Linking the Metabolic Activity of Plastic-Degrading Fungi to Their Taxonomy and Evolution
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Fungal Enzymes in Plastic Biodegradation
Enzyme | Fungi Recorded for the Production of Enzymes | Targeted Plastic Type | References |
---|---|---|---|
Esterases | Aspergillus fumigatus A. flavus A. niger A. tubingensis Aureobasidium pullulans Cladosporium asperulatum C. montecillanum C. pseudocladosporioides C. tenuissimum Cladosporium sp. Curvularia senegalensis Embarria clematidis | PUR, PVC, and PU | [33,38,39,40] |
Cutinases | Amycolatopsis mediterannei Aspergillus oryzae Fusarium solani Humicola insolens Moniliophthora roreri Thermobifida fusca Thermomyces lanuginosus | PCL, PET, PES, PBS, and PBSA | [41,42,43,44,45,46] |
Manganese peroxidases | Alternaria alternate Aspergillus caespitosus A. terreus Bjerkandera adusta Eupenicillium hirayamae Paecilomyces variotii Phanerochaete chrysosporium Phialophora alba Polyporus brumalis Trametes versicolor | Nylon, PE, and LDPE | [47,48,49,50,51] |
Laccases | Alternaria alternata Ascocoryne sp. Aspergillus caespitosus Aspergillus sp. A. terreus Clavariopsis aquatica Cochliobolus Eupenicillium hirayamae Lesiodiplodia theobromae Paecilomyces lilacinus P. variotii Paradendriphiella arenariae Phialophora alba Phoma sp. Pleurotus ostreatus Trametes versicolor Trichoderma harzianum | Nylon, PE, LDPE, PP, DBP, DEP, and BPA | [29,51,52,53,54,55] |
Peroxidases | Alternaria alternata, Ascocoryne sp. Bjerkandera adusta Ceriporiopsis subvermispora Clavariopsis aquatica Dichomitus squalens Paradendriphiella arenariae Phanerochaete chrysosporium Phlebia radiata Phoma sp. Pleurotus spp. Trametes versicolor | PE, DBP, and BPA | [21,54,55] |
Lignin peroxidases | Alternaria alternata Aspergillus caespitosus A. terreus Paecilomyces variotii Phanerochaete chrysosporium Phialophora alba | PVC | [51,56] |
Oxidoreductases | Alternaria alternata Fusarium falciforme Lasiodiplodia theobromae Paecilomyces lilacinum Penicillium chrysogenum P. simplicissimum Phanerochaete chrysosporium Pleurotus ostreatus Purpureocillium lilacinum Trametes versicolor Trichoderma harzianum Zelererion maritimum | Polyolefin (PE, PS, PP, and PVC) | [53,55,57,58,59,60,61,62] |
Ureases | Aspergillus fumigatus A. niger Cladosporium asperulatum C. montecillanum C. pseudocladosporioides C. tenuissimum Cladosporium sp. Embarria clematidis | PU | [33,40] |
Proteases | Aspergillus fumigatus Cladosporium asperulatum C. montecillanum C. pseudocladosporioides C. tenuissimum Cladosporium sp. | PU | [33] |
Lipases | Acremonium sp. Alternaria sp. Aspergillus flavus G10 A. oryzae A. tubingensis Beauveria spp. Candida spp. Cryptococcus spp. Eremothecium spp. Fusarium solani Fusarium sp. Geotrichum spp. Humicola spp. Mucor spp. Ophiostoma spp. Penicillium citrinum Penicillium spp. Rhizomucor spp. Rhizopus spp. Thermomyces lanuginosus Trichoderma spp. | PET, 3PET, PU, PBS, PBSA, PCL, and PBS | [41,44,45,63,64,65,66] |
Polyesterases | Beauveria brongniartii Papiliotrema laurentii Penicillium citrinum | PU, PES, and PEA | [21,67] |
Dehydrogenases | Aspergillus fumigatus Papiliotrema laurentii | PU, PES, and PEA | [67] |
Serine hydrolases | Pestalotiopsis microspora | PUR | [68] |
PETases | Pestalotiopsis microspora | PET | [21] |
3.2. Major Fungal Enzymes for Plastic Biodegradation
3.2.1. Hydrolases (EC 3)
Esterases (EC 3.1.1.x)
Cutinases (EC 3.1.1.74)
Lipases (EC 3.1.1.3)
Polyesterases (EC 3.1.1.x)
PETase Enzymes (EC 3.1.1.101)
Ureases (EC 3.5.1.5)
Proteases (EC 3.4.x)
Serine Hydrolases (EC 3)
3.2.2. Oxidoreductases (EC 1)
Laccases (EC 1.10.3.2)
Peroxidases (EC 1.11.1.x)
Manganese Peroxidases (MnP) (EC 1.11.1.13)
Lignin Peroxidases (LiP) (EC 1.11.1.14)
Dehydrogenases (EC1)
3.3. Evolution of Fungi to Produce Enzymes for Plastic Biodegradation: Enzymatic Adaptations and Taxonomic Involvement
3.3.1. Aspergillus
3.3.2. Penicillium
3.3.3. Paecilomyces
3.3.4. Alternaria
3.3.5. Phanerochaete
3.3.6. Pleurotus
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elahi, A.; Bukhari, D.A.; Shamim, S.; Rehman, A. Plastics degradation by microbes: A sustainable approach. J. King Saud Univ. Sci. 2021, 33, 101538. [Google Scholar] [CrossRef]
- Ekanayaka, A.H.; Tibpromma, S.; Dai, D.Q.; Xu, R.F.; Suwannarach, N.; Stephenson, S.L.; Dao, C.J.; Karunarathna, S.C. A review of the fungi that degrade plastic. J. Fungi 2022, 8, 772. [Google Scholar] [CrossRef] [PubMed]
- Hossain, N.; Chowdhury, M.A.; Noman, T.I.; Rana, M.M.; Ali, M.H.; Alruwais, R.S.; Alam, M.S.; Alamry, K.A.; Aljabri, M.D.; Rahman, M.M. Synthesis and characterization of eco-friendly bio-composite from fenugreek as a natural resource. Polymers 2022, 14, 5141. [Google Scholar] [CrossRef]
- Statista. Statista: Global No.1 Business Data Platform. 2022. Available online: https://www.statista.com (accessed on 31 July 2024).
- PlasticsEurope. Plastics—The Facts 2020. An Analysis of European Plastics Production, Demand and Waste Data. 2020. Available online: https://issuu.com/plasticseuropeebook/docs/plastics_the_facts-web-dec2020 (accessed on 31 July 2024).
