Trunk Surgery as a Tool to Reduce Foliar Symptoms in Diseases of the Esca Complex and Its Influence on Vine Wood Microbiota
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Vineyard
2.2. Treatments
2.3. Wood Sampling for Microbiota Analysis
2.4. Microbiota Analysis
2.4.1. Sample Processing
2.4.2. Library Preparation and Sequencing
2.4.3. Statistical Analysis
3. Results
3.1. On-Field Results
3.1.1. Summer-Treated Vines
3.1.2. Winter-Treated Vines
3.2. Microbiota Overview
3.2.1. Microbiota Composition of Wood Types
3.2.2. Alpha-Diversity Analysis
3.2.3. Beta-Diversity
3.2.4. Taxa Variation across Time
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Species | Phylum | Family | Ecology in Wood | Wood Type | Relative Abundance (%) | References |
---|---|---|---|---|---|---|
Acremonium sp. | Ascomycota | Incertae-sedis | E, P | ▲ | 0.2 | [77,78,79,80,81,82,83] |
Alternaria sp. | Ascomycota | Pleosporaceae | E, P | ▲; ● | 0.1; 0.1 | [17,78,80,82,84,85,86,87,88] |
Aureobasidium pullulans | Ascomycota | Saccotheciaceae | E, S | ■; ▲ | 0.3; 0.9 | [28,80,87,89,90,91,92,93,94] |
Botryosphaeria dothidea | Ascomycota | Botryosphaeriaceae | E, P, S | ■; ● | 0.2; 1.4 | [28,78,79,91,92,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109] |
Botrytis cinerea | Ascomycota | Sclerotiniaceae | E, P, S | ▲ | 0.2 | [28,80,87,88,91,92,96,110,111,112,113,114,115,116,117,118,119,120] |
Capnodium sp. | Ascomycota | Capnodiaceae | P | ■; ▲ | 0.3; 4.7 | [121] |
Capronia sp. | Ascomycota | Herpotrichiellaceae | S | ■; ▲ | 5.2; 0.7 | [122] |
Cladosporium sp. | Ascomycota | Cladosporiaceae | E, P, S | ■; ▲; ● | 0.5; 9.1; 0.2 | [28,88] |
Cladosporium sphaerospermum | Ascomycota | Cladosporiaceae | P, S | ▲ | 1.1 | [88] |
Cryptococcus sp. | Basidiomycota | Cryptococcaceae | E, S | ■; ▲; ● | 0.3; 2.8; 0.2 | [28,92] |
Diplodia seriata | Ascomycota | Botryosphaeriaceae | E, P, S | ■; ▲ | 0.2; 0.3 | [78,79,82,88,91,92,94,97,98,102,104,108,123,124,125,126,127,128,129,130,131] |
Epicoccum nigrum | Ascomycota | Pleosporaceae | E, S | ■; ▲; ● | 0.1; 4.3; 0.1 | [80,88,91,92,96] |
Eutypa lata | Ascomycota | Diatrypaceae | P | ■; ▲ | 10.8; 0.2 | [17,79,103,114,121,130,132,133,134,135,136,137,138,139,140,141,142] |
Exophiala sp. | Ascomycota | Herpotrichiellaceae | E | ■; ▲ | 2.0; 0.7 | [28] |
Fomitiporia mediterranea | Basidiomycota | Hymenochaetaceae | P | ■; ▲; ● | 45.0; 5.9; 55.0 | [6,79,82,130,143,144,145,146] |
Leptosphaeria sp. | Ascomycota | Leptosphaeriacea | E; S | ▲ | 0.1 | [80,88] |
Meyerozyma guilliermondii | Ascomycota | Debaryomycetaceae | E | ■; ▲ | 0.1; 2.3 | [147,148] |
Penicillium sp. | Ascomycota | Aspergillaceae | E; P; S | ■; ▲ | 0.9;5.5 | [28,80,82,88,92,123] |
Peniophora aurantiaca | Basidiomycota | Peniophoraceae | S | ■; ▲ | 11.7; 5.7 | [149,150] |
Phaeoacremonium iranianum | Ascomycota | Togniniaceae | P | ■; ▲; ● | 1.0; 0.2; 0.1 | [57,151,152,153,154,155,156] |
Phaeomoniella chlamydospora | Ascomycota | Phaeomoniellaceae | P | ■; ▲; ● | 17.2; 23.3; 9.4 | [3,17,78,79,88,107,130,154,157,158,159,160,161,162] |
Phellinus mori | Basidiomycota | Hymenochaetaceae | U | ■; ▲; ● | 0.1; 2.3; 17.6 | |
Pleospora herbarum | Ascomycota | Pleosporaceae | E | ▲ | 2.2 | [92] |
References
- Guerin-Dubrana, L.; Fontaine, F.; Mugnai, L. Grapevine trunk disease in European and Mediterranean vineyards: Occurrence, distribution and associated disease-affecting cultural factors. Phytopathol. Mediterr. 2019, 58, 49–71. [Google Scholar] [CrossRef]
- Fontaine, F.; Pinto, C.; Vallet, J.; Clément, C.; Gomes, A.C.; Spagnolo, A. The effects of grapevine trunk diseases (GTDs) on vine physiology. Eur. J. Plant. Pathol. 2016, 144, 707–721. [Google Scholar] [CrossRef]
- Crous, P.W.; Gams, W. Phaeomoniella chlamydospora gen. et comb. nov., a causal organism of Petri grapevine decline and esca. Phytopathol. Mediterr. 2000, 39, 112–118. [Google Scholar]
- Gramaje, D.; Mostert, L.; Groenewald, J.Z.; Crous, P.W. Phaeoacremonium: From esca disease to phaeohyphomycosis. Fungal Biol. 2015, 119, 759–783. [Google Scholar] [CrossRef] [PubMed]
- Riley, R.; Salamov, A.A.; Brown, D.W.; Nagy, L.G.; Floudas, D.; Held, B.W.; Levasseur, A.; Lombard, V.; Morin, E.; Otillar, R.; et al. Extensive sampling of basidiomycete genomes demonstrates inadequacy of the white-rot/brown-rot paradigm for wood decay fungi. Proc. Natl. Acad. Sci. USA 2014, 111, 9923–9928. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M. A new wood-decaying basidiomycete species associated with esca of grapevine: Fomitiporia mediterranea (Hymenochaetales). Mycol. Prog. 2002, 1, 315–324. [Google Scholar] [CrossRef]
- Reis, P.; Magnin-Robert, M.; Nascimento, T.; Spagnolo, A.; Abou-Mansour, E.; Fioretti, C.; Clément, C.; Rego, C.; Fontaine, F. Reproducing Botryosphaeria Dieback Foliar Symptoms in a Simple Model System. Plant. Dis. 2016, 100, 1071–1079. [Google Scholar] [CrossRef] [Green Version]
