Hospital Environment as a Source of Azole-Resistant Aspergillus fumigatus Strains with TR34/L98H and G448S Cyp51A Mutations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aspergillus fumigatus Strains
2.2. Case Report and Environmental Search
2.3. Cyp51AAmplification, PCR Conditions and Sequencing
2.4. Strains Genotyping
2.5. Clinical Antifungal Drugs Susceptibility Testing
3. Results
3.1. Amplification and Sequence Analysis of cyp51A
3.2. Strains Genotyping
3.3. Antifungal Susceptibility Testing
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Latgé, J.P.; Chamilos, G. Aspergillusfumigatus and aspergillosis in 2019. Clin. Microbiol. Rev. 2019, 33, e00140-18. [Google Scholar] [CrossRef]
- Dagenais, T.R.T.; Keller, N.P. Pathogenesis of Aspergillusfumigatus in invasive aspergillosis. Clin. Microbiol. Rev. 2009, 22, 447–465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muldoon, E.G.; Strek, M.E.; Patterson, K.C. Allergic and Noninvasive Infectious Pulmonary Aspergillosis Syndromes. Clin. Chest Med. 2017, 38, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Fosses Vuong, M.; Waymack, J.R. Aspergillosis. In StatPearls [Internet]; StatPearls Publishing: Treasure Island, FL, USA, 2020. [Google Scholar]
- Kanj, A.; Abdallah, N.; Soubani, A.O. The spectrum of pulmonary aspergillosis. Respir. Med. 2018, 141, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Azole-Resistant Aspergillosis: Epidemiology, Molecular Mechanisms, and Treatment. J. Infect. Dis. 2017, 216, S436–S444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Resendiz-Sharpe, A.; Lagrou, K.; Meis, J.F.; Chowdhary, A.; Lockhart, S.R.; Verweij, P.E.; ISHAM/ECMM Aspergillus Resistance Surveillance Working Group. Triazole resistance surveillance in Aspergillusfumigatus. Med. Mycol. 2018, 56 (Suppl. 1), 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Linden, J.W.; Camps, S.M.; Kampinga, G.A.; Arends, J.P.; Debets-Ossenkopp, Y.J.; Haas, P.J. Aspergillosis due to voriconazole highly resistant Aspergillusfumigatus and recovery of genetically related resistant isolates from domiciles. Clin. Infect. Dis. 2013, 57, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lestrade, P.P.A.; Meis, J.F.; Melchers, W.J.G.; Verweij, P.E. Triazole resistance in Aspergillusfumigatus: Recent insights and challenges for patient management. Clin. Microbiol. Infect. 2018, 25, 799–806. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; Cuenca-Estrella, M.; Mellado, E. Triazoleresistance in Aspergillus species: Anemergingproblem. Drugs 2017, 77, 599–613. [Google Scholar] [CrossRef]
- Sharma, C.; Nelson-Sathi, S.; Singh, A.; Pillai, M.R.; Chowdhary, A. Genomic perspective of triazole resistance in clinical and environmental Aspergillusfumigatus isolates without cyp51A mutations. Fungal Genet. Biol. 2019, 132, 103265. [Google Scholar] [CrossRef]
- Macedo, D.; Brito-Devoto, T.; Pola, S.; Finquelievich, J.L.; Cuestas, M.L.; García-Effron, G. A novel combination of CYP51A mutations confers pan-azole resistance in Aspergillusfumigatus. Antimicrob. Agents Chemother. 2020, 64, 02501–02519. [Google Scholar] [CrossRef] [PubMed]