- Barbir, J.; Leal Filho, W.; Salvia, A.L.; Fendt, M.T.C.; Babaganov, R.; Albertini, M.C.; Bonoli, A.; Lackner, M.; Müller de Quevedo, D. Assessing the levels of awareness among european citizens about the direct and indirect impacts of plastics on human health. Int. J. Environ. Res. Public Health 2021, 18, 3116. [Google Scholar] [CrossRef]
- Ferronato, N.; Maalouf, A.; Mertenat, A.; Saini, A.; Khanal, A.; Copertaro, B.; Yeo, D.; Jalalipour, H.; Veuthey, J.R.; Ulloa-Murillo, L.M.; et al. A review of plastic waste circular actions in seven developing countries to achieve sustainable development goals. Waste Manag. Res. 2024, 42, 436–458. [Google Scholar] [CrossRef]
- Ezeudu, O.B.; Tenebe, I.T.; Ujah, C.O. Status of production, consumption, and end-of-life waste management of plastic and plastic products in Nigeria: Prospects for circular plastics economy. Sustainability 2024, 16, 7900. [Google Scholar] [CrossRef]
- Hahladakis, J.N.; Iacovidou, E.; Gerassimidou, S. Plastic waste in a circular economy. In Environmental Materials and Waste; Elsevier: Amsterdam, The Netherlands, 2024; pp. 99–134. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef]
- Ishigaki, T.; Sugano, W.; Nakanishi, A.; Tateda, M.; Ike, M.; Fujita, M. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors. Chemosphere 2004, 54, 225–233. [Google Scholar] [CrossRef]
- Alshehrei, F. Biodegradation of synthetic and natural plastic by microorganisms. J. Appl. Environ. Microbiol. 2017, 5, 8–19. [Google Scholar]
- Lucas, N.; Bienaime, C.; Belloy, C.; Queneudec, M.; Silvestre, F.; Nava-Saucedo, J.E. Polymer biodegradation: Mechanisms and estimation techniques—A review. Chemosphere 2008, 73, 429–442. [Google Scholar] [CrossRef]
- Kale, S.K.; Deshmukh, A.G.; Dudhare, M.S.; Patil, V.B. Microbial degradation of plastic: A review. J. Biochem. Tech. 2015, 6, 952–961. [Google Scholar]
- Cai, Z.; Li, M.; Zhu, Z.; Wang, X.; Huang, Y.; Li, T.; Gong, H.; Yan, M. Biological degradation of plastics and microplastics: A recent perspective on associated mechanisms and influencing factors. Microorganisms 2023, 11, 1661. [Google Scholar] [CrossRef] [PubMed]
- Okal, E.J.; Gui, H.; Ephie, A.M.; Sehroon, K.; Wu, S.X.; Ge, Z.Q.; Zhang, T.F.; Peter, E.M.; Xu, J.C. Insights into the Mechanisms Involved in the Fungal Degradation of Plastics. Ecotoxicol. Environ. Saf. 2023, 262, 115202. [Google Scholar] [CrossRef] [PubMed]
- Khatua, S.; Simal-Gandara, J.; Acharya, K. Myco-remediation of plastic pollution: Current knowledge and future prospects. Biodegradation 2024, 35, 249–279. [Google Scholar] [CrossRef]
- Chigwada, A.D.; Ogola, H.J.O.; Tekere, M. Multivariate analysis of enriched landfill soil consortia provide insight on the community structural perturbation and functioning during low-density polyethylene degradation. Microbiol. Res. 2023, 274, 127425. [Google Scholar] [CrossRef]
- Battulga, B.; Nakayama, M.; Matsuoka, S.; Kondo, T.; Atarashi-Andoh, M.; Koarashi, J. Dynamics and functions of microbial communities in the plastisphere in temperate coastal environments. Water Res. 2024, 264, 122207. [Google Scholar] [CrossRef]
- Méndez-Zamora, A.; Diaz-Vidal, T.; Robles-Machuca, M.; Pereira-Santana, A.; Casas-Godoy, L. Unveiling potential PET degrading eukaryotes through in silico bioprospecting of PETases. Sci. Total Environ. 2024, 948, 174978. [Google Scholar] [CrossRef]
- Temporiti, M.E.E.; Nicola, L.; Nielsen, E.; Tosi, S. Fungal enzymes involved in plastics biodegradation. Microorganisms 2022, 10, 1180. [Google Scholar] [CrossRef]
- Tokiwa, Y.; Calabia, B.P.; Ugwu, C.U.; Aiba, S. Biodegradability of plastics. Int. J. Mol. Sci. 2009, 10, 3722–3742. [Google Scholar] [CrossRef]
- Wallace, N.E.; Adams, M.C.; Chafin, A.C.; Jones, D.D.; Tsui, C.L.; Gruber, T.D. The highly crystalline PET found in plastic water bottles does not support the growth of the PETase-producing bacterium Ideonella sakaiensis. Environ. Microbiol. Rep. 2020, 12, 578–582. [Google Scholar] [CrossRef]
- Jacquin, J.; Cheng, J.; Odobel, C.; Pandin, C.; Conan, P.; Pujo-Pay, M.; Valérie, B.; Anne-Leila, M.; Ghiglione, J.F. Microbial ecotoxicology of marine plastic debris: A review on colonization and biodegradation by the Plastisphere. Front. Microbiol. 2019, 10, 865. [Google Scholar] [CrossRef] [PubMed]
- Arutchelvi, J.; Sudhakar, M.; Arkatkar, A.; Doble, M.; Bhaduri, S.; Uppara, P.V. Biodegradation of polyethylene and polypropylene. Indian J. Biotechnol. 2008, 7, 9–22. Available online: http://nopr.niscpr.res.in/handle/123456789/7326 (accessed on 31 July 2024).
- Vedrtnam, A.; Kumar, S.; Chaturvedi, S. Experimental study on mechanical behavior, biodegradability, and resistance to natural weathering and ultraviolet radiation of wood-plastic composites. Compos. Part B Eng. 2019, 176, 107282. [Google Scholar] [CrossRef]
- Taghavi, N.; Zhuang, W.Q.; Baroutian, S. Enhanced biodegradation of non-biodegradable plastics by UV radiation: Part 1. J. Environ. Chem. Eng. 2021, 9, 106464. [Google Scholar] [CrossRef]
- Mohanan, N.; Montazer, Z.; Sharma, P.K.; Levin, D.B. Microbial and enzymatic degradation of synthetic plastics. Front. Microbiol. 2020, 11, 580709. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Gao, D.L.; Li, Q.H.; Zhao, Y.X.; Li, L.; Lin, H.F.; Bi, Q.R.; Zhao, Y.C. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci. Total Environ. 2020, 704, 135931. [Google Scholar] [CrossRef]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef]
- Bahl, S.; Dolma, J.; Singh, J.J.; Sehgal, S. Biodegradation of plastics: A state of the art review. Mater. Today Proc. 2021, 39, 31–34. [Google Scholar] [CrossRef]
- Vertommen, M.A.M.E.; Nierstrasz, V.A.; Van Der Veer, M.; Warmoeskerken, M.M.C.G. Enzymatic surface modification of poly (ethylene terephthalate). J. Biotechnol. 2005, 120, 376–386. [Google Scholar] [CrossRef]
