A Long-Term Study of the Biological Properties of ASF Virus Isolates Originating from Various Regions of the Russian Federation in 2013–2018
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Challenge
2.2. Infectious Material
2.3. Diagnostic Techniques
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sánchez-Vizcaíno, J.M.; Mur, L.; Gomez-Villamandos, J.C.; Carrasco, L. An update on the epidemiology and pathology of African swine fever. J. Comp. Pathol. 2015, 152, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Remyga, S.G.; Pershin, A.S.; Shevchenko, I.V.; Igolkin, A.A.; Shevtsov, A.A. Clinical and post-mortem signs in European wild boars and domestic pigs infected with African swine fever virus. Vet. Sci. Today 2016, 3, 46–51. (In Russia) [Google Scholar]
- Shevchenko, I.; Remyga, S.G.; Pershin, A.S.; Igolkin, A.A.; Rachmanov, A.M. Clinical and anatomical manifestation of African swine fever when infected by various methods with a virus isolated from wild boar. In Proceedings of the 18th Intern. Scientific Methodological Conf. Current Problems of Pathological Anatomy, Pathogenesis and Diagnosis of Animal Diseases, Moscow, Russia, 20–22 September 2014; pp. 82–84. (In Russia). [Google Scholar]
- Sánchez-Vizcaíno, J.M.; Mur, L.; Bastos, A.D.; Penrith, M.L. New Insights into the Role of Ticks in African Swine Fever Epidemiology. Rev. Sci. Tech. 2015, 34, 503–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFSA Panel on Animal Health and Welfare. Scientific Opinion on the Role of Tick Vectors in the Epidemiology of Crimean-Congo Hemorrhagic Fever and African Swine Fever in Eurasia. EFSA J. 2010, 8, 1703. [Google Scholar] [CrossRef]
- Frączyk, M.; Woźniakowski, G.; Kowalczyk, A.; Bocian, Ł.; Kozak, E.; Niemczuk, K.; Pejsak, Z. Evolution of African swine fever virus genes related to evasion of host immune response. Vet. Microbiol. 2016, 193, 133–144. [Google Scholar] [CrossRef]
- Gallardo, C.; Fernández-Pinero, J.; Pelayo, V.; Gazaev, I.; Markowska-Daniel, I.; Pridotkas, G.; Nieto, R.; Fernández-Pacheco, P.; Bokhan, S.; Nevolko, O.; et al. Genetic variation among African swine fever genotype II viruses, eastern and central Europe. Emerg. Infect. Dis. 2014, 20, 1544. [Google Scholar] [CrossRef] [Green Version]
- Vlasova, N.N.; Varentsova, A.A.; Shevchenko, I.V.; Zhukov, I.Y.; Remyga, S.G.; Gavrilova, V.L.; Puzankova, O.S.; Shevtsov, A.A.; Zinyakov, N.G.; Gruzdev, K.N. Comparative analysis of clinical and biological characteristics of African swine fever virus isolates from 2013 year Russian Federation. Br. Microbiol. Res. J. 2015, 5, 203–215. [Google Scholar] [CrossRef]