- Travadon, R.; Lecomte, P.; Diarra, B.; Lawrence, D.P.; Renault, D.; Ojeda, H.; Rey, P.; Baumgartner, K. Grapevine pruning systems and cultivars influence the diversity of wood-colonizing fungi. Fungal Ecol. 2016, 24, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Surico, G. Towards a redefinition of the diseases within the esca complex of grapevine. Phytopathol. Mediterr. 2009, 48, 5–10. [Google Scholar] [CrossRef]
- Mugnai, L.; Graniti, A.; Surico, G. Esca (Black measles) and brown wood-streaking: Two old and elusive diseases of grapevines. Plant. Dis. 1999, 83, 404–418. [Google Scholar] [CrossRef] [Green Version]
- Bertsch, C.; Ramírez-Suero, M.; Magnin-Robert, M.; Larignon, P.; Chong, J.; Abou-Mansour, E.; Spagnolo, A.; Clément, C.; Fontaine, F. Grapevine trunk diseases: Complex and still poorly understood. Plant. Pathol. 2013, 62, 243–265. [Google Scholar] [CrossRef] [Green Version]
- Graniti, A.; Surico, G.; Mugnai, L. Esca of grapevine: A disease complex or a complex of diseases? Phytopathol. Mediterr. 2000, 39, 16–20. [Google Scholar]
- Ciccarone, C.; Graniti, A.; Schiaffino, A.; Marras, F. Molecular analysis of Fomitiporia mediterranea isolates from esca-affected grapevines in southern Italy. Phytopathol. Mediterr. 2004, 43, 268–272. [Google Scholar]
- Sparapano, L.; Bruno, G.; Ciccarone, C.; Graniti, A. Infection of grapevines by some fungi associated with esca. I. Fomitiporia punctata as a wood-rot inducer. Phytopathol. Mediterr. 2000, 39, 46–52. [Google Scholar] [CrossRef]
- Sparapano, L.; Bruno, G.; Graniti, A. Three-year observation of grapevines cross-inoculated with esca-associated fungi. Phytopathol. Mediterr. 2001, 40, 376–386. [Google Scholar]
- Laveau, C.; Letouze, A.; Louvet, G.; Bastien, S.; Guérin-Dubrana, L. Differential aggressiveness of fungi implicated in esca and associated diseases of grapevine in France. Phytopathol. Mediterr. 2009, 48, 32–46. [Google Scholar] [CrossRef]
- Larignon, R.; Dubos, B. Fungi associated with esca disease in grapevine. Eur. J. Plant. Pathol. 1997, 103, 147–157. [Google Scholar] [CrossRef]
- Viala, P. Recherches Sur les Maladies de la Vigne: Esca. Institut des Recherches Agronomiques; Annales des Epiphytes: Paris, France, 1926. [Google Scholar]
- Chiarappa, L. Esca (black measles) of grapevine. An overview. Phytopathol. Mediterr. 2000, 39, 11–15. [Google Scholar] [CrossRef]
- Lecomte, P.; Darrieutort, G.; Liminana, J.-M.; Comont, G.; Muruamendiaraz, A.; Legorburu, F.-J.; Choueiri, E.; Jreijiri, F.; El Amil, R.; Fermaud, M. New Insights into Esca of Grapevine: The Development of Foliar Symptoms and Their Association with Xylem Discoloration. Plant. Dis. 2012, 96, 924–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Letousey, P.; Baillieul, F.; Perrot, G.; Rabenoelina, F.; Boulay, M.; Vaillant-Gaveau, N.; Clément, C.; Fontaine, F. Early Events Prior to Visual Symptoms in the Apoplectic Form of Grapevine Esca Disease. Phytopathology 2010, 100, 424–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goidanich, G.; Giavarini, I.; Wilson, E.O. Manuale di Patologia Vegetale: Volume 2; Edizioni Agricole: Bologna, Italy, 1964. [Google Scholar]
- Galet, P. Apoplexie. In Les Maladies et les Parasites de la Vigne; Le Paysan du Midi: Montpellier, France, 1977; Volume Tome I, pp. 409–430. [Google Scholar]
- Pouzoulet, J.; Pivovaroff, A.L.; Santiago, L.S.; Rolshausen, P.E.E. Can vessel dimension explain tolerance toward fungal vascular wilt diseases in woody plants? Lessons from Dutch elm disease and esca disease in grapevine. Front. Plant. Sci. 2014, 5, 1–11. [Google Scholar] [CrossRef]
- Bruez, E.; Baumgartner, K.; Bastien, S.; Travadon, R.; Guérin-Dubrana, L.; Rey, P. Various fungal communities colonise the functional wood tissues of old grapevines externally free from grapevine trunk disease symptoms. Aust. J. Grape Wine Res. 2016, 22, 288–295. [Google Scholar] [CrossRef]
- Del Frari, G.; Gobbi, A.; Aggerbeck, M.R.; Oliveira, H.; Hansen, L.H.; Ferreira, R.B. Characterization of the wood mycobiome of Vitis vinifera in a vineyard affected by esca. Spatial distribution of fungal communities and their putative relation with leaf symptoms. Front. Plant. Sci. 2019, 10, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Morgan, H.H.; du Toit, M.; Setati, M.E. The grapevine and wine microbiome: Insights from high-throughput amplicon sequencing. Front. Microbiol. 2017, 8, 820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dissanayake, A.J.; Purahong, W.; Wubet, T.; Hyde, K.D.; Zhang, W.; Xu, H.; Zhang, G.; Fu, C.; Liu, M.; Xing, Q.; et al. Direct comparison of culture-dependent and culture-independent molecular approaches reveal the diversity of fungal endophytic communities in stems of grapevine (Vitis vinifera). Fungal Divers. 2018, 90, 85–107. [Google Scholar] [CrossRef]
- Claverie, M.; Notaro, M.; Fontaine, F. Current knowledge on Grapevine Trunk Diseases with complex etiology: A systemic approach. Phytopathol. Mediterr. 2020, 59, 29–53. [Google Scholar] [CrossRef]
