M.R.; Lepesheva, G.I. Substrate preferences and catalytic parameters determined by structural characteristics of sterol 14alpha-demethylase (CYP51) from Leishmania infantum. J. Biol. Chem. 2011, 286, 26838–26848. [Google Scholar] [CrossRef]
- Baiocco, P.; Colotti, G.; Franceschini, S.; Ilari, A. Molecular Basis of Antimony Treatment in Leishmaniasis. J. Med. Chem. 2009, 52, 2603–2612. [Google Scholar] [CrossRef] [PubMed]
- López-Arencibia, A.; Bethencourt-Estrella, C.J.; Berenguer, D.; Domínguez-de-Barros, A.; Alcover, M.M.; Sessa, M.; Halbaut, L.; Fisa, R.; Calpena-Campmany, A.C.; Córdoba-Lanús, A.E.; et al. In Vivo Evaluation of Sepigel-Based Meglumine Antimoniate and Amphotericin B for Cutaneous Leishmaniasis Treatment. Pathogens 2024, 13, 712. [Google Scholar] [CrossRef]
- Guarimata, J.D.; Lavecchia, M. In Silico Study of FDA-Approved Drugs on Leishmania infantum CYP51, a Drug Repositioning Approach in Visceral Leishmaniasis. Chem. Proc. 2024, 16, 11. [Google Scholar] [CrossRef]
- Bora, K.; Sarma, M.; Kanaujia, S.P.; Dubey, V.K. Dual-target drugs against Leishmania donovani for potential novel therapeutics. Sci. Rep. 2023, 13, 18363. [Google Scholar] [CrossRef] [PubMed]
IC50 (µg/mL) | |||||
---|---|---|---|---|---|
Strain | Compounds | Promastigote | Amastigote | CC50 * Raw 264.7 | SI ** |
L. infantum | MA-solution | 6.96 ± 15.98 | 112.09 ± 20.73 | 253.03 ± 55.37 | 2.25 |
MA-gel | 3.56 ± 0.22 | 23.11 ± 12.43 | 196.05 ± 30.89 | 8.48 | |
P407 | Without effect | Without effect |
Target | Ligand | Binding Free Energy Values (kcal/mol) | Residues Reached by Ligands |
---|---|---|---|
FeSODA | MA | −3.9 | H62, S154∆, W193, E194∆, H195∆, Y198 |
ZINC000253403245 | −6.46 | L57, H62∆, Q54, E194, H195, Y198, K199 | |
Trypanothione reductase | MA | −5.03 | K61∆, L334, P336, A363, C364, E436∆, Q439∆, F367, FAD∆ |
C9 | −7.9 | C57, V58, K61∆, P335, P336, V337, N340, T357, D358, V362, P435, Q439, FAD | |
CYP51 | MA | −4.58 | Y115, P209, A290, T294, L355, M357∆, HEME |
Fluconazole | −7.45 | Y102, F109, Y115, L125, A286, A290, T294, L355, HEME |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sosa, L.; Espinoza, L.C.; Pujol, A.; Correa-Basurto, J.; Méndez-Luna, D.; Sarango-Granda, P.; Berenguer, D.; Riera, C.; Clares-Naveros, B.; Calpena, A.C.; et al. Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights. Gels 2025, 11, 601. https://doi.org/10.3390/gels11080601
Sosa L, Espinoza LC, Pujol A, Correa-Basurto J, Méndez-Luna D, Sarango-Granda P, Berenguer D, Riera C, Clares-Naveros B, Calpena AC, et al. Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights. Gels. 2025; 11(8):601. https://doi.org/10.3390/gels11080601
Chicago/Turabian StyleSosa, Lilian, Lupe Carolina Espinoza, Alba Pujol, José Correa-Basurto, David Méndez-Luna, Paulo Sarango-Granda, Diana Berenguer, Cristina Riera, Beatriz Clares-Naveros, Ana Cristina Calpena, and et al. 2025. "Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights" Gels 11, no. 8: 601. https://doi.org/10.3390/gels11080601
APA StyleSosa, L., Espinoza, L. C., Pujol, A., Correa-Basurto, J., Méndez-Luna, D., Sarango-Granda, P., Berenguer, D., Riera, C., Clares-Naveros, B., Calpena, A. C., Prohens, R., & Silva-Abreu, M. (2025). Topical Meglumine Antimoniate Gel for Cutaneous Leishmaniasis: Formulation, Evaluation, and In Silico Insights. Gels, 11(8), 601. https://doi.org/10.3390/gels11080601