- Elsukova, A.; Shevchenko, I.; Varentsova, A.; Puzankova, O.; Zhukov, I.Y.; Pershin, A.S.; Remyga, S.G.; Zinyakov, N.G.; Mazloum, A.; Vlasov, I.N.; et al. Biological properties of African swine fever virus Odintsovo 02/14 isolate and its genome analysis. Int. J. Environ. Agric. Res. IJOEAR 2017, 3, 26–37. [Google Scholar]
- Forth, J.H.; Tignon, M.; Cay, A.B.; Forth, L.F.; Höper, D.; Blome, S.; Beer, M. Comparative Analysis of Whole-Genome Sequence of African Swine Fever Virus Belgium 2018/1. Emerg. Infect. Dis. 2019, 25, 1249–1252. [Google Scholar] [CrossRef]
- Oganesyan, A.S.; Petrova, O.N.; Korennoy, F.I.; Bardina, N.S.; Gogin, A.E.; Dudnikov, S.A. African swine fever in the Russian Federation: Spatio-temporal analysis and epidemiological overview. Virus Res. 2013, 173, 204–211. [Google Scholar] [CrossRef]
- Kolbasov, D.; Titov, I.; Tsybanov, S.; Gogin, A.; Malogolovkin, A. African Swine Fever Virus, Siberia, Russia, 2017. Emerg. Infect. Dis. 2018, 24, 796–798. [Google Scholar] [CrossRef] [PubMed]
- Puzankova, O.S.; Varentsova, A.A.; Zhukov, I.Y.; Pershin, A.S.; Remyga, S.G.; Gavrilova, V.L.; Elsukova, A.A.; Igolkin, A.S.; Gruzdev, K.N.; Vlasova, N.N. Reproduction of the ASFV isolate Antonovo 07/14 in vivo and in vitro. Veterinary 2016, 5, 18–23. (In Russia) [Google Scholar]
- Chernykh, O.Y.; Krivonos, R.A.; Verhovsky, O.A.; Aliper, T.I. Molecular and biological properties of the isolate Timashevsk 01/18. Vetvrach J. 2019, 2, 15–22. [Google Scholar]
- Igolkin, A.; Elsukova, A.; Mazloum, A.; Zhukov, I.; Vlasova, N. Comparative analysis of the central variable region of ASF virus genome of Russian isolates between 2013 and 2017. Epizone Abstr. Book 2018, 44, 44. [Google Scholar]
- Blome, S.; Gabriel, C.; Beer, M. Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Res. 2013, 173, 122–130. [Google Scholar] [CrossRef]
- Howeyab, E.B.; O’Donnell, V.; de Carvalho Ferreira, H.C. Pathogenesis of highly virulent African swine fever virus in domestic pigs exposed via intraoropharyngeal, intranasopharyngeal, and intramuscular inoculation, and by direct contact with infected pigs. Virus Res. 2013, 178, 328–339. [Google Scholar]
- Ferreira, H.D.C.; Weesendorp, E.; Elbers, A.; Bouma, A.; Quak, S.; Stegeman, J.; Loeffen, W. African swine fever virus excretion patterns in persistently infected animals: A quantitative approach. Veter Microbiol. 2012, 160, 327–340. [Google Scholar] [CrossRef]
- Ordas, A.; Marcotegui, M. African Swine Fever—Clinical aspects. In African Swine Fever, Boston/Dordrecht/Lancaster; Becker, Y., Ed.; Martinus Nijhoff Publishing: Boston, MA, USA, 1987; pp. 11–20. [Google Scholar]
- Kurinnov, V.; Balushev, V.; Skaev, A.; Vasilev, A.; Strizhakova, O.; Alikova, G.; Starikov, A.; Mironova, L.; Shevkoplyas, V.; Dzhailidi, G.; et al. Study of the incubation period in the acute course of ASF. Vet. Kuban 2015, 3, 4–10. (In Russia) [Google Scholar]