- Gramaje, D.; Urbez-Torres, J.R.; Sosnowski, M.R. Managing Grapevine Trunk Diseases with respect to etiology and epidemiology: Current Strategies and Future Prospects. Plant. Dis. 2018, 102, 12–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondello, V.; Larignon, P.; Armengol, J.; Kortekamp, A.; Vaczy, K.; Prezman, F.; Serrano, E.; Rego, C.; Mugnai, L.; Fontaine, F. Management of grapevine trunk diseases: Knowledge transfer, current strategies and innovative strategies adopted in Europe. Phytopathol. Mediterr. 2018, 57, 369–383. [Google Scholar]
- Baumgartner, K.; Hillis, V.; Lubell, M.; Norton, M.; Kaplan, J. Managing Grapevine Trunk Diseases in California’s Southern San Joaquin Valley. Am. J. Enol. Vitic. 2019, 70, 267–276. [Google Scholar] [CrossRef]
- Martínez-Diz, M.P.; Eichmeier, A.; Spetik, M.; Bujanda, R.; Díaz-Fernández, Á.; Díaz-Losada, E.; Gramaje, D. Grapevine pruning time affects natural wound colonization by wood-invading fungi. Fungal Ecol. 2020, 48. [Google Scholar] [CrossRef]
- Smart, R. Timely Trunk Renewal to Overcome Trunk Disease. Prat. Winer. Vineyard 2015, 1, 64–70. [Google Scholar]
- Billones-Baaijens, R.; Savocchia, S. A review of Botryosphaeriaceae species associated with grapevine trunk diseases in Australia and New Zealand. Australas. Plant. Pathol. 2019, 48, 3–18. [Google Scholar] [CrossRef]
- Dal, F. Grapevine Pruning Manual for the Prevention of Trunk Disease; Board and Bench Publishing: San Francisco, CA, USA, 2020. [Google Scholar]
- Thibault, M. Les maladies du bois de la vigne-Le Curetage. In Proceedings of the Service Interprofessionnel de Conseil Agronomique, de Vinification et d’Analyses du Centre, Huniversité de Haute-Alsace, Colmar, France, 17–18 November 2015; pp. 55–57. [Google Scholar]
- Braggio, L.; Merlo, R. Curetage: 5 anni di sperimentazione. VVQ Vigne Vini Qual. 2018, 7, 32–36. [Google Scholar]
- Le Curetage—Une Pratique Appliquée au Vignoble Pour Limiter L’expression des Symptômes des Maladies du Bois; Fiche Technique, Winetwork. 2017. Available online: http://www.winetwork-data.eu/fr/fiches_techniques/le_curetage_sc_16484.htm (accessed on 28 June 2021).
- Pinto, C.; Pinho, D.; Sousa, S.; Pinheiro, M.; Egas, C.; Gomes, A.C. Unravelling the diversity of grapevine microbiome. PLoS ONE 2014, 9, e085622. [Google Scholar] [CrossRef] [Green Version]
- Niem, J.M.; Billones-Baaijens, R.; Stodart, B.; Savocchia, S. Diversity Profiling of Grapevine Microbial Endosphere and Antagonistic Potential of Endophytic Pseudomonas Against Grapevine Trunk Diseases. Front. Microbiol. 2020, 11, 1–19. [Google Scholar] [CrossRef]
- Geiger, R. Das Klima der bodennahen Luftschicht. Anzeiger Schädlingskd. 1961, 34, 159. [Google Scholar] [CrossRef]
- Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. Zeitschrift 2006, 15, 259–263. [Google Scholar] [CrossRef]
- Muruamendiaraz, A.; Legorburu, F.-J.J. Suitability of an increment borer as a sampling device for grapevine trunk disease. Phytopathol. Mediterr. 2009, 48, 145–149. [Google Scholar] [CrossRef]
- Becares, A.A.; Fernandez, A.F. Biome Makers Inc Microbiome Based Identification, Monitoring and Enhancement of Fermentation Processes and Products. French Patents: WO2017096385A1, 8 June 2017. [Google Scholar]
- Edgar, R.C.; Haas, B.J.; Clemente, J.C.; Quince, C.; Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27, 2194–2200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glöckner, F.O.; Yilmaz, P.; Quast, C.; Gerken, J.; Beccati, A.; Ciuprina, A.; Ludwig, W. 25 years of serving the community with ribosomal RNA gene reference databases and tools. J. Biotechnol. 2017, 261, 169–176. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Larsson, K.H.; Taylor, A.F.S.; Bengtsson-Palme, J.; Jeppesen, T.S.; Schigel, D.; Abarenkov, K. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 2019, 47, D259–D264. [Google Scholar] [CrossRef] [PubMed]
- Beasley, T.M.; Schumacher, R.E. Multiple regression approach to analyzing contingency tables: Post hoc and planned comparison procedures. J. Exp. Educ. 1995, 64, 79–93. [Google Scholar] [CrossRef]
- Peet, R.K. The Measurement of Species Diversity Author. Annu. Rev. Ecol. Syst. 1974, 5, 285–307. [Google Scholar] [CrossRef]
- Cholet, C.; Bruez, É.; Lecomte, P.; Barsacq, A.; Martignon, T.; Giudici, M. Plant resilience and physiological modifications induced by curettage of Esca-diseased grapevines. OENO One 2021, 153–169. [Google Scholar] [CrossRef]
- Maher, N.; Piot, J.; Bastien, S.; Vallance, J.; Rey, P.; Guérin-Dubrana, L. Wood necrosis in ESCA-affected vines: Types, relationships and possible links with foliar symptom expression. J. Int. Sci. Vigne Vin 2012, 46, 15–27. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Thorngate, J.H.; Richardson, P.M.; Mills, D.A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl. Acad. Sci. USA 2014, 111, 139–148. [Google Scholar] [CrossRef] [Green Version]
- Kecskeméti, E.; Berkelmann-Löhnertz, B.; Reineke, A. Are epiphytic microbial communities in the carposphere of ripening grape clusters (Vitis vinifera L.) different between conventional, organic, and biodynamic grapes? PLoS ONE 2016, 11, e0160852. [Google Scholar] [CrossRef] [Green Version]
