Age and Serum Adipocyte Fatty-Acid-Binding Protein Level Are Associated with Aortic Stiffness in Coronary Artery Bypass Graft Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Anthropometric Analysis and Biochemical Investigations
2.3. Measurement of Aortic Stiffness by Carotid–Femoral Pulse Wave Velocity
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, H.Y.; Oh, B.H. Aging and arterial stiffness. Circ. J. 2010, 74, 2257–2262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenwood, S.A.; Mangahis, E.; Castle, E.M.; Wang, J.; Campbell, J.; Deshpande, R.; Jayawardene, S. Arterial stiffness is a predictor for acute kidney injury following coronary artery bypass graft surgery. J. Cardiothorac. Surg. 2019, 14, 51. [Google Scholar] [CrossRef] [PubMed]
- Youn, J.C.; Kim, C.; Park, S.; Lee, S.H.; Kang, S.M.; Choi, D.; Son, N.H.; Shin, D.J.; Jang, Y. Adiponectin and progression of arterial stiffness in hypertensive patients. Int. J. Cardiol. 2013, 163, 316–319. [Google Scholar] [CrossRef]
- Sabbatini, A.R.; Fontana, V.; Laurent, S.; Moreno, H. An update on the role of adipokines in arterial stiffness and hypertension. J. Hypertens. 2015, 33, 435–444. [Google Scholar] [CrossRef] [PubMed]
- Giraldo-Grueso, M.; Echeverri, D. From endothelial dysfunction to arterial stiffness in diabetes mellitus. Curr. Diabetes. Rev. 2020, 16, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Saitoh, S.; Shimamoto, K.; Miura, T. Fatty acid-binding protein 4 (FABP4): Pathophysiological insights and potent clinical biomarker of metabolic and cardiovascular diseases. Clin. Med. Insights Cardiol. 2014, 8, 23–33. [Google Scholar] [CrossRef] [Green Version]
- Kralisch, S.; Fasshauer, M. Adipocyte fatty acid binding protein: A novel adipokine involved in the pathogenesis of metabolic and vascular disease? Diabetologia 2013, 56, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Furuhashi, M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J. Atheroscler. Thromb. 2019, 26, 216–232. [Google Scholar] [CrossRef] [Green Version]
- Makowski, L.; Boord, J.B.; Maeda, K.; Babaev, V.R.; Uysal, K.T.; Morgan, M.A.; Parker, R.A.; Suttles, J.; Fazio, S.; Hotamisligil, G.S.; et al. Lack of macrophage fatty-acid–binding protein aP2 protects mice deficient in apolipoprotein E against atherosclerosis. Nat. Med. 2001, 7, 699–705. [Google Scholar] [CrossRef] [Green Version]
- Tsai, J.P.; Wang, J.H.; Lee, C.J.; Chen, Y.C.; Hsu, B.G. Positive correlation of serum adipocyte fatty acid binding protein levels with carotid-femoral pulse wave velocity in geriatric population. BMC Geriatr. 2015, 15, 88. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.C.; Hsu, B.G.; Lee, C.J.; Yang, C.F.; Wang, J.H. High serum adipocyte fatty acid binding protein level as a potential biomarker of aortic arterial stiffness in hypertensive patients with metabolic syndrome. Clin. Chim. Acta 2017, 473, 166–172. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.W.; Hou, J.S.; Wu, D.A.; Hsu, B.G. High serum adipocyte fatty acid binding protein concentration linked with increased aortic arterial stiffness in patients with type 2 diabetes. Clin. Chim. Acta 2019, 495, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Huang, I.C.; Hsu, B.G.; Chang, C.C.; Lee, C.J.; Wang, J.H. High levels of serum adipocyte fatty acid-binding protein predict cardiovascular events in coronary artery disease patients. Int. J. Med. Sci. 2018, 15, 1268–1274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- American Diabetes Association. Classification and Diagnosis of Diabetes: Standards of medical care in diabetes-2021. Diabetes Care 2021, 44 (Suppl. S1), S15–S33. [Google Scholar] [CrossRef]
