Therapeutic Management of LDL-C: Efficacy and Economic Impact Assessment
Abstract
:1. Introduction
2. Lipid-Lowering Drugs
2.1. Statins
2.2. Ezetimibe
2.3. Proprotein Convertase Subtilisin/Kexin Type 9 (PCSK9) Inhibitors
2.4. Bempoedic Acid
2.5. Inclisiran
3. Cost Effectiveness
3.1. Statins
3.2. Ezetimibe and/or PCSK9
3.3. Bempedoic Acid
3.4. Inclisiran
4. Conclusions
Funding
Conflicts of Interest
References
- Mensah, G.A.; Habtegiorgis Abate, Y.; Abbasian, M.; Abd-Allah, F.; Abdollahi, A.; Abdollahi, M.; Morad Abdulah, D.; Abdullahi, A.; Abebe, A.M.; Abedi, A.; et al. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef] [PubMed]
- Bayturan, O.; Kapadia, S.; Nicholls, S.J.; Tuzcu, E.M.; Shao, M.; Uno, K.; Shreevatsa, A.; Lavoie, A.J.; Wolski, K.; Schoenhagen, P.; et al. Clinical Predictors of Plaque Progression Despite Very Low Levels of Low-Density Lipoprotein Cholesterol. J. Am. Coll. Cardiol. 2010, 55, 2736–2742. [Google Scholar] [CrossRef]
- Jebari-Benslaiman, S.; Galicia-García, U.; Larrea-Sebal, A.; Olaetxea, J.R.; Alloza, I.; Vandenbroeck, K.; Benito-Vicente, A.; Martín, C. Pathophysiology of Atherosclerosis. Int. J. Mol. Sci. 2022, 23, 3346. [Google Scholar] [CrossRef]
- Silverman, M.G.; Ference, B.A.; Im, K.; Wiviott, S.D.; Giugliano, R.P.; Grundy, S.M.; Braunwald, E.; Sabatine, M.S. Association between Lowering LDL-C and Cardiovascular Risk Reduction among Different Therapeutic Interventions: A Systematic Review and Meta-Analysis. JAMA J. Am. Med. Assoc. 2016, 316, 1289–1297. [Google Scholar] [CrossRef]
- Kim, B.K.; Hong, S.J.; Lee, Y.J.; Hong, S.J.; Yun, K.H.; Hong, B.K.; Heo, J.H.; Rha, S.W.; Cho, Y.H.; Lee, S.J.; et al. Long-Term Efficacy and Safety of Moderate-Intensity Statin with Ezetimibe Combination Therapy versus High-Intensity Statin Monotherapy in Patients with Atherosclerotic Cardiovascular Disease (RACING): A Randomised, Open-Label, Non-Inferiority Trial. Lancet 2022, 400, 380–390. [Google Scholar] [CrossRef] [PubMed]
- Hameed, I.; Shah, S.A.; Aijaz, A.; Mushahid, H.; Farhan, S.H.; Dada, M.; Khan, A.B.; Amjad, R.; Alvi, F.; Murtaza, M.; et al. Comparative Safety and Efficacy of Low/Moderate-Intensity Statin plus Ezetimibe Combination Therapy vs. High-Intensity Statin Monotherapy in Patients with Atherosclerotic Cardiovascular Disease: An Updated Meta-Analysis. Am. J. Cardiovasc. Drugs 2024, 24, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Jun, J.E.; Jeong, I.K.; Ahn, K.J.; Chung, H.Y.; Hwang, Y.C. Combination of Low- or Moderate-Intensity Statin and Ezetimibe vs. High-Intensity Statin Monotherapy on Primary Prevention of Cardiovascular Disease and All-Cause Death: A Propensity-Matched Nationwide Cohort Study. Eur. J. Prev. Cardiol. 2024, 31, 1205–1213. [Google Scholar] [CrossRef]
- Jang, J.Y.; Kim, S.; Cho, J.; Chun, S.Y.; You, S.C.; Kim, J.S. Comparative Effectiveness of Moderate-Intensity Statin with Ezetimibe Therapy versus High-Intensity Statin Monotherapy in Patients with Acute Coronary Syndrome: A Nationwide Cohort Study. Sci. Rep. 2024, 14, 838. [Google Scholar] [CrossRef]
- Choo, E.H.; Moon, D.; Choi, I.J.; Lim, S.; Lee, J.; Kang, D.; Hwang, B.-H.; Kim, C.J.; Lee, J.-M.; Yoo, K.-D.; et al. Efficacy and Diabetes Risk of Moderate-Intensity Statin plus Ezetimibe versus High-Intensity Statin after Percutaneous Coronary Intervention. Cardiovasc. Diabetol. 2024, 23, 396. [Google Scholar] [CrossRef]
- Mahajan, K.; Nagendra, L.; Dhall, A.; Dutta, D. Impact of Early Initiation of Ezetimibe in Patients with Acute Coronary Syndrome: A Systematic Review and Meta-Analysis. Eur. J. Intern. Med. 2024, 124, 99–107. [Google Scholar] [CrossRef]