- Álvarez-Barragán, J.; Domínguez-Malfavón, L.; Vargas-Suárez, M.; González-Hernández, R.; Aguilar-Osorio, G.; Loza-Tavera, H. Biodegradative activities of selected environmental fungi on a polyester polyurethane varnish and polyether polyurethane foams. Appl. Environ. Microbiol. 2016, 82, 5225–5235. [Google Scholar] [CrossRef]
- Gómez-Méndez, L.D.; Moreno-Bayona, D.A.; Poutou-Pinales, R.A.; Salcedo-Reyes, J.C.; Pedroza-Rodríguez, A.M.; Vargas, A.; Bogoya, J.M. Biodeterioration of plasma pretreated LDPE sheets by Pleurotus ostreatus. PLoS ONE 2018, 13, e0203786. [Google Scholar] [CrossRef] [PubMed]
- Restrepo-Flórez, J.M.; Bassi, A.; Thompson, M.R. Microbial degradation and deterioration of polyethylene—A review. Int. Biodeterior. Biodegrad. 2014, 88, 83–90. [Google Scholar] [CrossRef]
- Wei, R.; Zimmermann, W. Microbial enzymes for the recycling of recalcitrant petroleum-based plastics: How far are we? Microb. Biotechnol. 2017, 10, 1308–1322. [Google Scholar] [CrossRef]
- Maity, S.; Banerjee, S.; Biswas, C.; Guchhait, R.; Chatterjee, A.; Pramanick, K. Functional interplay between plastic polymers and microbes: A comprehensive review. Biodegradation 2021, 32, 487–510. [Google Scholar] [CrossRef]
- Crabbe, J.R.; Campbell, J.R.; Thompson, L.; Walz, S.L.; Schultz, W.W. Biodegradation of a Colloidal Ester-Based Polyurethane by Soil Fungi. Int. Biodeterior. Biodegrad. 1994, 33, 103–113. [Google Scholar] [CrossRef]
- Webb, J.S.; Nixon, M.; Eastwood, I.M.; Greenhalgh, M.; Robson, G.D.; Handley, P.S. Fungal colonization and biodeterioration of plasticized polyvinyl chloride. Appl. Environ. Microbiol. 2000, 66, 3194–3200. [Google Scholar] [CrossRef]
- Khruengsai, S.; Sripahco, T.; Pripdeevech, P. Biodegradation of polyester polyurethane by Embarria clematidis. Front. Microbiol. 2022, 13, 874842. [Google Scholar] [CrossRef]
- Tan, Y.; Henehan, G.T.; Kinsella, G.K.; Ryan, B.J. An extracellular lipase from Amycolatopsis mediterannei is a cutinase with plastic degrading activity. Comput. Struct. Biotechnol. J. 2021, 19, 869–879. [Google Scholar] [CrossRef]
- Vázquez-Alcántara, L.; Oliart-Ros, R.M.; García-Bórquez, A.; Peña-Montes, C. Expression of a cutinase of Moniliophthora roreri with polyester and PET-plastic residues degradation activity. Microbiol. Spectr. 2021, 9, e00976-21. [Google Scholar] [CrossRef]
- Murphy, C.A.; Cameron, J.A.; Huang, S.J.; Vinopal, R.T. Fusarium polycaprolactone depolymerase is cutinase. Appl. Environ. Microbiol. 1996, 62, 456–460. [Google Scholar] [CrossRef]
- Ohtaki, S.; Maeda, H.; Takahashi, T.; Yamagata, Y.; Hasegawa, F.; Gomi, K.; Nakajima, T.; Abe, K. Novel hydrophobic surface binding protein, HsbA, produced by Aspergillus oryzae. Appl. Environ. Microbiol. 2006, 72, 2407–2413. [Google Scholar] [CrossRef] [PubMed]
- Eberl, A.; Heumann, S.; Brückner, T.; Araujo, R.; Cavaco-Paulo, A.; Kaufmann, F.; Kroutil, W.; Guebitz, G.M. Enzymatic surface hydrolysis of poly (Ethylene Terephthalate) and Bis (Benzoyloxyethyl) terephthalate by lipase and cutinase in the presence of surface-active molecules. J. Biotechnol. 2009, 143, 207–212. [Google Scholar] [CrossRef] [PubMed]
- Ronkvist, A.M.; Xie, W.; Lu, W.H.; Gross, R.A. Cutinase-catalyzed hydrolysis of poly (Ethylene Terephthalate). Macromolecules 2009, 42, 5128–5138. [Google Scholar] [CrossRef]
- Deguchi, T.; Kitaoka, Y.; Kakezawa, M.; Nishida, T. Purification and characterization of a Nylon-degrading enzyme. Appl. Environ. Microbiol. 1998, 64, 1366–1371. [Google Scholar] [CrossRef] [PubMed]
- Iiyoshi, Y.; Tsutsumi, Y.; Nishida, T. Polyethylene degradation by lignin-degrading fungi and manganese peroxidase. J. Wood Sci. 1998, 44, 222–229. [Google Scholar] [CrossRef]
- Friedrich, J.; Zalar, P.; Mohorčič, M.; Klun, U.; Kržan, A. Ability of fungi to degrade synthetic polymer Nylon-6. Chemosphere 2007, 67, 2089–2095. [Google Scholar] [CrossRef]
- Ryu, S.H.; Kim, B.; Kim, M.; Seo, J.H. Molecular characterization of manganese peroxidases from white-rot fungus Polyporus brumalis. Bioprocess Biosyst. Eng. 2014, 37, 393–400. [Google Scholar] [CrossRef]
- Ameen, F.; Moslem, M.; Hadi, S.; Al-Sabri, A.E. Biodegradation of low-density polyethylene (LDPE) by mangrove fungi from the red seacoast. Prog. Rubber Plast. Recycl. Technol. 2015, 31, 125–143. [Google Scholar] [CrossRef]
- Fujisawa, M.; Hirai, H.; Nishida, T. Degradation of polyethylene and Nylon-66 by the laccase-mediator system. J. Polym. Environ. 2001, 9, 103–108. [Google Scholar] [CrossRef]
- Sheik, S.; Chandrashekar, K.R.; Swaroop, K.; Somashekarappa, H.M. Biodegradation of gamma irradiated low density polyethylene and polypropylene by endophytic fungi. Int. Biodeterior. Biodegrad. 2015, 105, 21–29. [Google Scholar] [CrossRef]
- Carstens, L.; Cowan, A.R.; Seiwert, B.; Schlosser, D. Biotransformation of phthalate plasticizers and bisphenol a by marine-derived, freshwater, and terrestrial fungi. Front. Microbiol. 2020, 11, 518959. [Google Scholar] [CrossRef] [PubMed]
- Gao, R.; Liu, R.; Sun, C. A marine fungus Alternaria alternata FB1 efficiently degrades polyethylene. J. Hazard. Mater. 2022, 431, 128617. [Google Scholar] [CrossRef] [PubMed]
- Khatoon, N.; Jamal, A.; Ali, M.I. Lignin peroxidase isoenzyme: A novel approach to biodegrade the toxic synthetic polymer waste. Environ. Technol. 2019, 40, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Sowmya, H.V.; Ramalingappa; Krishnappa, M.; Thippeswamy, B. Degradation of polyethylene by Trichoderma harzianum—SEM, FTIR, and NMR analyses. Environ. Monit. Assess. 2014, 186, 6577–6586. [Google Scholar] [CrossRef]
