Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Idowu, O.; Heading, K. Hypoglycemia in dogs: Causes, management, and diagnosis. Can. Vet. J. 2018, 59, 642. [Google Scholar]
- Grijalva, J.; Vakili, K. Seminars in Pediatric Surgery Neonatal liver physiology. Semin. Pediatr. Surg. 2013, 22, 185–189. [Google Scholar] [CrossRef]
- Mealey, K.L.; Meurs, K.M. Breed distribution of the ABCB1-1Δ (multidrug sensitivity) polymorphism among dogs undergoing ABCB1 genotyping. J. Am. Vet. Med. Assoc. 2008, 233, 921–924. [Google Scholar] [CrossRef]
- Oechmichen, M.; Meissner, C. Cerebral Hypoxia and Ischemia: The Forensic Point of View: A Review. J. Forensic Sci. 2006, 51, 880–887. [Google Scholar] [CrossRef]
- Rahaman, P.; Del Bigio, M.R. Histology of Brain Trauma and Hypoxia-Ischemia. Acad. Forensic Pathol. 2018, 8, 539–554. [Google Scholar] [CrossRef] [PubMed]
- Mazzariol, S.; Centelleghe, C.; Petrella, A.; Marcer, F.; Beverelli, M.; Di Francesco, C.E.; Di Francesco, G.; Di Renzo, L.; Di Guardo, G.; Audino, T.; et al. Atypical Toxoplasmosis in a Mediterranean Monk Seal (Monachus monachus) Pup. J. Comput. Pathol. 2021, 184, 65–71. [Google Scholar] [CrossRef] [PubMed]
- Klintzsch, S.; Meerkamp, K.; Döring, B.; Geyer, J. Detection of the nt230 [del4] MDR1 mutation in dogs by a fluorogenic 5′ nuclease TaqMan allelic discrimination method. Vet. J. 2010, 185, 272–277. [Google Scholar] [CrossRef] [PubMed]
- Hoskins, J.D. The Liver and Pancreas. In Veterinary Pediatrics: Dogs and Cats from Birth to Six Months, 2nd ed.; Hoskins, J.D., Ed.; WB Saunders: Philadelphia, PA, USA, 1995; pp. 200–224. [Google Scholar] [CrossRef]
- de Bruijne, J.J.; Altszuler, N.; Hampshire, J.; Visser, T.J.; Hackeng, W.H.L. Fat mobilization and plasma hormone levels in fasted dogs. Metabolism 1981, 30, 190–194. [Google Scholar] [CrossRef]
- Okkens, A.C. Canine pediatrics. Vet. Q. 1994, 16, 19–20. [Google Scholar] [CrossRef]
- Milroy, C.M. Fatty Liver and the Forensic Pathologist. Acad. Forensic Pathol. 2018, 8, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Van der Linde-Sipman, J.S.; van den Ingh, T.V.D.; van Toor, A.J. Fatty Liver Syndome in Puppies. J. Am. Anim. Hosp. Assoc. 1990, 26, 9–12. [Google Scholar]
- Van Amersfoort, E.S.; Van Berkel, T.J.C.; Kuiper, J. Receptors, Mediators, and Mechanisms Involved in Bacterial Sepsis and Septic Shock. Clin. Microbiol. Rev. 2003, 16, 379–414. [Google Scholar] [CrossRef]
- Hausmann, R.; Seidl, S.; Betz, P. Hypoxic changes in Purkinje cells of the human cerebellum. Int. J. Leg. Med. 2007, 121, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Plummer, S.; Van Den Heuvel, C.; Thornton, E.; Corrigan, F.; Cappai, R. The neuroprotective properties of the amyloid precursor protein following traumatic brain injury. Aging Dis. 2016, 7, 163–179. [Google Scholar] [CrossRef]
- Reichard, R.R.; Smith, C.; Graham, D.I. The significance of APP immunoreactivity in forensic practice. Neuropathol. Appl. Neurobiol. 2005, 31, 304–313. [Google Scholar] [CrossRef] [PubMed]
- Morrison, C.; Mackenzie, J.M. Axonal injury in head injuries with very short survival times. Neuropathol. Appl. Neurobiol. 2008, 34, 124–125. [Google Scholar] [CrossRef]
- Ali, H.; Nakano, T.; Saino-Saito, S.; Hozumi, Y.; Katagiri, Y.; Kamii, H.; Sato, S.; Kayama, T.; Kondo, H.; Goto, K. Selective translocation of diacylglycerol kinase ζ in hippocampal neurons under transient forebrain ischemia. Neurosci. Lett. 2004, 372, 190–195. [Google Scholar] [CrossRef] [PubMed]
- Goto, K.; Tanaka, T.; Nakano, T.; Okada, M.; Hozumi, Y.; Topham, M.K.; Martelli, A.M. DGKζ under stress conditions: “To be nuclear or cytoplasmic, that is the question”. Adv. Biol. Regul. 2014, 54, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, W.A.; Ahad, A.; Ahsan, H. The mystery of BCL-2 family: Bcl-2 proteins and apoptosis: An update. Arch. Toxicol. 2015, 89, 289–317. [Google Scholar] [CrossRef]