- Compant, S.; Mitter, B.; Colli-Mull, J.G.; Gangl, H.; Sessitsch, A. Endophytes of Grapevine Flowers, Berries, and Seeds: Identification of Cultivable Bacteria, Comparison with Other Plant Parts, and Visualization of Niches of Colonization. Microb. Ecol. 2011, 62, 188–197. [Google Scholar] [CrossRef]
- Elena, G.; Bruez, E.; Rey, P.; Luque, J. Microbiota of grapevine woody tissues with or without esca-foliar symptoms in northeast Spain. Phytopathol. Mediterr. 2018, 57, 425–438. [Google Scholar] [CrossRef]
- Gramaje, D.; Armengol, J.; Mohammadi, H.; Banihashemi, Z.; Mostert, L.; Benihashemi, Z.; Mostert, L. Novel Phaeoacremonium species associated with Petri disease and esca of grapevine in Iran and Spain. Mycologia 2009, 101, 920–929. [Google Scholar] [CrossRef]
- Cloete, M.; Fourie, P.H.; Damm, U.; Crous, P.W.; Mostert, L. Fungi associated with die-back symptoms of apple and pear trees, a possible inoculum source of grapevine trunk disease pathogens. Phytopathol. Mediterr. 2011, 50, 176–190. [Google Scholar] [CrossRef]
- Pierron, R.; Gorfer, M.; Berger, H.; Jacques, A.; Sessitsch, A.; Strauss, J.; Compant, S. Deciphering the niches of colonisation of Vitis vinifera L. by the esca-associated fungus Phaeoacremonium aleophilum using a gfp marked strain and cutting systems. PLoS ONE 2015, 10, e0126851. [Google Scholar] [CrossRef] [PubMed]
- Mannaa, M.; Park, I.; Seo, Y.S. Genomic features and insights into the taxonomy, virulence, and benevolence of plant-associated burkholderia species. Int. J. Mol. Sci. 2019, 20, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pacifico, D.; Squartini, A.; Crucitti, D.; Barizza, E.; Lo Schiavo, F.; Muresu, R.; Carimi, F.; Zottini, M. The Role of the Endophytic Microbiome in the Grapevine Response to Environmental Triggers. Front. Plant. Sci. 2019, 10, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondello, V.; Songy, A.; Battiston, E.; Pinto, C.; Coppin, C.; Trotel-Aziz, P.; Clément, C.; Mugnai, L.; Fontaine, F. Grapevine trunk diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant. Dis. 2017, 102, 1189–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bruez, E.; Haidar, R.; Alou, M.T.; Vallance, J.; Bertsch, C.; Mazet, F.; Fermaud, M.; Deschamps, A.; Guerin-Dubrana, L.; Compant, S.; et al. Bacteria in a wood fungal disease: Characterization of bacterial communities in wood tissues of esca-foliar symptomatic and asymptomatic grapevines. Front. Microbiol. 2015, 6, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Larignon, P.; Dame, G.; Menard, E.; Desache, F.; Dubos, B. Comment asissait l’arsénite de sodium sur l’esca de la vigne? Les Progrès Agric. Vitic. 2008, 125, 642–651. [Google Scholar]
- Goddard, M.L.; Boos, A.; Larignon, P.; Fontaine, F.; Bertsch, C.; Tarnus, C. Arsenite experiments in the program CASDAR V1301—Arsenic speciation in grapevines and impact on fungal population. In Proceedings of the 10th International Workshop on Grapevine Trunk Diseases, Reims, France, 4–7 July 2017; Phytopathologia Mediterranea, Ed.; pp. 513–588. [Google Scholar]
- Brown, A.A.; Lawrence, D.P.; Baumgartner, K. Role of basidiomycete fungi in the grapevine trunk disease esca. Plant. Pathol. 2020, 69, 205–220. [Google Scholar] [CrossRef]
- Romanazzi, G.; Murolo, S.; Pizzichini, L.; Nardi, S. Esca in young and mature vineyards, and molecular diagnosis of the associated fungi. Eur. J. Plant. Pathol. 2009, 125, 277–290. [Google Scholar] [CrossRef]
- Calzarano, F.; Di Marco, S. Wood discoloration and decay in grapevines with esca proper and their relationship with foliar symptoms. Phytopathol. Mediterr. 2007, 46, 96–101. [Google Scholar]
- Edwards, J.; Marchi, G.; Pascoe, I.G. Young esca in Australia. Phytopathol. Mediterr. 2001, 40, 303–310. [Google Scholar]
- Bruez, E.; Vallance, J.; Gautier, A.; Laval, V.; Compant, S.; Maurer, W.; Sessitsch, A.; Lebrun, M.; Rey, P. Major changes in grapevine wood microbiota are associated with the onset of esca, a devastating trunk disease. Environ. Microbiol. 2020, 22, 5189–5206. [Google Scholar] [CrossRef] [PubMed]
- Arantes, V.; Goodell, B. Current understanding of brown-rot fungal biodegradation mechanisms: A review. ACS Symp. Ser. 2014, 1158, 3–21. [Google Scholar] [CrossRef]
- Goodell, B. Fungi Involved in the Biodeterioration and Bioconversion of Lignocellulose Substrates. In Genetics and Biotechnology, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Osti, F.; Di Marco, S. Iron-dependent, non-enzymatic processes promoted by Phaeomoniella chlamydospora and Phaeoacremonium aleophilum, agents of esca in grapevine. Physiol. Mol. Plant. Pathol. 2010, 74, 309–316. [Google Scholar] [CrossRef]
- Moretti, S.; Pierron, R.J.G.; Pacetti, A.; Gellon, M.; Tarnus, C.; Di Marco, S.; Mugnai, L.; Goodell, B.; Gelhaye, E.; Bertsch, C.; et al. Non-Enzymatic in lignum degradation mechanism: A way to control Grapevine Trunk Disease? In Proceedings of the 11th International Workshop on Grapevine Trunk Diseases, Penticton, BC, Canada, 7–12 July; 2019; pp. 414–415. [Google Scholar]