- Pershin, A.; Remyga, S.; Shevchenko, I.V.; Zhukov, I.J.; Shevcov, A.A.; Erofeev, S.G.; Lgolkin, A.S. Influence of passive immunization on clinical and pathoanatomical changes in pigs infected with ASFV isolate Martins-Crimea 01/16. Veterinary 2018, 25–31. (In Russia) [Google Scholar] [CrossRef]
- Kurinnov, V.; Belanin, S.; Vasilev, A.; Strizhakova, O.; Lyska, V.; Nogina, I.; Zubairova, S.; Balushev, V.; Tsybanov, S.; Kolbasov, D.; et al. Experimental and field studies of specific antibodies in the organ’s tissues in ASF-infected domestic pigs and wild boars with acute disease. Vet. Kuban. 2012, 4, 9–11. (In Russia) [Google Scholar]
- Mur, L.; Igolkin, A.; Varentsova, A.; Pershin, A.; Remyga, S.; Shevchenko, I.; Zhukov, I.; Sánchez-Vizcaíno, J.M. Detection of African swine fever antibodies in experimental and field samples from the Russian Federation: Implications for control. Transbound. Emerg. Dis. 2016, 63, e436–e440. [Google Scholar] [CrossRef] [PubMed]
- Shevtsov, A.A.; Petrova, O.N.; Remyga, S.; Pershin, A.S.; Gruzdev, K.N.; Igolkin, A.S. Analysis of laboratory tests for several viral swine diseases in Russia in 2011–2017. Vet. Sci. Today 2018, 42–48. (In Russia) [Google Scholar] [CrossRef] [Green Version]
- Pershin, A.S.; Shevchenko, I.V.; Igolkin, A.; Zhukov, I.Y.; Vlasova, N.N.; Manuylova, O.A. Dynamics of antibody prodyction after experimental challenge with ASF virus. Vet. Kuban. 2019, 4, 4–7. (In Russia) [Google Scholar]
- Schulz, K.; Oļševskis, E.; Staubach, C.; Lamberga, K.; Seržants, M.; Cvetkova, S.; Conraths, F.J.; Sauter-Louis, C. Epidemiological evaluation of Latvian control measures for African swine fever in wild boar on the basis of surveillance data. Sci. Rep. 2019, 9, 4189. [Google Scholar] [CrossRef] [PubMed]
- Ståhl, K.; Sternberg-Lewerin, S.; Blome, S.; Viltrop, A.; Penrith, M.L.; Chenais, E. Lack of evidence for long term carriers of African swine fever virus—A systematic review. Virus Res. 2019, 272. [Google Scholar] [CrossRef] [PubMed]
- Verkhovsky, O.; Tsibezov, V.V.; Alekseev, K.P.; Kozlov, A.Yu.; Kostina, L.V.; Vlasova, N.N.; Tchernyh, O.Yu.; Aliper, T.I. Enzyme-linked immunosorbent assay for identificating antibodies to the protein p30 of the african swine fever virus. Vet. Doctor 2018, 5, 9–15. (In Russia) [Google Scholar]
- Post, J.; Weesendorp, E.; Montoya, M.; Loeffen, W.L. Influence of age and dose of African swine fever virus infections on clinical outcome and blood parameters in pigs. Viral Immunol. 2017, 30, 58–69. [Google Scholar] [CrossRef]