- Choi, H.; Kang, S.H.; Jeong, S.W.; Yoon, C.H.; Youn, T.J.; Song, W.H.; Jeon, D.W.; Lim, S.W.; Lee, J.H.; Cho, S.W.; et al. Lipid-Lowering Efficacy of Combination Therapy With Moderate-Intensity Statin and Ezetimibe Versus High-Intensity Statin Monotherapy: A Randomized, Open-Label, Non-Inferiority Trial From Korea. J. Lipid Atheroscler. 2023, 12, 277–289. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; Hong, S.J.; Cho, J.M.; Han, K.H.; Cha, D.H.; Jo, S.H.; Kang, H.J.; Choi, S.Y.; Choi, C.U.; Cho, E.J.; et al. A Multicenter, Randomized, Double-Blind, Active-Controlled, Factorial Design, Phase III Clinical Trial to Evaluate the Efficacy and Safety of Combination Therapy of Pitavastatin and Ezetimibe Versus Monotherapy of Pitavastatin in Patients With Primary Hypercholesterolemia. Clin. Ther. 2022, 44, 1310–1325. [Google Scholar] [CrossRef]
- Bittner, V.A.; Szarek, M.; Aylward, P.E.; Bhatt, D.L.; Diaz, R.; Edelberg, J.M.; Fras, Z.; Goodman, S.G.; Halvorsen, S.; Hanotin, C.; et al. Effect of Alirocumab on Lipoprotein(a) and Cardiovascular Risk After Acute Coronary Syndrome. J. Am. Coll. Cardiol. 2020, 75, 133–144. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Y.; Zhang, B.; Chen, Z.; Wei, Y.; Chen, P.; Chang, C.; Liu, G.; Chen, K.; Ding, J.; et al. Early Initiation of Evolocumab Treatment in Chinese Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention. Clin. Ther. 2022, 44, 901–912. [Google Scholar] [CrossRef]
- Wang, X.; Wen, D.; Chen, Y.; Ma, L.; You, C. PCSK9 Inhibitors for Secondary Prevention in Patients with Cardiovascular Diseases: A Bayesian Network Meta-Analysis. Cardiovasc. Diabetol. 2022, 21, 107. [Google Scholar] [CrossRef]
- Chlebus, K.; Cybulska, B.; Dobrowolski, P.; Romanowska-Kocejko, M.; Żarczyńska-Buchowiecka, M.; Gilis-Malinowska, N.; Stróżyk, A.; Borowiec-Wolna, J.; Pajkowski, M.; Bobrowska, B.; et al. Effectiveness and Safety of PCSK9 Inhibitor Therapy in Patients with Familial Hypercholesterolemia within a Therapeutic Program in Poland: Preliminary Multicenter Data. Cardiol. J. 2022, 29, 62–71. [Google Scholar] [CrossRef]
- Landmesser, U.; McGinniss, J.; Steg, P.G.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Dilic, M.; Goodman, S.G.; Jukema, J.W.; Loy, M.; et al. Achievement of ESC/EAS LDL-C Treatment Goals after an Acute Coronary Syndrome with Statin and Alirocumab. Eur. J. Prev. Cardiol. 2022, 29, 1842–1851. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Q.; Li, D.D.; Chai, M.; Cong, H.L.; Cong, X.Q.; Dai, J.; Du, R.P.; Gao, M.; Guo, J.C.; Guo, Y.Q.; et al. Real World Effectiveness of PCSK-9 Inhibitors Combined with Statins versus Statins-Based Therapy among Patients with Very High Risk of Atherosclerotic Cardiovascular Disease in China (RWE-PCSK Study). J. Geriatr. Cardiol. 2021, 18, 261. [Google Scholar] [CrossRef]
- Khan, S.U.; Yedlapati, S.H.; Lone, A.N.; Hao, Q.; Guyatt, G.; Delvaux, N.; Bekkering, G.E.; Vandvik, P.O.; Riaz, I.B.; Li, S.; et al. PCSK9 Inhibitors and Ezetimibe with or without Statin Therapy for Cardiovascular Risk Reduction: A Systematic Review and Network Meta-Analysis. BMJ 2022, 377, e069116. [Google Scholar] [CrossRef]
- Wang, H.-F.; Mao, Y.-C.; Qi, S.-F.; Xu, X.-Y.; Zhang, Z.-Y.; Geng, C.; Song, K.; Tian, Q.-B. Benefits and Risks of Antihyperlipidemic Medication in Adults with Different Low-Density Lipoprotein Cholesterol Based on the Number Needed to Treat. Am. J. Cardiovasc. Drugs 2024, 24, 557–568. [Google Scholar] [CrossRef]
- Singeisen, H.; Renström, F.; Laimer, M.; Lehmann, R.; Bilz, S.; Brändle, M. An Estimation of the Consequences of Reinforcing the 2016 and 2019 European Society of Cardiology/European Atherosclerosis Society Guidelines on Current Lipid-Lowering Treatment in Patients with Type 2 Diabetes in Tertiary Care—A SwissDiab Study. Eur. J. Prev. Cardiol. 2023, 30, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Raal, F.J.; Kallend, D.; Ray, K.K.; Turner, T.; Koenig, W.; Wright, R.S.; Wijngaard, P.L.J.; Curcio, D.; Jaros, M.J.; Leiter, L.A.; et al. Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N. Engl. J. Med. 2020, 382, 1520–1530. [Google Scholar] [CrossRef]
- Ray, K.K.; Wright, R.S.; Kallend, D.; Koenig, W.; Leiter, L.A.; Raal, F.J.; Bisch, J.A.; Richardson, T.; Jaros, M.; Wijngaard, P.L.J.; et al. Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N. Engl. J. Med. 2020, 382, 1507–1519. [Google Scholar] [CrossRef]