- Mellado, E.; Garcia-Effron, G.; Alcázar-Fuoli, L.; Melchers, W.J.; Verweij, P.E.; Cuenca-Estrella, M.; Rodríguez-Tudela, J.L. A new Aspergillusfumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob. Agents Chemother. 2007, 51, 1897–1904. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeanvoine, A.; Rocchi, S.; Bellanger, A.P.; Reboux, G.; Millon, L. Azole-resistant Aspergillusfumigatus: A global phenomenon originating in the environment? Med. Mal. Infect. 2020, 50, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Menendez, O.; Alastruey-Izquierdo, A.; Mellado, E.; Cuenca-Estrella, M. TriazoleResistance in Aspergillus spp.: A WorldwideProblem? J. Fungi 2016, 2, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nywening, A.V.; Rybak, J.M.; Rogers, P.D.; Fortwendel, J.R. Mechanisms of triazole resistance in Aspergillusfumigatus. Environ. Microbiol. 2020. [Google Scholar] [CrossRef] [PubMed]
- Escribano, P.; Recio, S.; Peláez, T.; González-Rivera, M.; Bouza, E.; Guinea, J. In vitro acquisition of secondaryazoleresistance in Aspergillus fumigatus isolatesafterprolongedexposure to itraconazole: Presence of heteroresistantpopulations. Antimicrob. Agents Chemother. 2012, 56, 174–178. [Google Scholar] [CrossRef] [Green Version]
- Singh. A.; Sharma, B.; Mahto, K.K.; Meis, J.F.; Chowdhary, A. High-Frequency Direct Detection of Triazole Resistance in Aspergillusfumigatus from Patients with Chronic Pulmonary Fungal Diseases in India. J. Fungi 2020, 6, 67. [Google Scholar] [CrossRef]
- Manavathu, E.; Baskaran, I.; Krishnan, S.; Alangaden, G.; Chandrasekar, P. Molecular cytochrome P450 14-alpha-sterol demethylase mutation dependent triazole cross-resistance in Aspergillusfumigatus. In Proceedings of the Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, USA, 14–17 September2003; American Society for Microbiology: Chicago, IL, USA, 2003. [Google Scholar]
- Manavathu, E.; Espinel-Ingroff, A.; Alangaden, G.; Chandrasekar, P. Molecular studies on voriconazole resistance in a clinical isolate of Aspergillusfumigatus. In Proceedings of the 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Chicago, IL, USA, 14–17 September 2003. [Google Scholar]
- Bellete. B.; Raberin, H.; Morel, J.; Flori, P.; Hafid, J.; Manhsung, R.T. Acquired resistance to voriconazole and itraconazole in a patient with pulmonary aspergilloma. Med. Mycol. 2010, 48, 197–200. [Google Scholar] [CrossRef] [Green Version]
- Howard, S.J.; Cerar, D.; Anderson, M.J.; Albarrag, A.; Fisher, M.C.; Pasqualotto, A.C.; Laverdiere, M.; Arendrup, M.C.; Perlin, D.S.; Denning, D.W. Frequency and Evolution of Azole Resistance in Aspergillus fumigatus Associated with Treatment Failure. Emerg. Infect. Dis. 2009, 15, 1068–1076. [Google Scholar] [CrossRef]
- Pelaez, T.; Gijón, P.; Bunsow, E.; Bouza, E.; Sánchez-Yebra, W.; Valerio, M.; Gama, B.; Cuenca-Estrella, M.; Mellado, E. Resistance to voriconazole due to a G448S substitution in Aspergillusfumigatus in a patient with cerebral aspergillosis. J. Clin. Microbiol. 2012, 50, 2531–2534. [Google Scholar] [CrossRef] [Green Version]
- Kidd, S.E.; Goeman, E.; Meis, J.F.; Slavin, M.A.; Verweij, P.E. Multi-triazole-resistant Aspergillusfumigatus infections in Australia. Mycoses 2015, 58, 350–355. [Google Scholar] [CrossRef] [PubMed]