- Nayanashree, G.; Thippeswamy, B. Natural rubber degradation by laccase and manganese peroxidase enzymes of Penicillium chrysogenum. Int. J. Environ. Sci. Technol. 2015, 12, 2665–2672. [Google Scholar] [CrossRef]
- Sowmya, H.V.; Ramalingappa, B.; Nayanashree, G.; Thippeswamy, B.; Krishnappa, M. Polyethylene degradation by fungal consortium. Int. J. Environ. Res. 2015, 9, 823–830. [Google Scholar] [CrossRef]
- Sowmya, H.V.; Ramalingappa; Thippeswamy, B.; Krishnappa, M. Degradation of polyethylene by Penicillium Simplicissimum isolated from local Dumpsite of Shivamogga District. Environ. Dev. Sustain. 2015, 17, 731–745. [Google Scholar] [CrossRef]
- Paço, A.; Duarte, K.; da Costa, J.P.; Santos, P.S.; Pereira, R.; Pereira, M.E.; Freitas, A.C.; Duarte, A.C.; Rocha-Santos, T.A. Biodegradation of polyethylene microplastics by the marine fungus Zalerion Maritimum. Sci. Total Environ. 2017, 586, 10–15. [Google Scholar] [CrossRef]
- Spina, F.; Tummino, M.L.; Poli, A.; Prigione, V.; Ilieva, V.; Cocconcelli, P.; Puglisi, E.; Bracco, P.; Zanetti, M.; Varese, G.C. Low density polyethylene degradation by filamentous fungi. Environ. Pollut. 2021, 274, 116548. [Google Scholar] [CrossRef]
- Thirunavukarasu, K.; Purushothaman, S.; Sridevi, J.; Aarthy, M.; Gowthaman, M.K.; Nakajima-Kambe, T.; Kamini, N.R. Degradation of poly (butylene succinate) and poly (butylene succinate-co-butylene adipate) by a lipase from yeast Cryptococcus sp. grown on agro-industrial residues. Int. Biodeterior. Biodegrad. 2016, 110, 99–107. [Google Scholar] [CrossRef]
- Garrido, S.M.; Kitamoto, N.; Watanabe, A.; Shintani, T.; Gomi, K. Functional analysis of FarA transcription factor in the regulation of the genes encoding lipolytic enzymes and hydrophobic surface binding protein for the degradation of biodegradable plastics in Aspergillus oryzae. J. Biosci. Bioeng. 2012, 113, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Khan, I.; Dutta, J.R.; Ganesan, R. Lactobacillus sps. lipase mediated poly (ε-caprolactone) degradation. Int. J. Biol. Macromol. 2017, 95, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.; Ali, S.A.; Ali, A.S. Biodegradation of low-density polyethylene (LDPE) by mesophilic fungus ‘Penicillium citrinum’ isolated from soils of plastic waste dump yard, Bhopal, India. Environ. Technol. 2023, 44, 2300–2314. [Google Scholar] [CrossRef]
- Hung, C.S.; Barlow, D.E.; Varaljay, V.A.; Drake, C.A.; Crouch, A.L.; Russell, J.N., Jr.; Nadeau, L.J.; Crookes-Goodson, W.J.; Biffinger, J.C. The biodegradation of polyester and polyester polyurethane coatings using Papiliotrema Laurentii. Int. Biodeterior. Biodegrad. 2019, 139, 34–43. [Google Scholar] [CrossRef]
- Russell, J.R.; Huang, J.; Anand, P.; Kucera, K.; Sandoval, A.G.; Dantzler, K.W.; Hickman, D.; Jee, J.; Kimovec, F.M.; Koppstein, D.; et al. Biodegradation of polyester polyurethane by endophytic fungi. Appl. Environ. Microbiol. 2011, 77, 6076–6084. [Google Scholar] [CrossRef]
- Lisboa, H.C.F.; Biasetto, C.R.; Medeiros, J.B.D.; Araújo, Â.R.; Silva, D.H.S.; Teles, H.L.; Trevisan, H.C. Endophytic fungi producing of esterases: Evaluation in vitro of the enzymatic activity using pH indicator. Braz. J. Microbiol. 2013, 44, 923–926. [Google Scholar] [CrossRef]
- Trevisan, H.C.; Medeiros, J.B.D.; Lisboa, H.C.F. Extração de esterase de fígado suíno (PLE). Química Nova 2006, 29, 865–867. [Google Scholar] [CrossRef]
- Kolattukudy, P.E. Enzymatic penetration of the plant cuticle by fungal pathogens. Annu. Rev. Phytopathol. 1985, 23, 223–250. [Google Scholar] [CrossRef]
- Longhi, S.; Cambillau, C. Structure-activity of cutinase, a small lipolytic enzyme. Biochim. Et Biophys. Acta (BBA) Mol. Cell Biol. Lipids 1999, 1441, 185–196. [Google Scholar] [CrossRef]
- Arya, G.C.; Cohen, H. The multifaceted roles of fungal cutinases during infection. J. Fungi 2022, 8, 199. [Google Scholar] [CrossRef]
- Dimarogona, M.; Nikolaivits, E.; Kanelli, M.; Christakopoulos, P.; Sandgren, M.; Topakas, E. Structural and functional studies of a Fusarium oxysporum cutinase with polyethylene terephthalate modification potential. Biochim. Biophys. Acta (BBA) Gen. Subjects 2015, 1850, 2308–2317. [Google Scholar] [CrossRef] [PubMed]
- Kawai, F.; Kawabata, T.; Oda, M. Current knowledge on enzymatic PET degradation and its possible application to waste stream management and other fields. Appl. Microbiol. Biotechnol. 2019, 103, 4253–4268. [Google Scholar] [CrossRef]
- De Zoysa, H.; Kapoor, R.; Treichel, H.; Zdarta, J. Role of microbial enzymes in the degradation of plastics. In Environmental Hazards of Plastic Wastes; Elsevier: Amsterdam, The Netherlands, 2025; pp. 299–322. [Google Scholar] [CrossRef]
- Dhali, S.L.; Parida, D.; Kumar, B.; Bala, K. Recent trends in microbial and enzymatic plastic degradation: A solution for plastic pollution predicaments. Biotechnol. Sustain. Mater. 2024, 1, 11. [Google Scholar] [CrossRef]
- Sieber, S.A.; Böttcher, T.; Staub, I.; Orth, R. Small molecules as versatile tools for activity-based protein profiling experiments. In Chemistry, Molecular Sciences and Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2010; pp. 629–674. [Google Scholar]
- Simon, G.M.; Cravatt, B.F. Activity-based proteomics of enzyme superfamilies: Serine hydrolases as a case study. J. Biol. Chem. 2010, 285, 11051–11055. [Google Scholar] [CrossRef] [PubMed]
- Danso, D.; Schmeisser, C.; Chow, J.; Zimmermann, W.; Wei, R.; Leggewie, C.; Li, X.Z.; Hazen, T.; Streit, W.R. New insights into the function and global distribution of polyethylene terephthalate (PET)-degrading bacteria and enzymes in marine and terrestrial metagenomes. Appl. Environ. Microbiol. 2018, 84, e02773-17. [Google Scholar] [CrossRef]
- Silva, C.M.; Carneiro, F.; O’Neill, A.; Fonseca, L.P.; Cabral, J.S.; Guebitz, G.; Cavaco-Paulo, A. Cutinase—A new tool for biomodification of synthetic fibers. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 2448–2450. [Google Scholar] [CrossRef]