- Huo, Y.; Lesogor, A.; Lee, C.W.; Chiang, C.E.; Mena-Madrazo, J.; Poh, K.K.; Jeong, M.H.; Maheux, P.; Zhang, M.; Wei, S.; et al. Efficacy and Safety of Inclisiran in Asian Patients: Results from ORION-18. JACC Asia 2024, 4, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Koren, M.J.; Rodriguez, F.; East, C.; Toth, P.P.; Watwe, V.; Abbas, C.A.; Sarwat, S.; Kleeman, K.; Kumar, B.; Ali, Y.; et al. An “Inclisiran First” Strategy vs. Usual Care in Patients With Atherosclerotic Cardiovascular Disease. J. Am. Coll. Cardiol. 2024, 83, 1939–1952. [Google Scholar] [CrossRef]
- Oesterle, A.; Laufs, U.; Liao, J.K. Pleiotropic Effects of Statins on the Cardiovascular System. Circ. Res. 2017, 120, 229–243. [Google Scholar] [CrossRef] [PubMed]
- Turgeon, R.D.; Barry, A.R.; Pearson, G.J. Familial Hypercholesterolemia Review of Diagnosis, Screening, and Treatment. Can. Fam. Physician 2016, 62, 32–37. [Google Scholar]
- Shepherd, J.; Blauw, G.J.; Murphy, M.B.; Bollen, E.L.E.M.; Buckley, B.M.; Cobbe, S.M.; Ford, I.; Gaw, A.; Hyland, M.; Jukema, J.W.; et al. Pravastatin in Elderly Individuals at Risk of Vascular Disease (PROSPER): A Randomised Controlled Trial. Lancet 2002, 360, 1623–1630. [Google Scholar] [CrossRef]
- Deedwania, P.; Stone, P.H.; Bairey Merz, C.N.; Cosin-Aguilar, J.; Koylan, N.; Luo, D.; Ouyang, P.; Piotrowicz, R.; Schenck-Gustafsson, K.; Sellier, P.; et al. Effects of Intensive Versus Moderate Lipid-Lowering Therapy on Myocardial Ischemia in Older Patients With Coronary Heart Disease. Circulation 2007, 115, 700–707. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Olsson, A.G.; Ezekowitz, M.D.; Ganz, P.; Oliver, M.F.; Waters, D.; Zeiher, A.; Chaitman, B.R.; Leslie, S.; Stern, T. Effects of Atorvastatin on Early Recurrent Ischemic Events in Acute Coronary Syndromes the MIRACL Study: A Randomized Controlled Trial. J. Am. Med. Assoc. 2001, 285, 1711–1718. [Google Scholar] [CrossRef]
- Cannon, C.P.; Braunwald, E.; McCabe, C.H.; Rader, D.J.; Rouleau, J.L.; Belder, R.; Joyal, S.V.; Hill, K.A.; Pfeffer, M.A.; Skene, A.M. Intensive versus Moderate Lipid Lowering with Statins after Acute Coronary Syndromes. N. Engl. J. Med. 2004, 350, 1495–1504. [Google Scholar] [CrossRef] [PubMed]
- Jernberg, T.; Hasvold, P.; Henriksson, M.; Hjelm, H.; Thuresson, M.; Janzon, M. Cardiovascular Risk in Post-Myocardial Infarction Patients: Nationwide Real World Data Demonstrate the Importance of a Long-Term Perspective. Eur. Heart J. 2015, 36, 1163–1170. [Google Scholar] [CrossRef]
- Wiviott, S.D.; De Lemos, J.A.; Cannon, C.P.; Blazing, M.; Murphy, S.A.; McCabe, C.H.; Califf, R.; Braunwald, E. A Tale of Two Trials: A Comparison of the Post-Acute Coronary Syndrome Lipid-Lowering Trials A to Z and PROVE IT-TIMI 22. Circulation 2006, 113, 1406–1414. [Google Scholar] [CrossRef]
- Herrett, E.; Williamson, E.; Brack, K.; Beaumont, D.; Perkins, A.; Thayne, A.; Shakur-Still, H.; Roberts, I.; Prowse, D.; Goldacre, B.; et al. Statin Treatment and Muscle Symptoms: Series of Randomised, Placebo Controlled n-of-1 Trials. BMJ 2021, 372, n135. [Google Scholar] [CrossRef] [PubMed]
- Colhoun, H.M.; Betteridge, D.J.; Durrington, P.N.; Hitman, G.A.; Neil, H.A.W.; Livingstone, S.J.; Thomason, M.J.; Mackness, M.I.; Charlton-Menys, V.; Fuller, J.H. Primary Prevention of Cardiovascular Disease with Atorvastatin in Type 2 Diabetes in the Collaborative Atorvastatin Diabetes Study (CARDS): Multicentre Randomised Placebo-Controlled Trial. Lancet 2004, 364, 685–696. [Google Scholar] [CrossRef]
- Protection, H.; Collaborative, S. MRC/BHF Heart Protection Study of Cholesterol Lowering Simvastatin in 5963 People with Diabetes: A Randomized Controlled Trial. Heart Protection Study Collaborative Group. Lancet 2003, 361, 2005–2016. [Google Scholar]
- Kim, J.Y.; Choi, J.; Kim, S.G.; Kim, N.H. Relative Contributions of Statin Intensity, Achieved Low-Density Lipoprotein Cholesterol Level, and Statin Therapy Duration to Cardiovascular Risk Reduction in Patients with Type 2 Diabetes: Population Based Cohort Study. Cardiovasc. Diabetol. 2022, 21, 28. [Google Scholar] [CrossRef]