- Williams, B.; Mancia, G.; Spiering, W.; Agabiti Rosei, E.; Azizi, M.; Burnier, M.; Clement, D.L.; Coca, A.; de Simone, G.; Dominiczak, A.; et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur. Heart J. 2018, 39, 3021–3104. [Google Scholar] [CrossRef]
- Tsai, J.P.; Hsu, B.G. Arterial stiffness: A brief review. Tzu Chi Med. J. 2021, 33, 115–121. [Google Scholar]
- Onuh, J.O.; Qiu, H. New progress on the study of aortic stiffness in age-related hypertension. J. Hypertens. 2020, 38, 1871–1877. [Google Scholar] [CrossRef]
- Harvey, A.; Montezano, A.C.; Touyz, R.M. Vascular biology of ageing-Implications in hypertension. J. Mol. Cell Cardiol. 2015, 83, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Zanoli, L.; Briet, M.; Empana, J.P.; Cunha, P.G.; Mäki-Petäjä, K.M.; Protogerou, A.D.; Tedgui, A.; Touyz, R.M.; Schiffrin, E.L.; Spronck, B.; et al. Vascular consequences of inflammation: A position statement from the ESH Working Group on Vascular Structure and Function and the ARTERY Society. J. Hypertens. 2020, 38, 1682–1698. [Google Scholar] [CrossRef]
- Lioufas, N.; Hawley, C.M.; Cameron, J.D.; Toussaint, N.D. Chronic kidney disease and pulse wave velocity: A narrative review. Int. J. Hypertens. 2019, 2019, 9189362. [Google Scholar] [CrossRef] [Green Version]
- Makowski, L.; Brittingham, K.C.; Reynolds, J.M.; Suttles, J.; Hotamisligil, G.S. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities. J. Biol. Chem. 2005, 280, 12888–12895. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hui, X.; Li, H.; Zhou, Z.; Lam, K.S.; Xiao, Y.; Wu, D.; Ding, K.; Wang, Y.; Vanhoutte, P.M.; Xu, A. Adipocyte fatty acid-binding protein modulates inflammatory responses in macrophages through a positive feedback loop involving c-Jun NH2-terminal kinases and activator protein-1. J. Biol. Chem. 2010, 285, 10273–10280. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyoshi, T.; Onoue, G.; Hirohata, A.; Hirohata, S.; Usui, S.; Hina, K.; Kawamura, H.; Doi, M.; Kusano, K.F.; Kusachi, S.; et al. Serum adipocyte fatty acid-binding protein is independently associated with coronary atherosclerotic burden measured by intravascular ultrasound. Atherosclerosis 2010, 211, 164–169. [Google Scholar] [CrossRef] [PubMed]
- Furuhashi, M.; Fuseya, T.; Murata, M.; Hoshina, K.; Ishimura, S.; Mita, T.; Watanabe, Y.; Omori, A.; Matsumoto, M.; Sugaya, T.; et al. Local production of fatty acid-binding protein 4 in epicardial/perivascular fat and macrophages is linked to coronary atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 825–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yen, C.H.; Lin, J.L.; Sung, K.T.; Su, C.H.; Huang, W.H.; Chen, Y.Y.; Chien, S.C.; Lai, Y.H.; Lee, P.Y.; Liu, Y.Y.; et al. Association of free fatty acid binding protein with central aortic stiffness, myocardial dysfunction and preserved ejection fraction heart failure. Sci. Rep. 2021, 11, 16501. [Google Scholar] [CrossRef]
- Tuncman, G.; Erbay, E.; Hom, X.; De Vivo, I.; Campos, H.; Rimm, E.B.; Hotamisligil, G.S. A genetic variant at the fatty acid-binding protein aP2 locus reduces the risk for hypertriglyceridemia, type 2 diabetes, and cardiovascular disease. Proc. Natl. Acad. Sci. USA 2006, 103, 6970–6975. [Google Scholar] [CrossRef] [Green Version]