- Sadar, A.; Ismail, F.; Imran, M. Biodegradation of synthetic plastics by the extracellular lipase of Aspergillus niger. Environ. Adv. 2024, 17, 100563. [Google Scholar] [CrossRef]
- Kaushal, J.; Khatri, M.; Arya, S.K. Recent insight into enzymatic degradation of plastics prevalent in the environment: A mini-review. Clean. Eng. Technol. 2021, 2, 100083. [Google Scholar] [CrossRef]
- Galarza-Verkovitch, D.; Turak, O.; Wiese, J.; Rahn, T.; Hentschel, U.; Borchert, E. Bioprospecting for polyesterase activity relevant for PET degradation in marine Enterobacterales isolates. AIMS Microbiol. 2023, 9, 518. [Google Scholar] [CrossRef]
- Escobosa, A.R.C.; Porras, R.A.R.; Carmen, V.M.; Hernandez, G.A.G.; Guzman, J.C.T.; Wrobel, K.; Roncero, M.I.G.; Corona, J.F.G. Fusarium oxysporum Adh1 has dual fermentative and oxidative functions and is involved in fungal virulence in tomato plants. Fungal Genet. Biol. 2011, 48, 886–895. [Google Scholar] [CrossRef]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Khairul Anuar, N.F.S.; Huyop, F.; Ur-Rehman, G.; Abdullah, F.; Normi, Y.M.; Sabullah, M.K.; Abdul Wahab, R. An overview into polyethylene terephthalate (PET) hydrolases and efforts in tailoring enzymes for improved plastic degradation. Int. J. Mol. Sci. 2022, 23, 12644. [Google Scholar] [CrossRef] [PubMed]
- Srikanth, M.; Sandeep, T.S.R.S.; Sucharitha, K.; Godi, S. Biodegradation of plastic polymers by fungi: A brief review. Bioresour. Bioprocess 2022, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Kappaun, K.; Piovesan, A.R.; Carlini, C.R.; Ligabue-Braun, R. Ureases: Historical aspects, catalytic, and non-catalytic properties—A review. J. Adv. Res. 2018, 13, 3–17. [Google Scholar] [CrossRef]
- Mobley, H.L.; Hausinger, R.P. Microbial ureases: Significance, regulation, and molecular characterization. Microbiol. Rev. 1989, 53, 85–108. [Google Scholar] [CrossRef]
- Alizadeh, Z.; Yansari, A.T.; Chashnidel, Y.; Kazemifard, M.; Azarpajouh, S. Effect of soybean meal replacement by slow-release urea on ruminal parameter, blood metabolites, and microbial protein synthesis in Zel ram. Acta Sci. Anim. Sci. 2020, 43, e48684. [Google Scholar] [CrossRef]
- Qin, Y.; Cabral, J.M. Review properties and applications of urease. Biocatal. Biotransformation 2002, 20, 1–14. [Google Scholar] [CrossRef]
- Yang, X.-G.; Wen, P.-P.; Yang, Y.-F.; Jia, P.-P.; Li, W.-G.; Pei, D.-S. Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front. Microbiol. 2023, 13, 1001750. [Google Scholar] [CrossRef]
- Souza, P.M.D.; Bittencourt, M.L.D.A.; Caprara, C.C.; Freitas, M.D.; Almeida, R.P.C.D.; Silveira, D.; Fonseca, Y.M.; Filho, E.X.F.; Pessoa, A.; Magalhães, P.O.A. Diotechnology perspective of fungal proteases. Braz. J. Microbiol. 2015, 46, 337–346. [Google Scholar] [CrossRef]
- Song, P.; Zhang, X.; Wang, S.; Xu, W.; Wang, F.; Fu, R.; Wei, F. Microbial proteases and their applications. Front. Microbiol. 2023, 14, 1236368. [Google Scholar] [CrossRef]
- Hu, Q.; Jayasinghe-Arachchige, V.M.; Prabhakar, R. Degradation of a Main Plastic Pollutant Polyethylene Terephthalate by Two Distinct Proteases (Neprilysin and Cutinase-like Enzyme). J. Chem. Inf. Model. 2021, 61, 764–776. [Google Scholar] [CrossRef] [PubMed]
- Martínez, A.T.; Ruiz-Dueñas, F.J.; Camarero, S.; Serrano, A.; Linde, D.; Lund, H.; Vind, J.; Tovborg, M.; Herold-Majumdar, O.M.; Hofrichter, M.; et al. Oxidoreductases on their way to industrial biotransformations. Biotechnol. Adv. 2017, 35, 815–831. [Google Scholar] [CrossRef]
- El-Gendi, H.; Saleh, A.K.; Badierah, R.; Redwan, E.M.; El-Maradny, Y.A.; El-Fakharany, E.M. A comprehensive insight into fungal enzymes: Structure, classification, and their role in mankind’s challenges. J. Fungi 2021, 8, 23. [Google Scholar] [CrossRef]
- Han, Y.; Wang, R.; Wang, D.; Luan, Y. Enzymatic degradation of synthetic plastics by hydrolases/oxidoreductases. Int. Biodeterior. Biodegrad. 2024, 189, 105746. [Google Scholar] [CrossRef]
- Agematu, H.; Tsuchida, T.; Kominato, K.; Shibamoto, N.; Yoshioka, T.; Nishida, H.; Okamoto, R.; Shin, T.; Murao, S. Enzymatic dimerization of penicillin X. J. Antibiot. 1993, 46, 141–148. [Google Scholar] [CrossRef]
- Giardina, P.; Faraco, V.; Pezzella, C.; Piscitelli, A.; Vanhulle, S.; Sannia, G. Laccases: A never-ending story. Cell. Mol. Life Sci. 2010, 67, 369–385. [Google Scholar] [CrossRef]
- Piscitelli, A.; Giardina, P.; Lettera, V.; Pezzella, C.; Sannia, G.; Faraco, V. Induction and transcriptional regulation of laccases in fungi. Curr. Genom. 2011, 12, 104–112. [Google Scholar] [CrossRef]
- Santo, M.; Weitsman, R.; Sivan, A. The role of the copper-binding enzyme—laccase—in the biodegradation of polyethylene by the actinomycete Rhodococcus ruber. Int. Biodeterior. Biodegrad. 2013, 84, 204–210. [Google Scholar] [CrossRef]
- Aguiar, M.I.S.; Sousa, A.F.; Teixeira, G.; Tavares, A.P.M.; Ferreira, A.M.; João, A.P.; Coutinho, J.A.P. Enhancing plastic waste recycling: Evaluating the impact of additives on the enzymatic polymer degradation. Catal. Today 2024, 429, 114492. [Google Scholar] [CrossRef]
- Ikehata, K.; Buchanan, I.D.; Smith, D.W. Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. J. Environ. Eng. Sci. 2004, 3, 1–19. [Google Scholar] [CrossRef]
- Conesa, A.; Punt, P.J.; van den Hondel, C.A. Fungal peroxidases: Molecular aspects and applications. J. Biotechnol. 2002, 93, 143–158. [Google Scholar] [CrossRef] [PubMed]
- Maciel, M.J.M.; Ribeiro, H.C.T. Industrial and biotechnological applications of ligninolytic enzymes of the basidiomycota: A review. Electron. J. Biotechnol. 2010, 13, 14–15. [Google Scholar] [CrossRef]