- Hodkinson, A.; Tsimpida, D.; Kontopantelis, E.; Rutter, M.K.; Mamas, M.A.; Panagioti, M. Comparative Effectiveness of Statins on Non-High Density Lipoprotein Cholesterol in People with Diabetes and at Risk of Cardiovascular Disease: Systematic Review and Network Meta-Analysis. BMJ 2022, 376, e067731. [Google Scholar] [CrossRef]
- Navar, A.M.; Peterson, E.D.; Li, S.; Robinson, J.G.; Roger, V.L.; Goldberg, A.C.; Virani, S.; Wilson, P.W.F.; Nanna, M.G.; Lee, L.V.; et al. Prevalence and Management of Symptoms Associated with Statin Therapy in Community Practice Insights from the PALM (Patient and Provider Assessment of Lipid Management) Registry. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004249. [Google Scholar] [CrossRef]
- Hirota, T.; Fujita, Y.; Ieiri, I. An Updated Review of Pharmacokinetic Drug Interactions and Pharmacogenetics of Statins. Expert Opin. Drug Metab. Toxicol. 2020, 16, 809–822. [Google Scholar] [CrossRef]
- Blazing, M.; Braunwald, E.; de Lemos, J.; Murphy, S.; Pedersen, T.; Pfeffer, M.; White, H.; Wiviott, S.; Clearfield, M.; Downs, J.R.; et al. Effect of Statin Therapy on Muscle Symptoms: An Individual Participant Data Meta-Analysis of Large-Scale, Randomised, Double-Blind Trials. Lancet 2022, 400, 832–845. [Google Scholar] [CrossRef]
- Wood, F.A.; Howard, J.P.; Finegold, J.A.; Nowbar, A.N.; Thompson, D.M.; Arnold, A.D.; Rajkumar, C.A.; Connolly, S.; Cegla, J.; Stride, C.; et al. N-of-1 Trial of a Statin, Placebo, or No Treatment to Assess Side Effects. N. Engl. J. Med. 2020, 383, 2182–2184. [Google Scholar] [CrossRef]
- Cheeley, M.K.; Saseen, J.J.; Agarwala, A.; Ravilla, S.; Ciffone, N.; Jacobson, T.A.; Dixon, D.L.; Maki, K.C. NLA Scientific Statement on Statin Intolerance: A New Definition and Key Considerations for ASCVD Risk Reduction in the Statin Intolerant Patient. J. Clin. Lipidol. 2022, 16, 361–375. [Google Scholar] [CrossRef]
- Stroes, E.S.; Thompson, P.D.; Corsini, A.; Vladutiu, G.D.; Raal, F.J.; Ray, K.K.; Roden, M.; Stein, E.; Tokgözoʇlu, L.; Nordestgaard, B.G.; et al. Statin-Associated Muscle Symptoms: Impact on Statin Therapy–European Atherosclerosis Society Consensus Panel Statement on Assessment, Aetiology and Management. Eur. Heart J. 2015, 36, 1012–1022. [Google Scholar] [CrossRef]
- Garcia-Calvo, M.; Lisnock, J.M.; Bull, H.G.; Hawes, B.E.; Burnett, D.A.; Braun, M.P.; Crona, J.H.; Davis, H.R.; Dean, D.C.; Detmers, P.A.; et al. The Target of Ezetimibe Is Niemann-Pick C1-Like 1 (NPC1L1). Proc. Natl. Acad. Sci. USA 2005, 102, 8132–8137. [Google Scholar] [CrossRef]
- Ah, Y.M.; Jeong, M.; Choi, H.D. Comparative Safety and Efficacy of Low- or Moderate-Intensity Statin plus Ezetimibe Combination Therapy and High-Intensity Statin Monotherapy: A Meta-Analysis of Randomized Controlled Studies. PLoS ONE 2022, 17, e0264437. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hu, H.; Yang, J.; Yao, Q.; Xu, H.; Yu, Y.; Liu, T.; Lin, S. The Efficacy and Safety of Statin in Combination with Ezetimibe Compared with Double-Dose Statin in Patients with High Cardiovascular Risk: A Meta-Analysis. Bosn. J. Basic Med. Sci. 2020, 20, 169–182. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, R.; Garg, J.; Shah, N.; Sumner, A. PCSK9 Inhibitors: A New Era of Lipid Lowering Therapy. World J. Cardiol. 2017, 9, 76–91. [Google Scholar] [CrossRef]
- Steffens, D.; Bramlage, P.; Scheeff, C.; Kasner, M.; Hassanein, A.; Friebel, J.; Rauch-Kröhnert, U. PCSK9 Inhibitors and Cardiovascular Outcomes. Expert Opin. Biol. Ther. 2020, 20, 35–47. [Google Scholar] [CrossRef]
- Akbarpour, M.; Devineni, D.; Gong, Y.; Wong, N.D. Dyslipidemia Treatment and Lipid Control in US Adults with Diabetes by Sociodemographic and Cardiovascular Risk Groups in the NIH Precision Medicine Initiative All of Us Research Program. J. Clin. Med. 2023, 12, 1668. [Google Scholar] [CrossRef]
- Blumenthal, R.S.; Martin, S.S. Bempedoic Acid for LDL-C Lowering: What Do We Know? Available online: https://www.acc.org/Latest-in-Cardiology/Articles/2020/08/10/08/21/Bempedoic-Acid-for-LDL-C-Lowering (accessed on 17 May 2025).