- Shinoura, N.; Yoshida, Y.; Nishimura, M.; Muramatsu, Y.; Asai, A.; Kirino, T.; Hamada, H. Expression level of Bcl-2 determines anti- or proapoptotic function. Cancer Res. 1999, 59, 4119–4128. [Google Scholar]
- Mishra, O.P.; Delivoria-Papadopoulos, M. Mechanism of Tyrosine Phosphorylation of procaspase-9 and Apaf1 in Cytosolic Fractions of the Cerebral Cortex of Newborn Piglets during Hypoxia. Neurosci. Lett. 2010, 480, 35–39. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Zachary, J. The Nervous System. In Pathologic Basis of Veterinary Disease, 4th ed.; McGavin, M.D., Zachary, J., Eds.; Elsevier Limited: St. Louis, MO, USA, 2007. [Google Scholar]
- Intengan, H.D.; Schiffrin, E.L. Vascular remodeling in hypertension: Roles of apoptosis, inflammation, and fibrosis. Hypertension 2001, 38, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Wang, X.; Xu, F.; Bahr, B.A.; Shibata, M.; Uchiyama, Y.; Hagberg, H.; Blomgren, K. The influence of age on apoptotic and other mechanisms of cell death after cerebral hypoxia-ischemia. Cell Death Differ. 2005, 12, 162–176. [Google Scholar] [CrossRef]
- Stroemer, R.P.; Rothwell, N.J. Exacerbation of Ischemic Brain Damage by Localized Striatal Injection of Interleukin-1β in the Rat. J. Cereb. Blood Flow Metabolism. 1998, 18, 833–839. [Google Scholar] [CrossRef] [PubMed]
- Geyer, J.; Janko, C. Treatment of MDR1 Mutant Dogs with Macrocyclic Lactones. Curr. Pharm. Biotechnol. 2012, 13, 969–986. [Google Scholar] [CrossRef] [PubMed]
- Tranquilli, W.J.; Paul, A.J.; Todd, K.S. Assessment of toxicosis induced by high-dose administration of milbemycin oxime in Collies. Am. J. Vet. Res. 1991, 52, 1170–1172. [Google Scholar]
- Noack, S.; Harrington, J.; Carithers, D.S.; Kaminsky, R.; Selzer, P.M. Heartworm disease–Overview, intervention, and industry perspective. Int. J. Parasitol. Drugs Drug Resistance. 2021. [Google Scholar] [CrossRef]
- Merola, V.M.; Eubig, P.A. Toxicology of avermectins and milbemycins (macrocyclic lactones) and the role of P-glycoprotein in dogs and cats. Vet. Clin. Small Anim. Pract. 2018, 48, 991–1012. [Google Scholar] [CrossRef]
- Snowden, N.J.; Helyar, C.V.; Platt, S.R.; Penderis, J. Clinical presentation and management of moxidectin toxicity in two dogs. J. Small Anim. Pract. 2006, 47, 620–624. [Google Scholar] [CrossRef]
- Parish, D.C.; Goyal, H.; Dane, F.C. Mechanism of death: There’s more to it than sudden cardiac arrest. J. Thorac. Dis. 2018, 10, 3081. [Google Scholar] [CrossRef] [PubMed]
- Blair, J.A.; Wang, C.; Hernandez, D.; Siedlak, S.L.; Rodgers, M.S.; Achar, R.K.; Fahmy, L.M.; Torres, S.L.; Petersen, R.B.; Zhu, X.; et al. Individual case analysis of postmortem interval time on brain tissue preservation. PLoS ONE 2016, 11, e015161. [Google Scholar]
- Mohamed, A.A.R.; Elbohi, K.M.; El Sharkawy, N.I.; Hassan, M.A. Biochemical and apoptotic biomarkers of experimentally induced traumatic brain injury: In relation to time since death. Beni-Suef Univ. J. Basic Appl. Sci. 2018. Available online: https://www.sciencedirect.com/science/article/pii/S2314853517301579 (accessed on 8 September 2021). [CrossRef]
- Ramos-Vara, J.A.; Kiupel, M.; Baszler, T.; Bliven, L.; Brodersen, B.; Chelack, B.; Czub, S.; Del Piero, F.; Dial, S.; Ehrhart, E.J.; et al. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J. Vet. Diagn. Investig. 2008, 20, 393–413. [Google Scholar] [CrossRef] [PubMed]
- Mealey, K.L.; Martinez, S.E.; Villarino, N.F.; Court, M.H. Personalized medicine: Going to the dogs? Hum. Genet. 2019, 138, 467–481. [Google Scholar] [CrossRef] [PubMed]