- Andolfi, A.; Mugnai, L.; Luque, J.; Surico, G.; Cimmino, A.; Evidente, A. Phytotoxins produced by fungi associated with grapevine trunk diseases. Toxins 2011, 3, 1569–1605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Masi, M.; Cimmino, A.; Reveglia, P.; Mugnai, L.; Surico, G.; Evidente, A. Advances on Fungal Phytotoxins and Their Role in Grapevine Trunk Diseases. J. Agric. Food Chem. 2018, 66, 5948–5958. [Google Scholar] [CrossRef]
- Gatica, M.; Césari, C.; Magnin, S.; Dupont, J. Phaeoacremonium species and Phaeomoniella chlamydospora in vines showing “hoja de malvón” and young vine decline symptoms in Argentina. Phytopathol. Mediterr. 2001, 40, 317–324. [Google Scholar]
- Halleen, F.; Crous, P.W.; Petrini, O. Fungi associated with healthy grapevine cuttings in nurseries, with special reference to pathogens involved in the decline of young vines. Australas. Plant. Pathol. 2003, 32, 47–52. [Google Scholar] [CrossRef]
- Luque, J.; Martos, S.; Aroca, A.; Raposo, R.; Garcia-Figueres, F.; Aroca, Á.; Raposo, R.; Garcia-Figueres, F. Symptoms and fungi associated with declining mature grapevine plants in northeast Spain. J. Plant. Pathol. 2009, 91, 381–390. [Google Scholar]
- González, V.; Tello, M.L. The endophytic mycota associated with Vitis vinifera in central Spain. Fungal Divers. 2011, 47, 29–42. [Google Scholar] [CrossRef]
- Mohammadi, H.; Banihashemi, Z. c r v i h o e f c r v i h o e Field Survey and Sample Collection f. J. Agric. Sci. Tech. 2012, 14, 1405–1414. [Google Scholar]
- Mondello, V.; Lo Piccolo, S.; Conigliaro, G.; Alfonzo, A.; Torta, L.; Burruano, S. First report of Neofusiccoccum vitifusiforme and presence of other Botryosphaeriaceae species associated with Botryosphaeria dieback of grapevine in Sicily (Italy). Phytopathol. Mediterr. 2013, 52, 388–396. [Google Scholar]
- Oh, S.Y.; Nam, K.W.; Yoon, D.H. Identification of Acremonium acutatum and Trichothecium roseum isolated from grape with white stain symptom in Korea. Mycobiology 2014, 42, 269–273. [Google Scholar] [CrossRef] [Green Version]
- Preston, D.A. Host Index of Oklahoma Plant Diseases. Oklahoma Agric. College Agric. Exp. Stn. Tech. Bull. 1945, 21, 1–168. [Google Scholar]
- Harvey, J.M. A method of forecasting decay in California storage Grapes. Phytopathology 1955, 45, 229–232. [Google Scholar]
- Arnold, G.R.W. Lista de Hongos Fitopatógenos de Cuba; Editorial Científico-Técnica; Ministerio de Cultura: Habana, Cuba, 1986. [Google Scholar]
- Mułenko, W.; Majewski, T.; Ruszkiewicz-Michalska, M. A Preliminary Checklist of Micromycetes in Poland; W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Polish, 2008; Volume 9. [Google Scholar]
- Casieri, L.; Hofstetter, V.; Viret, O.; Gindro, K. Fungal communities living in the wood of different cultivars of young Vitis vinifera plants. Phytopathol. Mediterr. 2009, 48, 73–83. [Google Scholar]
- Setati, M.E.; Jacobson, D.; Bauer, F.F. Sequence-based analysis of the Vitis vinifera L. cv cabernet sauvignon grape must mycobiome in three South African vineyards employing distinct agronomic systems. Front. Microbiol. 2015, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.P.; Michailides, T.J. First Report of Melting Decay of ‘Red Globe’ Grapes in California. Plant. Dis. 2004, 88, 1047. [Google Scholar] [CrossRef] [PubMed]
- Jayawardena, R.S.; Hyde, K.D.; Chethana, K.W.T.; Daranagama, D.A.; Dissanayake, A.J.; Goonasekara, I.D.; Manawasinghe, I.S.; Mapook, A.; Jayasiri, S.C.; Karunarathna, A.; et al. Mycosphere Notes 102-168: Saprotrophic fungi on Vitis in China, Italy, Russia and Thailand. Mycosphere 2018, 9, 1–114. [Google Scholar] [CrossRef]
- Jayawardena, R.S.; Purahong, W.; Zhang, W.; Wubet, T.; Li, X.H.; Liu, M.; Zhao, W.; Hyde, K.D.; Liu, J.H.; Yan, J. Biodiversity of Fungi on Vitis Vinifera L. Revealed by Traditional and High-Resolution Culture-Independent Approaches; Springer: Berlin/Heidelberg, Germany, 2018; Volume 90, ISBN 0123456789. [Google Scholar]
- Martini, M.; Musetti, R.; Grisan, S.; Polizzotto, R.; Borselli, S.; Pavan, F.; Osler, R. DNA-dependent detection of the grapevine fungal endophytes aureobasidium pullulans and epicoccum nigrum. Plant. Dis. 2009, 93, 993–998. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.; Schneider, P.; Kraus, C.; Molnar, M.; Dubois, C.; D’Aguiar, D.; Haag, N.; D’Aguilar, D.; Haag, N. Grapevine trunk disease in German viticulture: Occurrence of lesser known fungi and first report of Phaeoacremonium viticola and P. fraxinopennsylvanicum. Vitis 2016, 55, 145–156. [Google Scholar] [CrossRef]
- Phillips, A.J.L. Botryosphaeria dothidea and Other Fungi Associated with Excoriose and Dieback of Grapevines in Portugal. J. Phytopathol. 1998, 146, 327–332. [Google Scholar] [CrossRef]
- Phillips, A.J.L.; Mediterranea, P.; Phillips, A.J.L. Excoriose, cane blight and related diseases of grapevines: A taxonomic review of the pathogens. Phytopathol. Mediterr. 2000, 39, 341–356. [Google Scholar]
- Larignon, P.; Dubos, B. The villainy of Black dead arm. Wines Vines 2001, 82, 86–89. [Google Scholar]