- Laufs, U.; Ballantyne, C.M.; Banach, M.; Bays, H.; Catapano, A.L.; Duell, P.B.; Goldberg, A.C.; Gotto, A.M.; Leiter, L.A.; Ray, K.K.; et al. Efficacy and Safety of Bempedoic Acid in Patients Not Receiving Statins in Phase 3 Clinical Trials. J. Clin. Lipidol. 2022, 16, 286–297. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, A.C.; Leiter, L.A.; Stroes, E.S.G.; Baum, S.J.; Hanselman, J.C.; Bloedon, L.T.; Lalwani, N.D.; Patel, P.M.; Zhao, X.; Duell, P.B. Effect of Bempedoic Acid vs. Placebo Added to Maximally Tolerated Statins on Low-Density Lipoprotein Cholesterol in Patients at High Risk for Cardiovascular Disease: The CLEAR Wisdom Randomized Clinical Trial. JAMA J. Am. Med. Assoc. 2019, 322, 1780–1788, Erratum in JAMA J. Am. Med. Assoc. 2020, 323, 282. [Google Scholar] [CrossRef]
- Cicero, A.F.G.; Fogacci, F.; Hernandez, A.V.; Banach, M.; Alnouri, F.; Amar, F.; Atanasov, A.G.; Bajraktari, G.; Bartlomiejczyk, M.A.; Bjelakovic, B.; et al. Efficacy and Safety of Bempedoic Acid for the Treatment of Hypercholesterolemia: A Systematic Review and Meta-Analysis. PLoS Med. 2020, 17, e1003121. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, Y.; Nandhakumar, M.; Eerike, M.; Kondampati, N.; Mali, K.; Chalissery, L.F.; Konda, V.G.R.; Nagireddy, U.M.; Rajendran, Y.; Nandhakumar, M.; et al. A Comparative Analysis of Low-Density Lipoprotein Cholesterol (LDL-C)-Lowering Activities of Bempedoic Acid, Inclisiran, and PCSK9 Inhibitors: A Systematic Review. Cureus 2024, 16, e69900. [Google Scholar] [CrossRef]
- Jameson, K.; Zhang, Q.; Zhao, C.; Ramey, D.R.; Tershakovec, A.M.; Gutkin, S.W.; Marrett, E. Total and Low-Density Lipoprotein Cholesterol in High-Risk Patients Treated with Atorvastatin Monotherapy in the United Kingdom: Analysis of a Primary-Care Database. Curr. Med. Res. Opin. 2014, 30, 655–665. [Google Scholar] [CrossRef]
- Stone, N.J.; Robinson, J.G.; Lichtenstein, A.H.; Bairey Merz, C.N.; Blum, C.B.; Eckel, R.H.; Goldberg, A.C.; Gordon, D.; Levy, D.; Lloyd-Jones, D.M.; et al. 2013 ACC/AHA Guideline on the Treatment of Blood Cholesterol to Reduce Atherosclerotic Cardiovascular Risk in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, 2889–2934. [Google Scholar] [CrossRef]
- Lakoski, S.G.; Lagace, T.A.; Cohen, J.C.; Horton, J.D.; Hobbs, H.H. Genetic and Metabolic Determinants of Plasma PCSK9 Levels. J. Clin. Endocrinol. Metab. 2009, 94, 2537–2543. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Berge, K.E.; Leren, T.P. The Unique Role of Proprotein Convertase Subtilisin/Kexin 9 in Cholesterol Homeostasis. J. Intern. Med. 2009, 266, 507–519. [Google Scholar] [CrossRef]
- Wright, R.S.; Raal, F.J.; Koenig, W.; Landmesser, U.; Leiter, L.A.; Vikarunnessa, S.; Lesogor, A.; Maheux, P.; Talloczy, Z.; Zang, X.; et al. Inclisiran Administration Potently and Durably Lowers LDL-C over an Extended-Term Follow-up: The ORION-8 Trial. Cardiovasc. Res. 2024, 120, 1400–1410. [Google Scholar] [CrossRef]
- Yamashita, S.; Kiyosue, A.; Maheux, P.; Mena-Madrazo, J.; Lesogor, A.; Shao, Q.; Tamaki, Y.; Nakamura, H.; Akahori, M.; Kajinami, K. Efficacy, Safety, and Pharmacokinetics of Inclisiran in Japanese Patients: Results from ORION-15. J. Atheroscler. Thromb. 2024, 31, 876–903. [Google Scholar] [CrossRef]
- Leiter, L.A.; Raal, F.J.; Schwartz, G.G.; Koenig, W.; Ray, K.K.; Landmesser, U.; Han, J.; Conde, L.G.; Wright, R.S. Inclisiran in Individuals with Diabetes or Obesity: Post Hoc Pooled Analyses of the ORION-9, ORION-10 and ORION-11 Phase 3 Randomized Trials. Diabetes Obes. Metab. 2024, 26, 3223–3237. [Google Scholar] [CrossRef] [PubMed]
- Niu, C.; Parlapalli, A.; Neenan, J.; Ma, X.; Osei-Wusu, A.; Park, J.; McElligott, S. Abstract 12945: Six-Month Adherence Among Early Inclisiran Initiators vs. Anti-PCSK9 MAbs Users: A Retrospective Analysis of US Claims Databases. Circulation 2023, 148, A12945. [Google Scholar] [CrossRef]
- Sanders, G.D.; Maciejewski, M.L.; Basu, A. Overview of Cost-Effectiveness Analysis. JAMA 2019, 321, 1400–1401. [Google Scholar] [CrossRef]
- Lazar, L.D.; Pletcher, M.J.; Coxson, P.G.; Bibbins-Domingo, K.; Goldman, L. Cost-Effectiveness of Statin Therapy for Primary Prevention in a Low-Cost Statin Era. Circulation 2011, 124, 146–153. [Google Scholar] [CrossRef]
- Kohli-Lynch, C.N.; Lewsey, J.; Boyd, K.A.; French, D.D.; Jordan, N.; Moran, A.E.; Sattar, N.; Preiss, D.; Briggs, A.H. Beyond 10-Year Risk: A Cost-Effectiveness Analysis of Statins for the Primary Prevention of Cardiovascular Disease. Circulation 2022, 145, 1312–1323. [Google Scholar] [CrossRef]