- Pershin, A.S.; Shevchenko, I.V.; Igolkin, A.S.; Aronova, Y.V. Effects of moderately virulent african swine fever virus on interleukin-10 production. Vet. Sci. Today 2019, 23–28. (In Russia) [Google Scholar] [CrossRef] [Green Version]
Isolate and Dose | Animals | Duration of the Disease, Days | Seropositive Animals | Death of Animals | Incubation Periods | ||||
---|---|---|---|---|---|---|---|---|---|
Inoculated | Contact | % | Days | Fever, Day | PCR * | ||||
Zubtsovo 06/13 | 10 HAU 1 | 5 | 2 | 5–9 | 0 | 100 | 10–21 | 5 | 0, 4 |
Zubtsovo 06/13 | 1 HAU | 6 | 2 | 5–11 | 4 | 100 | 21–33 | 13 | 10, 14 |
Grafsky 06/14 | 10 HAU | 6 | 2 | 5–10 | 0 | 100 | 11–16 | 5 | 3, 5 |
Grafsky 06/14 | 1 HAU | 6 | 2 | 6–10 | 1 | 100 | 18–33 | 12 | 8, 11 |
Voronezh-Agro 12/14 | 10 HAU | 6 | 0 | 5–11 | 1 | 100 | 8–14 | 3 | 0, 3 |
Voronezh-Agro 12/14 | 1 HAU | 6 | 0 | 3–8 | 0 | 100 | 7–12 | 4 | 0, 3 |
Voronezh-Agro 12/14 | 0.1 HAU | 6 | 0 | 2–5 | 1 | 100 | 6–10 | 4 | 0, 3 |
Odintsovo 02/14 | 10 HAU i/m | 5 | 2 | 0–18 | 5 | 87.5 | after 10 | 2 | 0, 3 |
Odintsovo 02/14 | 50 HAU i/n | 5 | 2 | 1–11 | 5 | 87.5 | after 10 | 4 | 0, 3 |
Sobinka 07/15 | 10 HAU | 6 | 2 | 6–14 | 0 | 100 | 10–21 | 4 | 0, 3 |
Sobinka 07/15 | 1 HAU | 6 | 2 | 4–15 | 2 | 100 | 8–32 | 4 | 0, 3 |
Lysogorye 07/15 | 1 HAU | 6 | 2 | 3–11 | 0 | 100 | 8–16 | 2 | 1, 3 |
Lysogorye 07/15 | 0.1 HAU | 6 | 2 | 5–10 | 1 | 87.5 | after 9 | 5 | 4, 7 |
Krasnodar 07/15 | 10 HAU | 6 | 2 | 2–5 | 0 | 100 | 7–16 | 4 | 3, 6 |
Krasnodar 07/15 | 1 HAU | 6 | 2 | 3–8 | 1 | 100 | 7–17 | 3 | 0, 3 |
Ryazan 10/15 | 10 HAU | 6 | 2 | 6–11 | 2 | 100 | 9–23 | 3 | 0, 3 |
Ryazan 10/15 | 1 HAU | 6 | 2 | 4–8 | 0 | 100 | 9–15 | 3 | 0, 3 |
Bolokhovsky 07/15 | 10 HAU | 6 | 2 | 5–13 | 3 | 75 | after 9 | 3 | 0, 3 |
Martins-Krym 01/16 | 50 HAU | 4 | 2 | 5–11 | 1 | 100 | 9–18 | 3 | 0, 3 |
Ryazan 03/16 | 10 HAU | 8 | 0 | 3–7 | 1 | 100 | 8–13 | 3 | 0, 3 |
Ryazan 07/16 | 10 HAU | 6 | 2 | 3–7 | 0 | 100 | 8–19 | 4 | 0, 3 |
Lipetsk 12/16 | 1000 HAU | 6 | 2 | 0–8 | 6 | 50 | after 8 | 4 | 0, 3 |
Kaliningrad 10/17, | 10 HAU | 6 | 0 | 2–10 | 0 | 100 | 10–20 | 3 | 0, 3 |
Timashevsk 01/18 | 10 HAU | 8 | 2 | 5–19 | 1 | 90 | after 7 | 3 | 0, 2 |
Total/Average | 143 | 38 | 6.30 | 35 | 94.5 | 4125 |
Year | Pigs Infected | Isolates Tested | Seropositive | Survived | |
---|---|---|---|---|---|
Pigs | % | ||||
2013 | 15 | 1 | 4 | 26.7 | 0 |
2014 | 48 | 3 | 13 | 27 | 2 |
2015 | 70 | 5 | 9 | 12.9 | 3 |
2016 | 32 | 4 | 8 | 25 | 4 |
2017 | 6 | 1 | 0 | 0 | 0 |
2018 | 10 | 1 | 1 | 10 | 1 |
Total | 181 | 15 | 35 | 19.3 | 10 |
Isolate | Dose | Route | Blood Sampling Days * | Livespan, Days |
---|---|---|---|---|
Isolates 2013 | ||||
Zubtsovo 06/13 | 1 HAU | Cont | 3, 7, 10, 14, 18, 21, 24, 28, 30 | 31 |
I/m | 3, 7, 10, 14, 18, 21, 24, 28 | 29 | ||
I/m | 3, 7, 10, 14, 18, 21, 24, 28, 30 | 31 | ||