- Ellouze, M.; Sayadi, S. White-rot fungi and their enzymes as a biotechnological tool for xenobiotic bioremediation. In Management of Hazardous Wastes; InTech Open: London, UK, 2016; pp. 103–120. [Google Scholar] [CrossRef]
- Nasrabdi, A.E.; Ramavandi, B.; Bonyadi, Z. Recent progress in biodegradation of microplastics by Aspergillus sp. in aquatic environments. Colloid Interface Sci. Commun. 2023, 57, 100754. [Google Scholar] [CrossRef]
- Ruiz-Dueñas, F.J.; Barrasa, J.M.; Sánchez-García, M.; Camarero, S.; Miyauchi, S.; Serrano, A.; Linde, D.; Babike, R.; Drula, E.; Ayuso-Fernández, I.; et al. Genomic analysis enlightens Agaricales lifestyle evolution and increasing peroxidase diversity. Mol. Biol. Evol. 2021, 38, 1428–1446. [Google Scholar] [CrossRef]
- Chang, Y.; Yang, D.; Li, R.; Wang, T.; Zhu, Y. Textile dye biodecolorization by manganese peroxidase: A review. Molecules 2021, 26, 4403. [Google Scholar] [CrossRef]
- Torres, E.; Ayala, M. (Eds.) Biocatalysis Based on Heme Peroxidases: Peroxidases as Potential Industrial Biocatalysts; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010; pp. 1–353. [Google Scholar] [CrossRef]
- Qin, X.; Sun, X.H.; Huang, H.; Bai, Y.G.; Wang, Y.; Luo, H.Y.; Yao, B.; Zhang, X.Y.; Su, X.Y. Oxidation of a non-phenolic lignin model compound by two Irpex lacteus manganese peroxidases: Evidence for implication of carboxylate and radicals. Biotechnol. Biofuels 2017, 10, 103. [Google Scholar] [CrossRef]
- Poulos, T.L.; Edwards, S.L.; Wariishi, H.; Gold, M.H. Crystallographic refinement of lignin peroxidase at 2 A. J. Biol. Chem. 1993, 268, 4429–4440. [Google Scholar] [CrossRef]
- Piontek, K.; Smith, A.T.; Blodig, W. Lignin peroxidase structure and function. Biochem. Soc. Trans. 2001, 29, 111–116. [Google Scholar] [CrossRef]
- Kirk, T.K.; Farrell, R.L. Enzymatic “combustion”: The microbial degradation of lignin1, 2. Ann. Rev. Microbiol. 1987, 41, 465–505. [Google Scholar] [CrossRef]
- Hammel, K.E.; Jensen, K.A., Jr.; Mozuch, M.D.; Landucci, L.L.; Tien, M.; Pease, E.A. Ligninolysis by a purified lignin peroxidase. J. Biol. Chem. 1993, 268, 12274–12281. [Google Scholar] [CrossRef]
- Tosi, S.; Kostadinova, N.; Krumova, E.; Pashova, S.; Dishliiska, V.; Spassova, B.; Vassilev, S.; Angelova, M. Antioxidant enzyme activity of filamentous fungi isolated from Livingston Island, Maritime Antarctica. Polar Biol. 2010, 33, 1227–1237. [Google Scholar] [CrossRef]
- Phale, P.S.; Sharma, A.; Gautam, K. Microbial degradation of xenobiotics like aromatic pollutants from the terrestrial environments. In Pharmaceuticals and Personal Care Products: Waste Management and Treatment Technology; Butterworth-Heinemann: Oxford, UK, 2019; pp. 259–278. [Google Scholar] [CrossRef]
- Gutiérrez-Corona, J.F.; González-Hernández, G.A.; Padilla-Guerrero, I.E.; Olmedo-Monfil, V.; Martínez-Rocha, A.L.; Patiño-Medina, J.A.; Meza-Carmen, V.; Torres-Guzmán, J.C. Fungal alcohol dehydrogenases: Physiological function, molecular properties, regulation of their production, and biotechnological potential. Cells 2023, 12, 2239. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.H.; Kim, D.; Jin, Y.H.; Kim, S.M.; Lim, E.S.; Cha, M.J.; Ko, J.K.; Gong, G.; Um, Y.; Han, S.O.; et al. Biotechnological plastic degradation and valorization using systems metabolic engineering. Int. J. Mol. Sci. 2023, 24, 15181. [Google Scholar] [CrossRef] [PubMed]
- Scheibel, D.M.; Gitsov, I.P.I.; Gitsov, I. Enzymes in “Green” synthetic chemistry: Laccase and Lipase. Molecules 2024, 29, 989. [Google Scholar] [CrossRef]
- Chen, C.C.; Dai, L.; Ma, L.; Guo, R.T. Enzymatic degradation of plant biomass and synthetic polymers. Nat. Rev. Chem. 2020, 4, 114–126. [Google Scholar] [CrossRef]
- Hage, H.; Rosso, M.N. Evolution of fungal carbohydrate-active enzyme portfolios and adaptation to plant cell-wall polymers. J. Fungi 2021, 7, 185. [Google Scholar] [CrossRef]
- Khaire, P.; Boggala, V.; Mamidi, A.; Narute, T. The role of microbes in environmental contaminants’ management. In Environmental Management Technologies; CRC Press: Boca Raton, FL, USA, 2022; pp. 117–153. [Google Scholar] [CrossRef]
- Afreen, H.; Singh, R.K.; Kumar, P. Peroxidases: Role in Bioremediation. Microb. Enzym. Prod. Purif. Ind. Appl. 2025, 1, 173–187. [Google Scholar] [CrossRef]
- Bilal, M.; Zdarta, J.; Jesionowski, T.; Iqbal, H.M. Manganese peroxidases as robust biocatalytic tool—An overview of sources, immobilization, and biotechnological applications. Int. J. Biol. Macromol. 2023, 234, 123531. [Google Scholar] [CrossRef]
- Patel, M.A. Evaluating the plastic degrading potential of Aspergillus spp. for sustainable waste management. Vidhyayana Int. Multidiscip. Peer-Rev. E-J. 2023, 9, 1443. [Google Scholar]
- Herrera Bravo de Laguna, I.; Toledo Marante, F.J.; Mioso, R. Enzymes and bioproducts produced by the ascomycete fungus Paecilomyces variotii. J. Appl. Microbiol. 2015, 119, 1455–1466. [Google Scholar] [CrossRef]
- Lundell, T.; Bentley, E.; Hildén, K.; Rytioja, J.; Kuuskeri, J.; Ufot, U.F.; Nousiainen, P.; Hofrichter, M.; Wahlsten, M.; Doyle, W.; et al. Engineering towards catalytic use of fungal class-II peroxidases for dye-decolorizing and conversion of lignin model compounds. Curr. Biotechnol. 2017, 6, 116–127. [Google Scholar] [CrossRef]
- Rajarathnam, S.; Shashirekha, M.N.J.; Bano, Z. Biodegradative and biosynthetic capacities of mushrooms: Present and future strategies. Crit. Rev. Biotechnol. 1998, 18, 91–236. [Google Scholar] [CrossRef] [PubMed]
- Gambarini, V.; Pantos, O.; Kingsbury, J.M.; Weaver, L.; Handley, K.M.; Lear, G. Phylogenetic distribution of plastic-degrading microorganisms. Msystems 2021, 6, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Index Fungorum. 2024. Available online: https://www.indexfungorum.org/names/names.asp (accessed on 31 July 2024).