- Mihaylova, B.; Briggs, A.; Hlatky, M.; Armitage, M.; Parish, S.; Gray, A.; Collins, R.; Collins, R.; Meade, T.; Sleight, P.; et al. Statin Cost-Effectiveness in the United States for People at Different Vascular Risk Levels. Circ. Cardiovasc. Qual. Outcomes 2009, 2, 65–72. [Google Scholar] [CrossRef]
- Mihaylova, B.; Wu, R.; Zhou, J.; Williams, C.; Schlackow, I.; Emberson, J.; Reith, C.; Keech, A.; Robson, J.; Parnell, R.; et al. Lifetime Effects and Cost-Effectiveness of Standard and Higher-Intensity Statin Therapy across Population Categories in the UK: A Microsimulation Modelling Study. Lancet Reg. Health–Eur. 2024, 40, 100887. [Google Scholar] [CrossRef]
- Colantonio, L.D.; Deng, L.; Chen, L.; Farkouh, M.E.; Monda, K.L.; Harrison, D.J.; Maya, J.F.; Kilgore, M.L.; Muntner, P.; Rosenson, R.S. Medical Expenditures Among Medicare Beneficiaries with Statin-Associated Adverse Effects Following Myocardial Infarction. Cardiovasc. Drugs Ther. 2018, 32, 601–610. [Google Scholar] [CrossRef]
- Ara, R.; Pandor, A.; Tumur, I.; Paisley, S.; Duenas, A.; Williams, R.; Rees, A.; Wilkinson, A.; Durrington, P.; Chilcott, J. Cost Effectiveness of Ezetimibe in Patients with Cardiovascular Disease and Statin Intolerance or Contraindications: A Markov Model. Am. J. Cardiovasc. Drugs 2008, 8, 419–427. [Google Scholar] [CrossRef]
- Kohli, M.; Attard, C.; Lam, A.; Huse, D.; Cook, J.; Bourgault, C.; Alemao, E.; Yin, D.; Marentette, M. Cost Effectiveness of Adding Ezetimibe to Atorvastatin Therapy in Patients Not at Cholesterol Treatment Goal in Canada. Pharmacoeconomics 2006, 24, 815–830. [Google Scholar] [CrossRef]
- Davies, G.M.; Vyas, A.; Baxter, C.A. Economic Evaluation of Ezetimibe Treatment in Combination with Statin Therapy in the United States. J. Med. Econ. 2017, 20, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Y.; Gan, L.; Du, H.; Hao, Q.; Aertgeerts, B.; Li, S.; Hu, M. Cost-Effectiveness of Adding Ezetimibe and/or PCSK9 Inhibitors to High-Dose Statins for Secondary Prevention of Cardiovascular Disease in Chinese Adults. Int. J. Technol. Assess. Health Care 2023, 39, e53. [Google Scholar] [CrossRef]
- Reckless, J.; Davies, G.; Tunceli, K.; Hu, X.H.; Brudi, P. Projected Cost-Effectiveness of Ezetimibe/Simvastatin Compared with Doubling the Statin Dose in the United Kingdom: Findings from the INFORCE Study. Value Health 2010, 13, 726–734. [Google Scholar] [CrossRef]
- Michaeli, D.T.; Michaeli, J.C.; Boch, T.; Michaeli, T. Cost-Effectiveness of Lipid-Lowering Therapies for Cardiovascular Prevention in Germany. Cardiovasc. Drugs Ther. 2023, 37, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Michaeli, D.T.; Michaeli, J.C.; Boch, T.; Michaeli, T. Cost-Effectiveness of Icosapent Ethyl, Evolocumab, Alirocumab, Ezetimibe, or Fenofibrate in Combination with Statins Compared to Statin Monotherapy. Clin. Drug Investig. 2022, 42, 643–656. [Google Scholar] [CrossRef]
- Abushanab, D.; Al-Badriyeh, D.; Marquina, C.; Bailey, C.; Jaam, M.; Liew, D.; Ademi, Z. A Systematic Review of Cost-Effectiveness of Non-Statin Lipid-Lowering Drugs for Primary and Secondary Prevention of Cardiovascular Disease in Patients with Type 2 Diabetes Mellitus. Curr. Probl. Cardiol. 2023, 48, 101211. [Google Scholar] [CrossRef] [PubMed]
- Korman, M.; Wisløff, T. Modelling the Cost-Effectiveness of PCSK9 Inhibitors vs. Ezetimibe through LDL-C Reductions in a Norwegian Setting. Eur. Heart J. Cardiovasc. Pharmacother. 2018, 4, 15–22. [Google Scholar] [CrossRef]
- Carroll, C.; Tappenden, P.; Rafia, R.; Hamilton, J.; Chambers, D.; Clowes, M.; Durrington, P.; Qureshi, N.; Wierzbicki, A.S. Evolocumab for Treating Primary Hypercholesterolaemia and Mixed Dyslipidaemia: An Evidence Review Group Perspective of a NICE Single Technology Appraisal. Pharmacoeconomics 2017, 35, 537–547. [Google Scholar] [CrossRef]
- Arrieta, A.; Hong, J.C.; Khera, R.; Virani, S.S.; Krumholz, H.M.; Nasir, K. Updated Cost-Effectiveness Assessments of PCSK9 Inhibitors from the Perspectives of the Health System and Private Payers: Insights Derived from the FOURIER Trial. JAMA Cardiol. 2017, 2, 1369–1374. [Google Scholar] [CrossRef]
- Kazi, D.S.; Moran, A.E.; Coxson, P.G.; Penko, J.; Ollendorf, D.A.; Pearson, S.D.; Tice, J.A.; Guzman, D.; Bibbins-Domingo, K. Cost-Effectiveness of PCSK9 Inhibitor Therapy in Patients with Heterozygous Familial Hypercholesterolemia or Atherosclerotic Cardiovascular Disease. JAMA J. Am. Med. Assoc. 2016, 316, 743–753. [Google Scholar] [CrossRef]
- Michaeli, D.T.; Michaeli, J.C.; Boch, T.; Michaeli, T. Cost-Effectiveness of Cholesterol-Lowering Drugs for Secondary Cardiovascular Prevention in the UK: Ezetimibe, Evolocumab, and Alirocumab. Eur. Heart J. 2022, 43, ehac544.2367. [Google Scholar] [CrossRef]