Control Dog (M/F) | Breed | Age | Cause of Death | Pertinent Pathological Findings | Post-Mortem Interval |
---|---|---|---|---|---|
Puppy-1 (M) | Australian Shepherd | 5 weeks | To be determined | Hepatic, enteric, respiratory and central nervous system damage (described in “Results”) | 24 h |
Puppy-2 (M) | Australian Shepherd | 5 weeks | To be determined | Hepatic, enteric, respiratory and central nervous system damage (describe in “Results”) | 20 min |
Control-1 (F) | Toy Poodle | 12 years | Cardiovascular insufficiency | Aortic aneurism; monolateral inner ear infection | 24 h |
Control-2 (F) | Shitzu | 1 week | Neonatal immaturity and pneumonia potentially resulting in septicemic shock | Diffuse atelectasis; diffuse severe pleuropneumonia; moderate multifocal tubular necrosis, mild diffuse gastroenteritis | 48 h |
Control-3 (M) | Dogue de Bordeaux | 1 week | Neonatal immaturity and cardiorespiratory insufficiency | Diffuse atelectasis; ascites (serosanguinous); perihepatic vascular mineralisations | 72 h |
Antibody | Puppy | Puppy-1 | Puppy-2 | ||||
---|---|---|---|---|---|---|---|
PMI | 24 h | 20 min | |||||
Cell Type | Neurons | Glia | Meninges/ Endothelia | Neurons | Glia | Meninges/ Endothelia | |
APP | Cortex | +++ Synaptic membranes Diffuse | ++ Light background + Multifocal coalescing axons in WM | - | ++ Synaptic membranes in sulci | + Light background | - |
Cerebellum | ++ Cytoplasmic | + Light background | - | +++ Cytoplasmic | ++ Light-moderate background | - | |
Bcl-2 | Cortex | +++ Cytoplasmic Multifocal in gyri | +/++ Granular Diffuse | +++ Leptomeninx Multifocal ++ Cytoplasmic, choroid plexus endothelia Diffuse | - | + Granular Diffuse, mild pericapillary emphasis | ++ Leptomeninx Few foci |
Cerebellum | ++ Cytoplasmic Multifocal in gyri | - | - | −/+ very light cytoplasm, Single foci | - | - | |
DGK-ζ | Cortex | + Cytoplasmic Diffuse | + Light background ++ Astrocyte cytoplasm Multifocal | + Leptomeninx Multifocal | +++ Cytoplasmic Diffuse | ++ Moderate background +++ Astrocyte nuclear Multifocal | +++ Endothelia Diffuse |
Cerebellum | ++/+++ Cytoplasmic Diffuse, with multifocal shrunken, deformed cells | + | −/+ Leptomeninx Single foci | +++ Cytoplasmic, Diffuse; Nuclear, Multifocal | −/+ | ++ Endothelial Multifocal | |
Apaf1 | Cortex | - | +++ Cytoplasmic and nuclear Multifocal in WM | +++ Leptomeninx Multifocal | - | - | ++ Small/mid-caliber vessels Multifocal |
Cerebellum | - Cytoplasmic +++ Diffuse in molecular layer axons | + Light background | +++ Leptomeninx Diffuse | ++ cytoplasmic Multifocal in gyri ++/+++ Multifocal-coalescing in sulci | + Light background | +/++ Leptomeninx Multifocal-coalescing |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orekhova, K.; Mazzariol, S.; Sussan, B.; Bucci, M.; Bonsembiante, F.; Verin, R.; Centelleghe, C. Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders. Vet. Sci. 2021, 8, 203. https://doi.org/10.3390/vetsci8100203
Orekhova K, Mazzariol S, Sussan B, Bucci M, Bonsembiante F, Verin R, Centelleghe C. Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders. Veterinary Sciences. 2021; 8(10):203. https://doi.org/10.3390/vetsci8100203
Chicago/Turabian StyleOrekhova, Ksenia, Sandro Mazzariol, Beatrice Sussan, Massimo Bucci, Federico Bonsembiante, Ranieri Verin, and Cinzia Centelleghe. 2021. "Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders" Veterinary Sciences 8, no. 10: 203. https://doi.org/10.3390/vetsci8100203
APA StyleOrekhova, K., Mazzariol, S., Sussan, B., Bucci, M., Bonsembiante, F., Verin, R., & Centelleghe, C. (2021). Immunohistochemical Markers of Apoptotic and Hypoxic Damage Facilitate Evidence-Based Assessment in Pups with Neurological Disorders. Veterinary Sciences, 8(10), 203. https://doi.org/10.3390/vetsci8100203