- Van Niekerk, J.M.; Fourie, P.H.; Halleen, F.; Crous, P.W. Botryosphaeria spp. as grapevine trunk disease pathogens. Phytopathol. Mediterr. 2006, 45, S43–S54. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T. Index of Fungi Inhabiting Woody Plants in Japan. Host, Distribution and Literature; Zenkoku-Noson-Kyiku Kyokai Publishing Co.: Tokyo, Japan, 2007. [Google Scholar]
- Pitt, W.M.; Huang, R.; Steel, C.C.; Savocchia, S. Identification, distribution and current taxonomy of Botryosphaeriaceae species associated with grapevine decline in New South Wales and South Australia. Aust. J. Grape Wine Res. 2010, 16, 258–271. [Google Scholar] [CrossRef]
- Qiu, Y.; Steel, C.C.; Ash, G.J.; Savocchia, S. Survey of Botryosphaeriaceae associated with grapevine decline in the Hunter Valley and Mudgee grape growing regions of New South Wales. Australas. Plant. Pathol. 2011, 40, 1–11. [Google Scholar] [CrossRef]
- Urbez-Torres, J.R. The status of Botryosphaeriaceae species infecting grapevines. Phytopathol. Mediterr. 2011, 50, 5–45. [Google Scholar] [CrossRef]
- Urbez-Torres, J.R.; Peduto, F.; Striegler, R.K.; Urrea-Romero, K.E.; Rupe, J.C.; Cartwright, R.D.; Gubler, W.D. Characterization of fungal pathogens associated with grapevine trunk diseases in Arkansas and Missouri. Fungal Divers. 2012, 52, 169–189. [Google Scholar] [CrossRef]
- Abreo, E.; Lupo, S.; Bettucci, L. Fungal community of grapevine trunk diseases: A continuum of symptoms? Sydowia 2012, 64, 1–12. [Google Scholar]
- Arzanlou, M.; Moshari, S.; Bakhshi, M.; Khodaie, S. Botryosphaeria dothidea associated with grapevine decline disease in Iran. Australas. Plant Dis. Notes 2012, 7, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Xie, Y.; Yao, S.; Wang, Z.; Li, X. Characterization of Botryosphaeria dothidea, the causal agent of grapevine canker in China. Australas. Plant. Pathol. 2012, 41, 351–357. [Google Scholar] [CrossRef]
- Akgul, D.S.; Savas, N.G.; Eskalen, A. First report of wood canker caused by Botryosphaeria dothidea, Diplodia seriata, Neofusicoccum parvum, and Lasiodiplodia theobromae on grapevine in Turkey. Plant. Dis. 2014, 98, 568. [Google Scholar] [CrossRef] [PubMed]
- Chebil, S.; Fersi, R.; Yakoub, A.; Chenenaoui, S.; Chattaoui, M.; Melki, I.; Zemni, H.; Rhouma, A.; Durante, G.; Zacchi, E.; et al. First report of botryosphaeria dothidea, diplodia seriata, and Neofusicoccum luteum associated with canker and dieback of grapevines in Tunisia. Plant. Dis. 2014, 98, 420. [Google Scholar] [CrossRef] [PubMed]
- Carlucci, A.; Cibelli, F.; Lops, F.; Raimondo, M.L. Characterization of Botryosphaeriaceae Species as Causal Agents of Trunk Diseases on Grapevines. Plant. Dis. 2015, 99, 1678–1688. [Google Scholar] [CrossRef] [Green Version]
- Foister, C.E. The Economic Plant Diseases of Scotland: A Survey and Check List Covering the Years 1924–1957; Edinburgh, Great Britain. Tech. Bull. Dep. Agric. Scot. 1961, 1, 1–209. [Google Scholar]
- Whiteside, J.O. A revised list of plant diseases in Rhodesia. Kirkia 1966, 5, 87–196. [Google Scholar]
- El-Buni, A.M.; Rattan, S.S. Check List of Libyan Fungi; Al Faateh University, Faculty of Science, Department of Botany, Supplement to Flora of Libya: Tripoli, Libya, 1981. [Google Scholar]
- Lee, Y.H.; Cho, W.D.; Kim, W.G.; Jin, K.S.; Lee, E.J. Report on host-unrecorded diseases identified from economical crops in Korea. Res. Rep. Rural Dev. Admin. 1991, 33, 15–19. [Google Scholar]
- Holevas, C.D.; Chitzanidis, A.; Pappas, A.C.; Tzamos, E.C.; Elena, K.; Psallidas, P.G.; Alivizatos, A.S.; Panagopoulos, C.G.; Kyriakopoulou, P.E.; Bem, F.P.; et al. Disease Agents of Cultivated Plants Observed in Greece from 1981 to 1990. Annales de l’Institut phytopathologique Benaki 2000, 19, 1–96. [Google Scholar]
- Gao, Z.M.; Li, Y.M.; Li, X.L.; Zhang, Z.H.; Ying, J.F. Comparison of the biological characteristics of Botrytis cinerea isolates from different host. Mycosystema 2009, 28, 370–377. [Google Scholar]
- Walker, A.S.; Gautier, A.; Confais, J.; Martinho, D.; Viaud, M.; Le Pêcheur, P.; Dupont, J.; Fournier, E. Botrytis pseudocinerea, a New Cryptic Species Causing Gray Mold in French Vineyards in Sympatry with Botrytis cinerea. Phytopathology 2011, 101, 1433. [Google Scholar] [CrossRef] [Green Version]
- Fournier, E.; Gladieux, P.; Giraud, T. The ‘Dr Jekyll and Mr Hyde fungus’: Noble rot versus gray mold symptoms of Botrytis cinerea on grapes. Evol. Appl. 2013, 6, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Piqueras, C.M.; Herrera, D.; Latorre, B.A. First report of high boscalid resistance in Botrytis cinerea associated with the H272L Mutation in Grapevine in Chile. Plant. Dis. 2014, 98, 1441. [Google Scholar] [CrossRef] [PubMed]
- Saito, S.; Margos, D.; Michailides, T.J.; Xiao, C.L. Botrytis californica, a new cryptic species in the B. cinerea species complex causing gray mold in blueberries and table grapes. Mycologia 2016, 108, 330–343. [Google Scholar] [CrossRef]
- Javed, S.; Javaid, A.; Anwar, W.; Majeed, R.A.; Akhtar, R.; Naqvi, S.F. First report of botrytis bunch rot of grapes caused by Botrytis cinerea in Pakistan. Plant. Dis. 2017, 101, 1036. [Google Scholar] [CrossRef]