- Toyotome, T.; Fujiwara, T.; Kida, H.; Matsumoto, M.; Wada, T.; Komatsu, R. Azole susceptibility in clinical and environmental isolates of Aspergillusfumigatus from eastern Hokkaido, Japan. J. Infect. Chemother. 2016, 22, 648–650. [Google Scholar] [CrossRef] [PubMed]
- Wiederhold, N.P.; Gil, V.G.; Gutierrez, F.; Lindner, J.R.; Albataineh, M.T.; McCarthy, D.I.; Sanders, C.; Fan, H.; Fothergill, A.W.; Sutton, D.A. First Detection of TR34 L98H and TR46 Y121F T289A Cyp51 Mutations in Aspergillusfumigatus Isolates in the United States. J. Clin. Microbiol. 2016, 54, 168–171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hagiwara, D. Current Status of Azole-resistant Aspergillusfumigatus Isolates in East Asia. Med. Mycol. J. 2018, 59, E71–E76. [Google Scholar] [CrossRef] [Green Version]
- Takeda, K.; Suzuki, J.; Watanabe, A.; Arai, T.; Koiwa, T.; Shinfuku, K.; Narumoto, O.; Kawashima, M.; Fukami, T.; Tamura, A.; et al. High detection rate of azole-resistant Aspergillusfumigatus after treatment with azole antifungal drugs among patients with chronic pulmonary aspergillosis in a single hospital setting with low azole resistance. Med. Mycol. 2020, 9, myaa052. [Google Scholar] [CrossRef]
- Montesinos Hernández, M.I.; ArgudinRegueriro, M.A.; Dodemont, M.; Dagyaran, C.; Bakkali, M.; Etienne, I.; Hites, M.; Patteet, S.; Lagrou, K. Azole-resistant Aspergillusfumigatus at a university hospital in Belgium: A laboratory based surveillance. In Proceedings of the 27th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID), Vienna, Austria, 22–25 April 2017. [Google Scholar]
- Zhang, J.; Snelders, E.; Zwaan, B.J.; Schoustra, S.E.; Meis, J.F.; van Dijk, K.; Hagen, F.; van der Beek, M.T.; Kampinga, G.A.; Zoll, J.; et al. A Novel Environmental Azole Resistance Mutation in Aspergillusfumigatus and a Possible Role of Sexual Reproduction in Its Emergence. mBio 2017, 8, e00791-17. [Google Scholar] [CrossRef] [Green Version]
- Schoustra, S.E.; Debets, A.J.M.; Rijs, A.J.M.M.; Zhang, J.; Snelders, E.; Leendertse, P.C.; Melchers, W.J.G.; Rietveld, A.G.; Zwaan, B.J.; Verweij, P.E. Environmental Hotspots for Azole Resistance Selection of Aspergillusfumigatus, the Netherlands. Emerg. Infect. Dis. 2019, 25, 1347–1353. [Google Scholar] [CrossRef] [Green Version]
- Nakano, Y.; Tashiro, M.; Urano, R.; Kikuchi, M.; Ito, N.; Moriya, E.; Shirahige, T.; Mishima, M.; Takazono, T.; Miyakazi, T.; et al. Characteristics of azole-resistant Aspergillusfumigatus attached to agricultural products imported to Japan. J. Infect. Chemother. 2020, 26, 1021–1025. [Google Scholar] [CrossRef]
- Cao, D.; Wu, R.; Dong, S.; Wang, F.; Ju, C.; Yu, S.; Xu, S.; Fang, H.; Yu, Y. Five-Year Survey (2014 to 2018) of Azole Resistance in Environmental Aspergillusfumigatus Isolates from China. Antimicrob. Agents Chemother. 2020, 64, e00904-20. [Google Scholar] [CrossRef]
- Krishnan-Natesan, S.; Wu, W.; Cutright, J.L.; Chandrasekar, P.H. In vitro-in vivo correlation of voriconazole resistance due to G448S mutation (cyp51A gene) in Aspergillusfumigatus. Diagn. Microbiol. Infect. Dis. 2012, 74, 272–277. [Google Scholar] [CrossRef]