- Rhee, E.J.; Lee, W.Y.; Park, C.Y.; Oh, K.W.; Kim, B.J.; Sung, K.C.; Kim, B.S. The association of serum adipocyte fatty acid binding protein with coronary artery disease in Korean adults. Eur. J. Endocrinol. 2009, 160, 165–172. [Google Scholar] [CrossRef]
- Boord, J.B.; Fazio, S.; Linton, M.F. Cytoplasmic fatty acid-binding proteins: Emerging roles in metabolism and atherosclerosis. Curr. Opin. Lipidol. 2002, 13, 141–147. [Google Scholar]
- Rhee, T.M.; Kim, H.L.; Lim, W.H.; Seo, J.B.; Kim, S.H.; Zo, J.H.; Kim, M.A. Association between epicardial adipose tissue thickness and parameters of target organ damage in patients undergoing coronary angiography. Hypertens. Res. 2019, 42, 549–557. [Google Scholar] [CrossRef]
- Doğan, M.; Turak, O.; Akyel, A.; Grboviç, E.; Mendi, M.A.; Oksüz, F.; Doğan, A.; Cimen, T.; Bilgin, M.; Sunman, H.; et al. Increased epicardial adipose tissue thickness is linked to aortic stiffness in patients with primary hypertension. Blood Press. 2014, 23, 222–227. [Google Scholar] [CrossRef]
- Kajiya, M.; Miyoshi, T.; Doi, M.; Usui, S.; Iwamoto, M.; Takeda, K.; Nosaka, K.; Nakayama, R.; Hirohata, S.; Kusachi, S.; et al. Serum adipocyte fatty acid-binding protein is independently associated with complex coronary lesions in patients with stable coronary artery disease. Heart Vessels 2013, 28, 696–703. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.S.; Wu, Y.W.; Huang, J.Y.; Hsu, P.Y.; Chen, M.F. Evaluation of circulating adipokines and abdominal obesity as predictors of significant myocardial ischemia using gated single-photon emission computed tomography. PLoS ONE 2014, 9, e97710. [Google Scholar] [CrossRef] [PubMed]
Characteristic | All Participants (n = 84) | Control Group (n = 56) | Aortic Stiffness Group (n = 28) | p-Value |
---|---|---|---|---|
Age (years) | 64.15 ± 9.84 | 61.43 ± 10.50 | 69.61 ± 5.17 | <0.001 |
Height (cm) | 162.57 ± 7.19 | 162.17 ± 7.57 | 163.38 ± 6.41 | 0.473 |
Body weight (kg) | 71.27 ± 11.28 | 72.30 ± 11.70 | 69.20 ± 10.26 | 0.238 |
Body mass index (kg/m2) | 26.94 ± 3.61 | 27.46 ± 3.70 | 25.88 ± 3.23 | 0.058 |
CABG operation duration (months) | 32.12 (16.01–60.74) | 29.60 (16.27–59.91) | 36.27 (14.75–67.14) | 0.868 |
cfPWV (m/s) | 9.35 ± 2.71 | 7.71 ± 1.29 | 12.63 ± 1.62 | <0.001 |
Systolic blood pressure (mmHg) | 135.76 ± 22.10 | 133.93 ± 21.60 | 139.43 ± 23.02 | 0.258 |
Diastolic blood pressure (mmHg) | 73.61 ± 14.84 | 75.70 ± 15.27 | 69.43 ± 13.24 | 0.068 |
Total cholesterol (mg/dL) | 147.08 ± 37.21 | 146.16 ± 33.14 | 148.92 ± 44.88 | 0.751 |
Triglyceride (mg/dL) | 125.00 (99.25–159.75) | 123.50 (97.00–166.50) | 130.50 (100.75–157.75) | 0.835 |
HDL-C (mg/dL) | 41.87 ± 10.72 | 41.80 ± 11.04 | 42.00 ± 10.25 | 0.937 |
LDL-C (mg/dL) | 92.67 ± 26.72 | 92.89 ± 24.64 | 92.21 ± 30.95 | 0.913 |
Fasting glucose (mg/dL) | 105.00 (95.00–136.00) | 104.00 (94.25–135.50) | 106.00 (98.00–137.50) | 0.725 |
Blood urea nitrogen (mg/dL) | 16.00 (13.25–20.00) | 17.50 (13.00–22.00) | 16.00 (14.00–17.75) | 0.546 |
Creatinine (mg/dL) | 1.00 (0.80–1.20) | 0.90 (0.80–1.20) | 1.05 (0.93–1.20) | 0.048 |
eGFR (mL/min) | 74.20 ± 18.22 | 76.03 ± 18.48 | 70.55 ± 17.46 | 0.196 |
Albumin (g/dL) | 4.50 ± 0.26 | 4.48 ± 0.26 | 4.55 ± 0.25 | 0.248 |
Total calcium (mg/dL) | 8.70 ± 0.37 | 8.73 ± 0.32 | 8.62 ± 0.45 | 0.199 |
Phosphorus (mg/dL) | 3.54 ± 0.53 | 3.52 ± 0.55 | 3.57 ± 0.49 | 0.707 |
iPTH (pg/mL) | 53.40 (39.53–65.78) | 53.55 (40.35–65.35) | 53.40 (39.23–77.38) | 0.876 |
CRP (mg/dL) | 0.11 (0.05-0.24) | 0.10 (0.05-0.21) | 0.20 (0.06-0.35) | 0.034 |