I/m | 3, 7, 10, 14, 18, 21 | 22 | ||
Isolates 2014 | ||||
Grafsky 06/14 | 1 HAU | Cont | 3, 5, 8, 11, 15, 19, 22, 26, 29, 32 | 33 |
Voronezh-Agro 12/14 | 10 HAU | I/m | 3, 5, 9, 12 | 14 |
0.1 HAU | I/m | 3, 5, 9 | 10 | |
Odintsovo 02/14 | 10 HAU | I/m | 3, 6, 9 | 11 |
I/m | 3, 6, 9, 12, 15, 18, 21, 24, 28, 32 | no ** | ||
I/m | 3, 6, 9, 12, 15 | 18 | ||
Cont | 3, 6, 9, 12, 15, 18, 21, 24, 28 | 30 | ||
Cont | 3, 6, 9, 12, 15, 18 | 19 | ||
Odintsovo 02/14 | 50 HAU | I/n | 3, 6, 9, 12, 15, 18, 21, 24, 28, 32 | no ** |
I/n | 3, 6, 9, 12 | 14 | ||
I/n | 3, 6, 9, 12, 15 | 16 | ||
Cont | 3, 6, 9, 12, 15, 18 | 21 | ||
Cont | 3, 6, 9, 12, 15, 18, 21 | 22 | ||
Isolates 2015 | ||||
Krasnodar 07/15 | 1 HAU | Cont | 3, 6, 9, 12, 15 | 17 |
Ryazan 10/15 | 10 HAU | I/m | 3, 6, 9 | 13 |
Cont | 3, 6, 9, 12, 15, 19, 22 | 24 | ||
Sobinka 07/15 | 1 HAU | Cont | 3, 5, 9, 13, 16, 19, 23, 27, 30 | 31 |
Cont | 3, 5, 9, 13, 16, 19, 23, 27 | 28 | ||
Lysogorye 07/15 | 0.1 HAU | Cont | 4, 7, 11, 15, 18, 22, 28 | no ** |
Bolokhovsky 07/15 | 10 HAU | I/m | 3, 6, 9, 14, 16 | no ** |
I/m | 3, 6, 9 | 10 | ||
Cont | 3, 6, 9, 14, 16 | no ** | ||
Isolates 2016 | ||||
Martins-Krym 01/16 | 50 HAU | I/m | 3, 6, 10 | 11 |
Ryazan 03/16 | 10 HAU | I/m | 3, 6, 9, 12 | 13 |
Lipetsk 12/16 | 1000 HAU | I/m | 3, 6, 10, 13, 17, 20, 25, 28, 32, 35… | no ** |
I/m | 3, 6, 10, 13, 17, 20, 25, 28, 32, 35… | no ** | ||
Cont | 3, 6, 10, 13, 17 | 18 | ||
I/m | 3, 6, 10, 13 | 14 | ||
Cont | 3, 6, 10, 13, 17, 20, 25, 28, 32, 35… | no ** | ||
I/m | 3, 6, 10, 13, 17, 20, 25, 28, 32, 35… | no ** | ||
Isolates 2018 | ||||
Timashevsk 01/18 | 10 HAU | I/m | 2, 5, 8, 11, 15, 18, 22, 25, 37 | no ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pershin, A.; Shevchenko, I.; Igolkin, A.; Zhukov, I.; Mazloum, A.; Aronova, E.; Vlasova, N.; Shevtsov, A. A Long-Term Study of the Biological Properties of ASF Virus Isolates Originating from Various Regions of the Russian Federation in 2013–2018. Vet. Sci. 2019, 6, 99. https://doi.org/10.3390/vetsci6040099
Pershin A, Shevchenko I, Igolkin A, Zhukov I, Mazloum A, Aronova E, Vlasova N, Shevtsov A. A Long-Term Study of the Biological Properties of ASF Virus Isolates Originating from Various Regions of the Russian Federation in 2013–2018. Veterinary Sciences. 2019; 6(4):99. https://doi.org/10.3390/vetsci6040099
Chicago/Turabian StylePershin, Andrei, Ivan Shevchenko, Alexey Igolkin, Ivan Zhukov, Ali Mazloum, Elena Aronova, Natalia Vlasova, and Alexander Shevtsov. 2019. "A Long-Term Study of the Biological Properties of ASF Virus Isolates Originating from Various Regions of the Russian Federation in 2013–2018" Veterinary Sciences 6, no. 4: 99. https://doi.org/10.3390/vetsci6040099