- Alcazar-Fuoli, L.; Mellado, E.; Alastruey-Izquierdo, A.; Cuenca-Estrella, M.; Rodriguez-Tudela, J.L. Aspergillus section Fumigati: Antifungalsusceptibilitypatterns and sequence-basedidentification. Antimicrob. Agents Chemother. 2008, 52, 1244–1251. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Pauw, B.; Walsh, T.J.; Donnelly, J.P.; Stevens, D.A.; Edwards, J.E.; Calandra, T.; European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group; National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin. Infect. Dis. 2008, 46, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Pelaez, T.; Muñoz, P.; Guinea, J.; Valerio, M.; Giannella, M.; Klaassen, C.H.W.; Bouza, E. Outbreak of Invasive Aspergillosis After Major Heart Surgery Caused by Spores in the Air of the Intensive Care Unit. Clin. Infect. Dis. 2012, 54, e24–e31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, C.M.; Cohen, J.; Holden, D.W. An Aspergillusfumigatus alkaline protease mutant constructed by gene disruption is deficient in extracellular elastase activity. Mol. Microbiol. 1992, 6, 1663–1671. [Google Scholar] [CrossRef] [PubMed]
- Mellado, E.; Diaz-Guerra, T.M.; Cuenca-Estrella, M.; Rodriguez-Tudela, J.L. Identification of two different 14-alpha sterol demethylase-related genes (cyp51A and cyp51B) in Aspergillusfumigatus and other Aspergillus species. J. Clin. Microbiol. 2001, 39, 2431–2438. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garcia-Rubio, R.; Escribano, P.; Gomez, A.; Guinea, J.; Mellado, E. Comparison of Two Highly Discriminatory Typing Methods to Analyze Aspergillusfumigatus Azole Resistance. Front. Microbiol. 2018, 9, 1626. [Google Scholar] [CrossRef]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W.W. European Committee on Antimicrobial Susceptibility Testing Subcommittee on Antifungal Susceptibility Testing (EUCAST-AFST). EUCAST technical note on Aspergillusand amphotericin B, itraconazole, and posaconazole. Clin. Microbiol. Infect. 2012, 18, E248–E250. [Google Scholar] [CrossRef] [Green Version]
- European Committee on Antimicrobial Susceptibility Testing. Antifungal Agents. Breakpoint Tables for Interpretation of MICs. Version 9.0. Available online: https://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/ (accessed on 7 December 2020).
- Barber, A.E.; Riedel, J.; Sae-Ong, T.; Kang, K.; Brabetz, W.; Panagiotou, G.; Deising, H.B.; Kurzai, O. Effects of Agricultural Fungicide Use on Aspergillusfumigatus Abundance, Antifungal Susceptibility, and Population Structure. mBio 2020, 11, e02213-20. [Google Scholar] [CrossRef]
- Escribano, P.; Rodríguez-Sánchez, B.; Díaz-García, J.; Martín-Gómez, M.T.; Ibáñez-Martínez, E.; Rodríguez-Mayo, M.; Peláez, T.; de la Pedrosa, E.G.-G.; Tejero-García, R.; Marimón, J.M.; et al. Azole resistance survey on clinical Aspergillusfumigatus isolates in Spain. Clin. Microbiol. Infect. 2020, 1. [Google Scholar] [CrossRef]
- Peláez, T.; Álvarez-Pérez, S.; García, M.E.; Blanco, J.L.; Gama, B.; Mellado, E.; Bouza, E. Surveillance of azole resistance among environmental isolates of Aspergillusfumigatus species complex in a general hospital in Madrid. In Proceedings of the 24th European Congress of Clinical Microbiology and Infectious Diseases, Barcelona, Spain, 10–13 May 2014. [Google Scholar]
- Lavergne, R.A.; Chouaki, T.; Hagen, F.; Toublanc, B.; Dupont, H.; Jounieaux, V.; Meis, J.F.; Morio, F.; Le Pape, P. Home Environment as a Source of Life-Threatening Azole-Resistant Aspergillusfumigatus in Immunocompromised Patients. Clin. Infect. Dis. 2017, 64, 76–78. [Google Scholar] [CrossRef] [Green Version]