- Oxenbøll, K. Aspergillus Enzymes and Industrial Uses. In The Genus Aspergillus; Powell, K.A., Renwick, A., Peberdy, J.F., Eds.; Federation of European Microbiological Societies Symposium Series; Springer: Boston, MA, USA, 1994; Volume 69, pp. 147–154. [Google Scholar] [CrossRef]
- Meyer, V.; Wu, B.; Ram, A.F. Aspergillus as a multi-purpose cell factory: Current status and perspectives. Biotechnol. Lett. 2011, 33, 469–476. [Google Scholar] [CrossRef]
- Polizeli, M.L.T.M.; Vici, A.C.; Scarcella, A.S.A.; Cereia, M.; Pereira, M.G. Enzyme system from Aspergillus in current industrial uses and future applications in the production of second-generation ethanol. In New and Future Developments in Microbial Biotechnology and Bioengineering; Elsevier: Amsterdam, The Netherlands, 2016; pp. 127–140. [Google Scholar] [CrossRef]
- Raveendran, S.; Lu, Z. CT findings and differential diagnosis in adults with invasive pulmonary aspergillosis. Radiol. Infect. Dis. 2018, 5, 14–25. [Google Scholar] [CrossRef]
- Dhevagi, P.; Ramya, A.; Priyatharshini, S.; Geetha Thanuja, K.; Ambreetha, S.; Nivetha, A. Industrially important fungal enzymes: Productions and Applications. In Recent Trends in Mycological Research; Yadav, A.N., Ed.; Fungal Biology; Springer: Cham, Switzerland, 2021; Volume 2, pp. 263–309. [Google Scholar] [CrossRef]
- Liu, X.; Kokare, C. Microbial enzymes of use in industry. In Biotechnology of Microbial Enzymes; Academic Press: Cambridge, MA, USA, 2023; pp. 405–444. [Google Scholar] [CrossRef]
- Khan, S.; Nadir, S.; Shah, Z.U.; Shah, A.A.; Karunarathna, S.C.; Xu, J.; Khan, A.; Munir, S.; Hasan, F. Biodegradation of polyester polyurethane by Aspergillus tubingensis. Environ. Pollut. 2017, 225, 469–480. [Google Scholar] [CrossRef]
- Sigoillot, C.; Camarero, S.; Vidal, T.; Record, E.; Asther, M.; Pérez-Boada, M.; Martínez, M.J.; Sigoillot, J.C.; Asther, M.; Colom, J.F.; et al. Comparison of different fungal enzymes for bleaching high-quality paper pulps. J. Biotechnol. 2005, 115, 333–343. [Google Scholar] [CrossRef]
- Pal, A.; Khanum, F. Purification of Xylanase from Aspergillus niger DFR-5: Individual and interactive effect of temperature and pH on its stability. Process Biochem. 2011, 46, 879–887. [Google Scholar] [CrossRef]
- Talukdar, D.; Sharma, R.; Jaglan, S.; Vats, R.; Kumar, R.; Mahnashi, M.H.; Umar, A. Identification and characterization of Cadmium resistant fungus isolated from contaminated site and its potential for bioremediation. Environ. Technol. Innov. 2020, 17, 100604. [Google Scholar] [CrossRef]
- Wang, K.; Ngea, G.L.N.; Godana, E.A.; Shi, Y.; Lanhuang, B.; Zhang, X.; Zhao, L.; Yang, Q.; Wang, S.; Zhang, H. Recent advances in Penicillium expansum infection mechanisms and current methods in controlling P. expansum in postharvest apples. Crit. Rev. Food Sci. Nutr. 2023, 63, 2598–2611. [Google Scholar] [CrossRef]
- Ojha, N.; Pradhan, N.; Singh, S.; Barla, A.; Shrivastava, A.; Khatua, P.; Rai, V.; Bose, S. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization. Sci. Rep. 2017, 7, 39515. [Google Scholar] [CrossRef] [PubMed]
- Ferreira-Filipe, D.A.; Oliveira, L.; Paço, A.; Fernandes, A.J.S.; Costa, F.M.; Duarte, A.C.; Rocha-Santos, C.; Silva, A.L.P. Biodegradation of e-waste microplastics by Penicillium brevicompactum. Sci. Total Environ. 2024, 935, 173334. [Google Scholar] [CrossRef] [PubMed]
- Michelin, M.; Silva, T.M.; Benassi, V.M.; Peixoto-Nogueira, S.C.; Moraes, L.A.B.; Leão, J.M.; Jorge, J.A.; Terenzi, H.F.; Maria de Lourdes, T.M. Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces Variotii. Carbohydr. Res. 2010, 345, 2348–2353. [Google Scholar] [CrossRef]
- Constantin, M.; Raut, I.; Gurban, A.M.; Vasilescu, G.; Doni, M.; Radu, N.; Alexandrescu, E.; Jecu, L. Exploring the potential of beneficial Paecilomyces to improve plant growth. Chem. Proc. 2022, 7, 6. [Google Scholar] [CrossRef]
- Athwal, S.; Sharma, S.; Gupta, S.; Nadda, A.K.; Gupta, A.; Husain, M.S.B. Sustainable biodegradation and extraction of keratin with its applications. In Handbook of Biopolymers; Thomas, S., Ajitha, A.R., Jose Chirayil, C., Thomas, B., Eds.; Springer: Singapore, 2023; pp. 713–747. [Google Scholar] [CrossRef]
- Kim, M.N.; Lee, A.R.; Yoon, J.S.; Chin, I.J. Biodegradation of poly(3-hydroxybutyrate), Sky-Green® and Mater-Bi® by fungi isolated from soils. Eur. Polym. J. 2000, 36, 1677–1685. [Google Scholar] [CrossRef]
- Sang, B.I.; Hori, K.; Tanji, Y.; Unno, H. Fungal contribution to in situ biodegradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) film in soil. Appl. Microbiol. Biotechnol. 2002, 58, 241–247. [Google Scholar] [CrossRef]
- Segundo, R.-F.; Magaly, D.L.C.-N.; Otiniano, N.M.; Luis, C.-C.; Angelats-Silva, L.M. Electricity generation and plastic waste reduction using the Fungus Paecilomyces as a biodegrader in microbial fuel cells. Sustainability 2024, 16, 11137. [Google Scholar] [CrossRef]
- Fernandes, C.; Casadevall, A.; Gonçalves, T. Mechanisms of alternaria pathogenesis in animals and plants. FEMS Microbiol. Rev. 2023, 47, fuad061. [Google Scholar] [CrossRef]
- Malachovskienė, E.; Bridžiuvienė, D.; Ostrauskaitė, J.; Vaičekauskaitė, J.; Žalūdienė, G. Degradative impact of Alternaria multiformis on novel polymeric biocomposites with the fillers of industrial waste materials under different pH and temperature conditions. Bioremediation J. 2024, 28, 54–63. [Google Scholar] [CrossRef]
- Yang, W.K.; Gong, Z.; Wang, B.T.; Hu, S.; Zhuo, Y.; Jin, C.Z.; Jin, L.; Lee, H.G.; Jin, F.J. Biodegradation of low-density polyethylene by mixed fungi composed of Alternaria sp. and Trametes sp. isolated from landfill sites. BMC Microbiol. 2024, 24, 321. [Google Scholar] [CrossRef]
- Ibrahim, S.S.; Ionescu, D.; Grossart, H.P. Tapping into fungal potential: Biodegradation of plastic and rubber by potent fungi. Sci. Total Environ. 2024, 934, 173188. [Google Scholar] [CrossRef] [PubMed]
- Küchler, A.; Yoshimoto, M.; Luginbühl, S.; Mavelli, F.; Walde, P. Enzymatic reactions in confined environments. Nat. Nanotechnol. 2016, 11, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Floudas, D.; Hibbett, D.S. Revisiting the taxonomy of Phanerochaete (Polyporales, Basidiomycota) using a four gene dataset and extensive ITS sampling. Fungal Biol. 2015, 119, 679–719. [Google Scholar] [CrossRef]
- Wang, D.Q.; Zhao, C.L. Morphological and phylogenetic evidence for recognition of two new species of Phanerochaete from East Asia. J. Fungi 2021, 7, 1063. [Google Scholar] [CrossRef]