- Mendes, M.A.S.; Da Silva, V.L.; Dianese, J.C.; Ferreira, M.; Santos, C.D.; Gomes, N.E.; Urben, A.; Castro, C. Fungos em Plants no Brasil.; Embrapa-SPI/Embrapa-Cenargen: Brasilia, Brazil, 1998. [Google Scholar]
- Untereiner, W.A.; Gerrits Van Den Ende, A.H.G.; De Hoog, G.S. Nutritional physiology of species of Capronia. Stud. Mycol. 1999, 1999, 98–106. [Google Scholar]
- Castillo-Pando, M.; Ae, A.; Somers, A.; Green, B.C.D.; Priest, M.; Sriskanthades, M. Fungi associated with dieback of Semillon grapevines in the Hunter Valley of New South Wales. Australas. Plant. Pathol. 2001, 30, 59–63. [Google Scholar] [CrossRef]
- Auger, J.; Esterio, M.; Ricke, G.; Pérez, I. Black Dead Arm and Basal Canker of Vitis vinifera cv. Red Globe Caused by Botryosphaeria obtusa in Chile. Plant. Dis. 2004, 88, 1286. [Google Scholar] [CrossRef]
- Choueiri, E.; Jreijiri, F.; Chlela, P.; Louvet, G.; Lecomte, P. Occurrence of Grapevine Declines and First Report of Black Dead Arm Associated with Botryosphaeria obtusa in Lebanon. Plant. Dis. 2006, 90, 115. [Google Scholar] [CrossRef]
- Baskarathevan, J.; Jaspers, M.V.; Jones, E.E.; Ridgway, H.J. Distribution of Botryosphaeria species causing grapevine dieback and decline in New Zealand vineyards. N. Z. Plant. Prot. 2008, 61, 392. [Google Scholar] [CrossRef]
- Epstein, L.; Sukhwinder, K.; VanderGheynst, J.; Kaur, S.; Vander Gheynst, J.S.; Sukhwinder, K.; VanderGheynst, J. Botryosphaeria-related dieback and control investigated in noncoastal California grapevines. Calif. Agric. 2008, 62, 161–166. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.Y.; Li, X.H.; Kong, F.F.; Wang, Z.Y.; Gong, L.Z.; He, H.P. Occurrence of grapevine trunk disease caused by Botryosphaeria rhodina in China. Plant. Dis. 2011, 95, 219. [Google Scholar] [CrossRef] [PubMed]
- Yan, J.Y.; Peng, Y.L.; Xie, Y.; Li, X.H.; Yao, S.W.; Tang, M.L.; Wang, Z.Y. First Report of Grapevine Trunk Disease Caused by Botryosphaeria obtusa in China. Plant. Dis. 2011, 95, 616. [Google Scholar] [CrossRef]
- Garcia Benavides, P.; Martin Zamorano, P.; Ocete PéRez, C.A.; Maistrello, L.; Ocete Rubio, R. Biodiversity of pathogenic wood fungi isolated from Xylotrechus Arvicola (olivier) galleries in vine shoots. J. Int. Sci. Vigne Vin 2013, 47, 73–81. [Google Scholar] [CrossRef]
- Mohammadi, H.; Gramaje, D.; Banihashemi, Z.; Armengol, J. Characterization of Diplodia seriata and Neofusicoccum parvum Associated with Grapevine Decline in Iran. J. Agric. Sci. Technol. 2013, 15, 603–616. [Google Scholar]
- Moller, W.J.; WJ, M.; AN, K.; JJ, K. A dying arm disease of grape in California. Plant. Dis. 1974, 58, 869–871. [Google Scholar]
- Rolshausen, P.E.; Trouillas, F.; Gubler, W.D. Identification of Eutypa lata by PCR-RFLP. Plant. Dis. 2004, 88, 925–929. [Google Scholar] [CrossRef]
- Rolshausen, P.E.; Baumgartner, K.; Travadon, R.; Pouzolet, J.; Fujiyoshi, P.; Wilcox, W.F. Identification of Eutypa spp. Causing Eutypa Dieback of Grapevine in Eastern North America. Am. Phytopath Soc. 2014, 98, 483–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lardner, R.; Stummer, B.E.B.; Sosnowski, M.R.; Scott, E.S. Molecular identification and detection of Eutypa lata in grapevine. Mycol. Res. 2005, 109, 799–808. [Google Scholar] [CrossRef]
- Sosnowski, M.R.; Lardner, R. The Influence of Grapevine Cultivar and Isolate of Eutypa lata on Wood and Foliar Symptoms. Plant. Dis. 2007, 91, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Trouillas, F.P.; Gubler, W.D. Pathogenicity of Diatrypaceae Species in Grapevines in California. Plant. Dis. 2010, 94, 867–872. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trouillas, F.P.; Úrbez-Torres, J.R.; Gubler, W.D. Diversity of diatrypaceous fungi associated with grapevine canker diseases in California. Mycologia 2010, 102, 319–336. [Google Scholar] [CrossRef] [PubMed]
- Trouillas, F.P.; Pitt, W.M.; Sosnowski, M.R.; Huang, R.; Peduto, F.; Loschiavo, A.; Savocchia, S.; Scott, E.S.; Gubler, W.D. Taxonomy and DNA phylogeny of Diatrypaceae associated with Vitis vinifera and other woody plants in Australia. Fungal Divers. 2011, 49, 203–223. [Google Scholar] [CrossRef] [Green Version]
- White, C.L.; Halleen, F.; Mostert, L. Symptoms and fungi associated with esca in South African vineyards. Phytopathol. Mediterr. 2011, 50, 236–246. [Google Scholar] [CrossRef]
- Živkoviċ, S.; Vasiċ, T.; Anđelković, S.; Jevremoviċ, D.; Trkulja, V. Identification and Characterization of Eutypa lata on Grapevine in Serbia. Plant. Dis. 2012, 96, 913. [Google Scholar] [CrossRef]
- Travadon, R.; Baumgartner, K. Population Biology Molecular Polymorphism and Phenotypic Diversity in the Eutypa Dieback Pathogen Eutypa lata. Am. Phytopathol. Soc. 2015, 105, 255. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M. Biodiversity and geographic distribution of basidiomycetes as causal agents of esca associated white rot in grapevine: A worldwide perspective. Phytopathol. Mediterr. 2006, 45, 30–42. [Google Scholar]
- Martin, M.T.; Cobos, R. Identification of fungi associated with grapevine decline in Castilla y Leon (Spain). Phytopathol. Mediterr. 2007, 46, 18–25. [Google Scholar]