- Godeau, C.; Reboux, G.; Scherer, E.; Laboissiere, A.; Lechenault-Bergerot, C.; Millon, L.; Rocchi, S. Azole-resistant Aspergillusfumigatus in the hospital: Surveillance from flower beds to corridors. Am. J. Infect. Control 2020, 48, 702–704. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, B.; Normand, A.C.; Forel, J.M.; Cassir, N.; Piarroux, R.; Ranque, S. Hospitalized Patient as Source of Aspergillusfumigatus, 2015. Emerg. Infect. Dis. 2018, 24, 1524–1527. [Google Scholar] [CrossRef] [PubMed]
- Engel, T.G.P.; Erren, E.; Van den Driessche, K.S.J.; Melchers, W.J.G.; Reijers, M.H.; Merkus, P.; Verweij, P.E. Aerosol Transmission of Aspergillusfumigatus in Cystic Fibrosis Patients in the Netherlands. Emerg. Infect. Dis. 2019, 25, 797–799. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegues, D.A.; Lasker, B.A.; McNeil, M.M.; Hamm, P.M.; Lundal, J.L.; Kubak, B.M. Cluster of cases of invasive aspergillosis in a transplant intensive care unit: Evidence of person-to-person airborne transmission. Clin. Infect. Dis. 2002, 34, 412–416. [Google Scholar] [CrossRef] [Green Version]
- Pugliese, G.; Favero, M. Person-to-Person Spread of Aspergillus. Infect. Control Hosp. Epidemiol. 2000, 21, 228. [Google Scholar] [CrossRef]
- Manavathu, E.K.; Cutright, J.L.; Loebenberg, D.; Chandrasekar, P.H. A comparative study of the in vitro susceptibilities of clinical and laboratory-selected resistant isolates of Aspergillus spp. to amphotericin B, itraconazole, voriconazole and posaconazole (SCH 56592). J. Antimicrob. Chemother. 2000, 46, 229–234. [Google Scholar] [CrossRef] [Green Version]
- Verweij, P.E.; Snelders, E.; Kema, G.H.; Mellado, E.; Melchers, W.J. Azole resistance in Aspergillusfumigatus: A side-effect of environmental fungicide use? Lancet Infect. Dis. 2009, 9, 789–795. [Google Scholar] [CrossRef]
- Fuhren, J.; Voskuil, W.S.; Boel, C.H.; Haas, P.J.; Hagen, F.; Meis, J.F.; Kusters, J.G. High prevalence of azole resistance in Aspergillusfumigatus isolates from high-risk patients. J. Antimicrob. Chemother. 2015, 70, 2894–2898. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Cantero, A.; López-Fernández, L.; Guarro, J.; Capilla, J. Azole resistance mechanisms in Aspergillus: Update and recent advances. Int. J. Antimicrob. Agents 2020, 55, 105807. [Google Scholar] [CrossRef]
- Garcia-Rubio, R.; Gonzalez-Jimenez, I.; Lucio, J.; Mellado, E. Characterization of Aspergillusfumigatus cross-resistance between clinical and DMI azole drugs. Appl. Environ. Microbiol. 2020, in press. [Google Scholar] [CrossRef]
- Ren, J.; Jin, X.; Zhang, Q.; Zheng, Y.; Lin, D.; Yu, Y. Fungicides induced triazole-resistance in Aspergillusfumigatus associated with mutations of TR46/Y121F/T289A and its appearance in agricultural fields. J. Hazard. Mater. 2017, 326, 54–60. [Google Scholar] [CrossRef] [PubMed]
Strains | Source | Cyp51A Mutation | MICs (mg/L) | TRESPERG | Type | ||||
---|---|---|---|---|---|---|---|---|---|
AmB | ITC | VCZ | POS | ISV | |||||
1003 | Patient | TR34/L98H | 0.5 | >8 | 4 | 0.5 | 8 | t10m1.1g08Ae05 | I |
1003E | Patient | TR34/L98H | 0.5 | >8 | 4 | 0.5 | 8 | t10m1.1g08Ae05 | I |