A-FABP (ng/mL) | 34.77 (25.37–40.00) | 31.96 (22.90–36.70) | 41.69 (35.13–57.76) | <0.001 |
Traditional CABG, n (%) | 80 (95.2) | 53 (94.6) | 27 (96.4) | 0.717 |
Male, n (%) | 64 (76.2) | 41 (73.2) | 23 (82.1) | 0.365 |
Diabetes mellitus, n (%) | 44 (52.4) | 24 (42.9) | 19 (67.9) | 0.031 |
Hypertension, n (%) | 47 (56.0) | 30 (53.6) | 17 (60.7) | 0.534 |
Statin, n (%) | 69 (82.1) | 48 (85.7) | 21 (75.0) | 0.227 |
Fibrate, n (%) | 6 (7.1) | 5 (8.9) | 1 (3.6) | 0.369 |
Variables | Odds Ratio | 95% Confidence Interval | p-Value |
---|---|---|---|
Adipocyte fatty-acid-binding protein, 1 ng/mL | 1.068 | 1.017–1.121 | 0.008 |
Age, 1 year | 1.204 | 1.067–1.359 | 0.003 |
Creatinine, 0.1 mg/dL | 1.237 | 0.986–1.552 | 0.067 |
CRP, 0.1 mg/dL | 1.146 | 0.870–1.508 | 0.333 |
Diabetes mellitus, present | 3.410 | 0.842–13.802 | 0.087 |
Variables | Carotid–Femoral Pulse Wave Velocity (m/s) | ||||
---|---|---|---|---|---|
Simple Regression | Multivariate Regression | ||||
r | p-Value | Beta | Adjusted R2 Change | p-Value | |
Female | −0.082 | 0.458 | – | – | – |
Diabetes mellitus | 0.300 | 0.006 | – | – | – |
Hypertension | −0.009 | 0.936 | – | – | – |
Age (years) | 0.437 | <0.001 | 0.365 | 0.090 | 0.001 |
Height (cm) | −0.001 | 0.990 | – | – | – |
Body weight (kg) | −0.185 | 0.092 | – | – | – |
Body mass index (kg/m2) | −0.212 | 0.052 | – | – | – |
Log-operation duration (months) | 0.064 | 0.564 | – | – | – |
Systolic blood pressure (mmHg) | 0.168 | 0.127 | – | – | – |
Diastolic blood pressure (mmHg) | −0.118 | 0.286 | – | – | – |
Total cholesterol (mg/dL) | 0.043 | 0.701 | – | – | – |
Log-triglyceride (mg/dL) | 0.005 | 0.963 | – | – | – |
HDL-C (mg/dL) | −0.043 | 0.698 | – | – | – |
LDL-C (mg/dL) | −0.003 | 0.980 | – | – | – |
Log-glucose (mg/dL) | −0.010 | 0.927 | – | – | – |
Log-BUN (mg/dL) | 0.018 | 0.868 | – | – | – |
Log-creatinine (mg/dL) | 0.120 | 0.278 | – | – | – |
eGFR (mL/min) | −0.137 | 0.215 | – | – | – |
Albumin (g/dL) | 0.129 | 0.243 | – | – | – |
Total calcium (mg/dL) | −0.116 | 0.294 | – | – | – |
Phosphorus (mg/dL) | −0.008 | 0.942 | – | – | – |
Log-iPTH (pg/mL) | 0.007 | 0.950 | – | – | – |
Log-CRP (mg/dL) | 0.228 | 0.039 | – | – | – |
Log-A-FABP (ng/mL) | 0.568 | <0.001 | 0.467 | 0.305 | <0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, N.-W.; Lin, J.-H.; Jhan, J.-Y.; Hsu, B.-G.; Chang, J.-C. Age and Serum Adipocyte Fatty-Acid-Binding Protein Level Are Associated with Aortic Stiffness in Coronary Artery Bypass Graft Patients. J. Cardiovasc. Dev. Dis. 2022, 9, 105. https://doi.org/10.3390/jcdd9040105
Huang N-W, Lin J-H, Jhan J-Y, Hsu B-G, Chang J-C. Age and Serum Adipocyte Fatty-Acid-Binding Protein Level Are Associated with Aortic Stiffness in Coronary Artery Bypass Graft Patients. Journal of Cardiovascular Development and Disease. 2022; 9(4):105. https://doi.org/10.3390/jcdd9040105
Chicago/Turabian StyleHuang, Nai-Wei, Jian-Hong Lin, Jin-You Jhan, Bang-Gee Hsu, and Jui-Chih Chang. 2022. "Age and Serum Adipocyte Fatty-Acid-Binding Protein Level Are Associated with Aortic Stiffness in Coronary Artery Bypass Graft Patients" Journal of Cardiovascular Development and Disease 9, no. 4: 105. https://doi.org/10.3390/jcdd9040105
APA StyleHuang, N.-W., Lin, J.-H., Jhan, J.-Y., Hsu, B.-G., & Chang, J.-C. (2022). Age and Serum Adipocyte Fatty-Acid-Binding Protein Level Are Associated with Aortic Stiffness in Coronary Artery Bypass Graft Patients. Journal of Cardiovascular Development and Disease, 9(4), 105. https://doi.org/10.3390/jcdd9040105