- Kersten, P.; Dan, C. Extracellular oxidative systems of the lignin-degrading Basidiomycete Phanerochaete chrysosporium. Fungal Genet. Biol. 2007, 44, 77–87. [Google Scholar] [CrossRef]
- Kersten, P.J.; Kirk, T.K. Involvement of a new enzyme, glyoxal oxidase, in extracellular H2O2 production by Phanerochaete chrysosporium. J. Bacteriol. 1987, 169, 2195–2201. [Google Scholar] [CrossRef]
- Wesenberg, D.; Kyriakides, I.; Agathos, S.N. White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol. Adv. 2003, 22, 161–187. [Google Scholar] [CrossRef]
- Mester, T.; Tien, M. Oxidation mechanism of ligninolytic enzymes involved in the degradation of environmental pollutants. Int. Biodeterior. Biodegrad. 2000, 46, 51–59. [Google Scholar] [CrossRef]
- Iqbal, M.; Saeed, A. Biosorption of reactive dye by loofa sponge-immobilized fungal biomass of Phanerochaete chrysosporium. Process Biochem. 2007, 42, 1160–1164. [Google Scholar] [CrossRef]
- Masarin, F.; Pavan, P.C.; Vicentim, M.P.; Souza-Cruz, P.B.; Loguercio-Leite, C.; Ferraz, A. Laboratory and mill scale evaluation of biopulping of Eucalyptus grandis Hill Ex Maiden with Phanerochaete chrysosporium RP-78 under non-aseptic conditions. Holzforschung 2009, 63, 259–263. [Google Scholar] [CrossRef]
- Sharari, M.; Jahan Latibari, A.; Guillet, A.; Aurousseau, M.; Mouhamadou, B.; Rafeiee, G.H.; Mirshokraei, A.; Parsapaghouh, D. Application of the white rot fungus Phanerochaete chrysosporium in biotreatment of bagasse effluent. Biodegradation 2011, 22, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Li, Y. Fungal pretreatment of lignocellulosic biomass. Biotechnol. Adv. 2012, 30, 1447–1457. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Couto, S. Industrial and environmental applications of white-rot fungi. Mycosphere 2017, 8, 456–466. [Google Scholar] [CrossRef]
- Borkar, P.S.; Bodade, R.G.; Rao, S.R.; Khobragade, C.N. Purification and characterization of extracellular lipase from a new strain: Pseudomonas aeruginosa SRT 9. Braz. J. Microbiol. 2009, 40, 358–366. [Google Scholar] [CrossRef]
- Wu, F.; Guo, Z.; Cui, K.; Dong, D.; Yang, X.; Li, J.; Wu, Z.; Li, L.; Dai, Y.; Pan, T. Insights into characteristics of white rot fungus during environmental plastics adhesion and degradation mechanism of plastics. J. Hazard. Mater. 2023, 448, 130878. [Google Scholar] [CrossRef]
- Gusse, A.C.; Miller, P.D.; Volk, T.J. White-rot fungi demonstrate first biodegradation of phenolic resin. Environ. Sci. Technol. 2006, 40, 4196–4199. [Google Scholar] [CrossRef]
- Pointing, S. Feasibility of bioremediation by white-rot fungi. Appl. Microbiol. Biotechnol. 2001, 57, 20–33. [Google Scholar] [CrossRef]
- Cohen, R.; Persky, L.; Hadar, Y. Biotechnological applications and potential of wood-degrading mushrooms of the genus Pleurotus. Appl. Microbiol. Biotechnol. 2002, 58, 582–594. [Google Scholar] [CrossRef]
- Javaid, A.; Bajwa, R.; Shafique, U.; Anwar, J. Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenergy 2011, 35, 1675–1682. [Google Scholar] [CrossRef]
- Jackson, L.W.; Pryor, B.M. Degradation of Aflatoxin B1 from naturally contaminated maize using the edible fungus Pleurotus ostreatus. AMB Express 2017, 7, 110. [Google Scholar] [CrossRef]
- Bharath, Y.; Singh, S.N.; Keerthiga, G.; Prabhakar, R. Mycoremediation of contaminated soil in MSW sites. In Waste Management and Resource Efficiency; Ghosh, S.K., Ed.; Springer Nature: Singapore, 2019; pp. 321–329. [Google Scholar] [CrossRef]
- Sekan, A.S.; Myronycheva, O.S.; Karlsson, O.; Gryganskyi, A.P.; Blume, Y. Green potential of Pleurotus spp. in biotechnology. PeerJ 2019, 7, e6664. [Google Scholar] [CrossRef] [PubMed]
- Raman, J.; Jang, K.Y.; Oh, Y.L.; Oh, M.; Im, J.H.; Lakshmanan, H.; Sabaratnam, V. Cultivation and nutritional value of prominent Pleurotus spp.: An overview. Mycobiology 2021, 49, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Zhang, L.; Yang, X.; Li, Q.; Zhang, C.; Guo, L.; Yu, H.; Yu, H. Responses of the mushroom Pleurotus ostreatus under different CO2 concentration by comparative proteomic analyses. J. Fungi 2022, 8, 652. [Google Scholar] [CrossRef] [PubMed]
- Lindequist, U.; Niedermeyer, T.H.; Jülich, W.D. The pharmacological potential of mushrooms. eCAM 2005, 2, 285–299. [Google Scholar] [CrossRef]
- Josiane, M.; Estelle, M.; Francis, N.; Kamdem, S. Effect of substrates on nutritional composition and functional properties of Pleurotus ostreatus. Curr. Res. Agric. Sci. 2018, 5, 15–22. [Google Scholar] [CrossRef]
- Da Luz, J.M.R.; Paes, S.A.; Nunes, M.D.; da Silva, M.d.C.S.; Kasuya, M.C.M. Degradation of oxo-biodegradable plastic by Pleurotus ostreatus. PLoS ONE 2013, 8, e69386. [Google Scholar] [CrossRef]
- Ramamurthy, K.; Thomas, N.P.; Gopi, S.; Sudhakaran, G.; Haridevamuthu, B.; Namasivayam, K.R.; Arockiaraj, J. Is Laccase derived from Pleurotus ostreatus effective in microplastic degradation? Int. J. Biol. Macromol. 2024, 276, 133971. [Google Scholar] [CrossRef]
- Bonhomme, S.; Cuer, A.; Delort, A.M.; Lemaire, J.; Sancelme, M.; Scott, G. Environmental biodegradation of polyethylene. Polym. Degrad. Stab. 2003, 81, 441–452. [Google Scholar] [CrossRef]
- Odigbo, C.; Adenipekun, C.; Oladosu, I.; Ogunjobi, A. Polyethylene terephthalate (PET) biodegradation by Pleurotus ostreatus and Pleurotus pulmonarius. Environ. Monit. Assess. 2023, 195, 585. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekanayaka, A.H.; De Silva, N.T.; Tarafder, E.; Chen, X.-M.; Dai, D.-Q.; Stephenson, S.L.; Asad, S.; Tibpromma, S.; Karunarathana, S.C. Linking the Metabolic Activity of Plastic-Degrading Fungi to Their Taxonomy and Evolution. J. Fungi 2025, 11, 378. https://doi.org/10.3390/jof11050378
Ekanayaka AH, De Silva NT, Tarafder E, Chen X-M, Dai D-Q, Stephenson SL, Asad S, Tibpromma S, Karunarathana SC. Linking the Metabolic Activity of Plastic-Degrading Fungi to Their Taxonomy and Evolution. Journal of Fungi. 2025; 11(5):378. https://doi.org/10.3390/jof11050378
Chicago/Turabian StyleEkanayaka, Anusha H., Namali T. De Silva, Entaj Tarafder, Xue-Mei Chen, Dong-Qin Dai, Steven L. Stephenson, Suhail Asad, Saowaluck Tibpromma, and Samantha C. Karunarathana. 2025. "Linking the Metabolic Activity of Plastic-Degrading Fungi to Their Taxonomy and Evolution" Journal of Fungi 11, no. 5: 378. https://doi.org/10.3390/jof11050378
APA StyleEkanayaka, A. H., De Silva, N. T., Tarafder, E., Chen, X.-M., Dai, D.-Q., Stephenson, S. L., Asad, S., Tibpromma, S., & Karunarathana, S. C. (2025). Linking the Metabolic Activity of Plastic-Degrading Fungi to Their Taxonomy and Evolution. Journal of Fungi, 11(5), 378. https://doi.org/10.3390/jof11050378