1003E2 | Patient | TR34/L98H | 0.5 | >8 | 4 | 0.5 | 8 | t10m1.1g08Ae05 | I |
1004 | Patient | TR34/L98H | 0.5 | >8 | 4 | 0.5 | 8 | t10m1.1g08Ae05 | I |
1004E | Patient | TR34/L98H | 0.5 | >8 | 4 | 0.5 | 8 | t10m1.1g08Ae05 | I |
1004E2 | Patient | TR34/L98H | 0.5 | >8 | 4 | 0.5 | 8 | t10m1.1g08Ae05 | I |
1005.1 | Patient | TR34/L98H | 0.125 | >8 | 4 | 0.5 | 8 | t02m1.1g09e16 | II |
1005.2 | Patient | TR34/L98H | 0.125 | >8 | 4 | 0.5 | 8 | t02m1.1g09e16 | II |
1005.3 | Patient | TR34/L98H | 0.125 | >8 | 4 | 0.5 | 8 | t02m1.1g09e16 | II |
1005.4 | Patient | TR34/L98H | 0.125 | >8 | 4 | 0.5 | 8 | t02m1.1g09e16 | II |
TP1 | Bathroom | G448S | 0.25 | 1 | 8 | 0.5 | 4 | t04Am1.3g05Ae07 | III |
TP2 | Room | G448S | 0.5 | 1 | 8 | 0.25 | 4 | t04Am1.3g05Ae07 | III |
TP3 | Bathroom | TR34/L98H | 0.5 | >8 | 4 | 0.5 | 8 | t10m1.1g08Ae05 | I |
TP4 | Room | G448S | 0.5 | 1 | 8 | 0.25 | 4 | t04Am1.3g05Ae07 | III |
TP5 | Room | WT | 0.25–0.5 | 0.25 | 0.5–1 | 0.06 | 0.5–1 | t04Am1.3g08Ae07 | IV |
CM2580 | Control | WT | 0.25–1 | 0.12–1 | 0.25–1 | 0.03–0.25 | 0.25–1 | t01m5.5g03e11 | -- |
IsolationYear | Country | Origin | Cyp51A Mutation | N Isolates | Reference |
---|---|---|---|---|---|
2003 | USA | Clinical | G448S | 1 | [19] |
2003 | USA | Laboratorymutants | G448S | 5 | [20] |
2005 | France | Clinical | G448S | 1 | [21] |
2009 | UK | Clinical | G448S | 2 | [22] |
2011 | Spain | Clinical | G448S | 1 | [23] |
2012 | USA | Laboratory mutants | G448S | 6 | [34] |
2013 | Australia | Clinical | G448S | 1 | [24] |
2011–2015 | USA | Clinical | G448S | 4 | [26] |
2015–2016 | Belgium | Clinical | G448S | 1 | [29] |
2017 | The Netherlands | Environmental | TR46/Y121F/M172I/T289A/G448S | 4 | [30] |
2017 | China | Laboratorymutants | N248K, G448S | 1 | [57] |
2012–2019 | Japan | Clinical | G448S | 5 | [25,27,28] |
2015 | The Netherlands | Environmental | TR92/Y121F/M172I/T289A/G448S | 2 | [31] |
2020 | Japan (The Netherlands) | Flowerbulbs | TR46/Y121F/M172I/T289A/G448S | 7 | [32] |
2016 | China | Environmental | G448S | 9 | [33] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzalez-Jimenez, I.; Lucio, J.; Menéndez-Fraga, M.D.; Mellado, E.; Peláez, T. Hospital Environment as a Source of Azole-Resistant Aspergillus fumigatus Strains with TR34/L98H and G448S Cyp51A Mutations. J. Fungi 2021, 7, 22. https://doi.org/10.3390/jof7010022
Gonzalez-Jimenez I, Lucio J, Menéndez-Fraga MD, Mellado E, Peláez T. Hospital Environment as a Source of Azole-Resistant Aspergillus fumigatus Strains with TR34/L98H and G448S Cyp51A Mutations. Journal of Fungi. 2021; 7(1):22. https://doi.org/10.3390/jof7010022
Chicago/Turabian StyleGonzalez-Jimenez, Irene, Jose Lucio, Maria Dolores Menéndez-Fraga, Emilia Mellado, and Teresa Peláez. 2021. "Hospital Environment as a Source of Azole-Resistant Aspergillus fumigatus Strains with TR34/L98H and G448S Cyp51A Mutations" Journal of Fungi 7, no. 1: 22. https://doi.org/10.3390/jof7010022
APA StyleGonzalez-Jimenez, I., Lucio, J., Menéndez-Fraga, M. D., Mellado, E., & Peláez, T. (2021). Hospital Environment as a Source of Azole-Resistant Aspergillus fumigatus Strains with TR34/L98H and G448S Cyp51A Mutations. Journal of Fungi, 7(1), 22. https://doi.org/10.3390/jof7010022