- Butala, N.M.; Virani, S.S.; Isaza, N.; Lin, G.A.; Pearson, S.; Bellows, B.; Liu, C.L.; Aggarwal, R.; Zhang, Y.; Kazi, D.S. Abstract 10315: Cost-Effectiveness of Bempedoic Acid in Patients with Established Atherosclerotic Cardiovascular Disease. Circulation 2021, 144, A10315. [Google Scholar] [CrossRef]
- Perera, K.; Kam, N.; Ademi, Z.; Liew, D.; Zomer, E. Bempedoic Acid for High-Risk Patients with CVD as Adjunct Lipid-Lowering Therapy: A Cost-Effectiveness Analysis. J. Clin. Lipidol. 2020, 14, 772–783. [Google Scholar] [CrossRef]
- Galactionova, K.; Salari, P.; Mattli, R.; Rachamin, Y.; Meier, R.; Schwenkglenks, M. Cost-Effectiveness, Burden of Disease and Budget Impact of Inclisiran: Dynamic Cohort Modelling of a Real-World Population with Cardiovascular Disease. Pharmacoeconomics 2022, 40, 791–806. [Google Scholar] [CrossRef] [PubMed]
- Wong, M.; Lim, J.Q.P.; Tan, L.E.; Abdul Aziz, M.I.; Ong, S.K.B.; Ng, K. EE164 Cost-Effectiveness of Inclisiran as Add-on Therapy to Standard-of-Care for the Secondary Prevention of Cardiovascular Events in Patients with Elevated LDL Cholesterol. Value Health 2023, 26, S82. [Google Scholar] [CrossRef]
- Zhou, W.; Liang, Z.; Lou, X.; Wang, N.; Liu, X.; Li, R.; Pai, P. The Combination Use of Inclisiran and Statins versus Statins Alone in the Treatment of Dyslipidemia in Mainland China: A Cost-Effectiveness Analysis. Front. Pharmacol. 2024, 15, 1283922. [Google Scholar] [CrossRef]
- Kam, N.; Perera, K.; Zomer, E.; Liew, D.; Ademi, Z. Inclisiran as Adjunct Lipid-Lowering Therapy for Patients with Cardiovascular Disease: A Cost-Effectiveness Analysis. Pharmacoeconomics 2020, 38, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.L.; Tan, R.-S.; Poh, K.K.; Wang, X.J. Cost-Effectiveness Analysis of Inclisiran for the Treatment of Primary Hypercholesterolemia or Mixed Dyslipidemia in Singapore. Value Health Reg. Issues 2025, 101067. [Google Scholar] [CrossRef]
- Pinsdorf, D.; Messiha, D.; Petrikhovich, O.; Bahar, M.; Steinmetz, M.; Mahabadi, A.A.; Dykun, I.; Lortz, J.; Rassaf, T.; Rammos, C. Differences in Treatment Strategies for LDL-Cholesterol Reduction in a University Lipid Clinic vs. Standard Care Apart from the Use of PCSK9 Inhibitors. J. Clin. Lipidol. 2023, 17, 504–511. [Google Scholar] [CrossRef]
Study | Population | Number of Participants | Treatment | Control | Effect | Ref. |
---|---|---|---|---|---|---|
RACING | ASCVD | 3780 | 10 mg R + 10 mg E | 20 mg R | R/E was non-inferior to the high dose R. | [5] |
Meta-analysis | ASCVD | Over 5000 | LIS–MIS/E | HIS | Combined LIS–MIS/E substantially decreased LDL-C, no significant difference in total cholesterol, HDL-C, triglyceride, Apo A1 high-sensitivity C-reactive protein, or Apo B. | [6] |
Comparative cohort, Korean, observational study | CVD | 3,390,305 adults | LIS–MIS/E | HIS | Combined treatment significantly decreased the risk of a composite outcome, individual MIs and stroke with a HR of 0.84, 0.81, and 0.78, respectively. No difference in all-cause mortality. | [7] |
Observational study | ACS patients after percutaneous coronary intervention | 286,817 | MIS/E | HIS | In the HIS group, the primary outcome (ischemic stroke, MI, and all-cause mortality) was 4.73 events/100 person/year, and in the MIS/E group, it was 4.29 events/100 person/year. The risk of MI: no difference between both treatments. | [8] |
Observational study | Patients who underwent a PCI | 45,501 | MIS/E | HIS | MIS/E was similar to HIS in terms of long-term risk decrease in MACEs. Combination treatment was correlated with a substantial decrease in the occurrence of new-onset DM (12.5% in the case of the monotherapy and 10.7% in the case of the combination therapy). | [9] |
Meta-analysis | Patients at the time of ACS | 20,291 | HIS/E | Placebo | Addition of ezetimibe significantly reduced LDL-C at 7 days (−19.55 mg/dL), 1 month (−24.67 mg/dL), 3 months (−18.01 mg/dL), and 10–12 months (−16.90 mg/dL) of treatment. It also significantly reduced total cholesterol at 7 days (−21.05 mg/dL), 1 month (−25.56 mg/dL), 3 months (−22.54 mg/dL), and 12 months (−19.68 mg/dL) of treatment. Death due to any reason, non-fatal stroke, ACS, ischemic stroke, and non-fatal MIs were substantially reduced. | [10] |
Korean, phase IV, multicenter, randomized controlled trial | ASCVD | 270 | R and E combination therapy, 10/10 | R 20 mg | After treatment for 12 and 24 weeks, the dual treatment significantly decreased LDL-C compared to the high-intensity statin therapy (−22.9% for the combination therapy, −15.6% for the monotherapy, after 12 weeks; and −24.2% for the combination therapy, −12.9% for the monotherapy, after 24 weeks). | [11] |