- Akgül, D.S.; Savaş, N.G.; Keykubat, B.; Mayorquin, J.S.; Eskalen, A. Fungal trunk pathogens of Sultana Seedless vineyards in Aegean region of Turkey. Phytopathol. Mediterr. 2015, 54, 380–393. [Google Scholar] [CrossRef]
- Cloete, M.; Fischer, M.; Mostert, L.; Halleen, F. Hymenochaetales associated with esca-related wood rots on grapevine with a special emphasis on the status of esca in South African vineyards. Phytopathol. Mediterr. 2015, 54, 299–312. [Google Scholar] [CrossRef]
- Kasfi, K.; Taheri, P.; Jafarpour, B.; Tarighi, S. Characterization of antagonistic microorganisms against Aspergillus spp. from grapevine leaf and berry surfaces. J. Plant. Pathol. 2018, 100, 179–190. [Google Scholar] [CrossRef]
- Agirman, B.; Erten, H. Biocontrol ability and action mechanisms of Aureobasidium pullulans GE17 and Meyerozyma guilliermondii KL3 against Penicillium digitatum DSM2750 and Penicillium expansum DSM62841 causing post-harvest diseases. Yeast 2020. [Google Scholar] [CrossRef] [PubMed]
- Kuffer, N.; Senn-Irlet, B. Diversity and ecology of corticioid basidiomycetes in green alder stands in Switzerland. Nov. Hedwigia 2000, 71, 131–143. [Google Scholar]
- Küffer, N.; Hallenberg, N. Intraspecific variability in Peniophora aurantiaca (Basidiomycetes). Nord. J. Bot. 2000, 20, 713–716. [Google Scholar] [CrossRef]
- Mostert, L.; Halleen, F.; Fourie, P.; Crous, P.W. A review of Phaeoacremonium species involved in Petri disease and esca of grapevines. Phytopathol. Mediterr. 2006, 45, 12–29. [Google Scholar]
- Essakhi, S.; Mugnai, L.; Crous, P.W.; Groenewald, J.Z.; Surico, G. Molecular and phenotypic characterisation of novel Phaeoacremonium species isolated from esca diseased grapevines. Persoonia Mol. Phylogeny Evol. Fungi 2008, 21, 119–134. [Google Scholar] [CrossRef] [Green Version]
- White, C.L.; Halleen, F.; Fischer, M.; Mostert, L. Characterisation of the fungi associated with esca diseased grapevines in South Africa. Phytopathol. Mediterr. 2011, 50, 204–223. [Google Scholar] [CrossRef]
- Mohammadi, H.; Banihashemi, Z.; Gramaje, D.; Armengol, J. Fungal Pathogens Associated with Grapevine Trunk Diseases in Iran. J. Agric. Sci. Tech. 2013, 15, 137–150. [Google Scholar]
- Sami, S.; Mohammadi, H.; Heydarnejad, J. Phaeoacremonium species associated with necrotic wood of pome fruit trees in Iran. J. Plant. Pathol. 2014, 96, 487–495. [Google Scholar] [CrossRef]
- Úrbez-Torres, J.R.; Haag, P.; Bowen, P.; O’Gorman, D.T. Grapevine trunk diseases in British Columbia: Incidence and characterization of the fungal pathogens associated with black foot disease of grapevine. Plant. Dis. 2014, 98, 456–468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karimi, M.R.; Mahmoodi, B.; Kazemiyan, M. First report of esca of grapevine in Iran. Phytopathol. Mediterr. 2001, 40, 481. [Google Scholar]
- Whiting, E.; Cunha, M.G.; Gubler, W.D. Phaeomoniella chlamydospora and Phaeoacremonium species distinguished through cultural characters and ribosomal DNA sequence analysis. Mycotaxon 2005, 92, 351–360. [Google Scholar]
- Fourie, P.H.; Halleen, F. Investigation on the occurrence of Phaeomoniella chlamydospora in canes of rootstock mother vines. Aust. Plant. Pathol. 2002, 31, 425–426. [Google Scholar] [CrossRef]
- Smetham, G.M.; Ades, P.K.; Péros, J.P.; Ford, R. Genetic structure of the grapevine fungal pathogen Phaeomoniella chlamydospora in southeastern Australia and southern France. Plant. Pathol. 2010, 59, 736–744. [Google Scholar] [CrossRef]
- González, V.; Tello, M.L. Genetic variations in Spanish isolates of Phaeomoniella chlamydospora, the causal etiological agent of Petri disease of grapevine. Phytopathol. Mediterr. 2011, 50, 191–203. [Google Scholar]
- Díaz, G.A.; Latorre, B.A. Infection Caused by Phaeomoniella chlamydospora Associated with Esca-like Symptoms in Grapevine in Chile. Am. Phytopathol. Soc. 2014, 98, 351–360. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pacetti, A.; Moretti, S.; Pinto, C.; Compant, S.; Farine, S.; Bertsch, C.; Mugnai, L. Trunk Surgery as a Tool to Reduce Foliar Symptoms in Diseases of the Esca Complex and Its Influence on Vine Wood Microbiota. J. Fungi 2021, 7, 521. https://doi.org/10.3390/jof7070521
Pacetti A, Moretti S, Pinto C, Compant S, Farine S, Bertsch C, Mugnai L. Trunk Surgery as a Tool to Reduce Foliar Symptoms in Diseases of the Esca Complex and Its Influence on Vine Wood Microbiota. Journal of Fungi. 2021; 7(7):521. https://doi.org/10.3390/jof7070521
Chicago/Turabian StylePacetti, Andrea, Samuele Moretti, Catia Pinto, Stéphane Compant, Sibylle Farine, Christophe Bertsch, and Laura Mugnai. 2021. "Trunk Surgery as a Tool to Reduce Foliar Symptoms in Diseases of the Esca Complex and Its Influence on Vine Wood Microbiota" Journal of Fungi 7, no. 7: 521. https://doi.org/10.3390/jof7070521
APA StylePacetti, A., Moretti, S., Pinto, C., Compant, S., Farine, S., Bertsch, C., & Mugnai, L. (2021). Trunk Surgery as a Tool to Reduce Foliar Symptoms in Diseases of the Esca Complex and Its Influence on Vine Wood Microbiota. Journal of Fungi, 7(7), 521. https://doi.org/10.3390/jof7070521