Korean, phase III, multicenter, double-blind, randomized study | Primary hypercholesterolemia patients | 422 | P/E | P | Combination therapy substantially decreased LDL-C by >50% | [12] |
ODYSSEY outcomes trial | ACS | 18,924 | Alirocumab | Placebo | Alirocumab substantially decreased lipoprotein(a) and LDL-C leading to a 15% reduction in MACEs. | [13] |
Retrospective cohort study | ACS patients who underwent a PCI | 1564 | Evolocumab | With high LDL-C (≥3.2 mmol/L without statin treatment, ≥2.3 mmol/L after taking LIS or MIS, or ≥1.8 mmol/L after taking HIS for ≥4 weeks) | Addition of evolocumab to statins decreased LDL-C by 42.48%. | [14] |
Meta-analysis | High-risk cardiovascular patients | 54,311 | PCSK9 inhibitors | Placebo | Alirocumab reduced all-cause mortality and serious adverse events, while evolocumab reduced the risk of MIs. | [15] |
Observational polish study | Heterozygous familial hypercholesterolemia | 55 | Alirocumab or evolocumab | 43 (HIS), 10 (maximum tolerated dose of statins), 2 (no treatment) | PCSK9 inhibitors significantly reduced LDL-C by 65 ± 14% after 3 months. | [16] |
ODYSSEY outcomes trial | ACS patients | 18,924 | Adding alirocumab to HIS | A 40−80 mg daily or R 20−40 mg daily as HIS treatment | A total of 94.6% of patients treated with alirocumab attained the LDL-C goal, which was less than 1.4 mmol/L compared to 17.3% in the control group. A total of 85.2% of the alirocumab group achieved LDL-C less than 1 mmol/L in subjects who had experienced a prior cardiovascular incident during two years versus 3.5% in the control group. | [17] |
Chinese multicenter observational study | 3063 patients | Very high risk ASCVD patients who underwent a PCI | PCSK-9 inhibitors/S | S | The level of LDL-C decreased by 30.81% in the S group and in the PCSK-9 inhibitor subjects by 42.57%. The percentage of participants with LDL-C ≤ 1.4 mmol/L was significantly increased from 2.99% to 18.43% in the S subjects and from 10.36% to 47.69% in the PCSK-9 inhibitor subjects. Moreover, LDL-C ≤ 1.0 mmol/L was significantly increased from 0.23% to 6.11% in the S subjects and from 5.29% to 29.26% in the PCSK-9 inhibitor subjects. | [18] |
Meta-analysis | Cardiovascular outcomes | 83,660 | Adding E or PCSK9 inhibitor to S | Statins | Adding E or PCSK9 inhibitor to S had no effect on MIs or stroke in moderate and low cardiovascular risk patients. But they significantly reduced the occurrence of stroke and non-fatal MIs in subjects with a high or very high cardiovascular risk. | [19] |
Meta-analysis | MACE | 237,870 | S, E, and PCSK9 inhibitors | Placebo | S significantly reduced MACEs compared to E and PCSK9 inhibitors with an NNT of 31, 18, and 18, respectively. | [20] |
A SwissDiab observational study | Patients with DM2 who failed the LDL-C target | 294 | HIS; E; PCSK9i; both E and PCSK9i | Placebo | The proportion of patients that attained the target: 13.3% with HIS, 27.9% with E, 53.7% with PCSK9i, 3.1% with both E and PCSK9i, and 1.7% did not reach the target. | [21] |
ORION-9 trial | Familial hypercholesterolemia | 482 | Inclisiran | Placebo | A total reduction of 47.9% in LDL-C at day 510. | [22] |
ORION-10 ORION-11 | ASCVD | 1561 | Inclisiran on top of the maximum statin dose | Placebo | Reduced the levels of LDL-C by 49.9% to 52.2%. | [23] |
ORION-18 | ASCVD | 345 | Inclisiran | Placebo | Reduced LDL-C by 57.2% when given with statins, with no side effects. | [24] |
VICTORION-INITIATE trial | ASCVD; subjects having LDL-C concentration ≥ 70 mg/dL, even though they received the maximum tolerated statin treatment | 450 | Inclisiran | Placebo | Decreased LDL-C by 60% from the baseline to day 330, while standard care only reduced LDL-C by 7.0%. | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshafeey, A. Therapeutic Management of LDL-C: Efficacy and Economic Impact Assessment. J. Cardiovasc. Dev. Dis. 2025, 12, 196. https://doi.org/10.3390/jcdd12050196
Elshafeey A. Therapeutic Management of LDL-C: Efficacy and Economic Impact Assessment. Journal of Cardiovascular Development and Disease. 2025; 12(5):196. https://doi.org/10.3390/jcdd12050196
Chicago/Turabian StyleElshafeey, Abdallah. 2025. "Therapeutic Management of LDL-C: Efficacy and Economic Impact Assessment" Journal of Cardiovascular Development and Disease 12, no. 5: 196. https://doi.org/10.3390/jcdd12050196
APA StyleElshafeey, A. (2025). Therapeutic Management of LDL-C: Efficacy and Economic Impact Assessment. Journal of Cardiovascular Development and Disease, 12(5), 196. https://doi.org/10.3390/jcdd12050196