Chemical Composition and In Vitro Antimicrobial Efficacy of Sixteen Essential Oils against Escherichia coli and Aspergillus fumigatus Isolated from Poultry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Essential Oils
2.2. Essential Oils Analysis
2.3. Statistical Analysis
2.4. Antibacterial Activity
2.4.1. Bacterial Strain
2.4.2. Agar Disc Diffusion Method
2.4.3. Minimum Inhibitory Concentration
2.5. Antimycotic Activity
2.5.1. Fungal Strain
2.5.2. Minimum Inhibitory Concentrations
3. Results
3.1. Essential Oil and Mixture Composition
3.2. Antibacterial Activity
3.3. Antimycotic Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Tell, L.A. Aspergillosis in mammals and birds: Impact on veterinary medicine. Med. Mycol. 2005, 43 (Suppl. 1), S71–S73. [Google Scholar] [CrossRef] [PubMed]
- Beernaert, L.A.; Pasmans, F.; Van Waeyenberghe, L.; Haesebrouck, F.; Martel, A. Aspergillus infections in birds: A review. Avian Pathol. 2010, 39, 325–331. [Google Scholar] [CrossRef] [PubMed]
- Arné, P.; Thierry, S.; Wang, D.; Deville, M.; Le Loc’h, G.; Desoutter, A.; Féménia, F.; Nieguitsila, A.; Huang, W.; Chermette, R.; et al. Aspergillus fumigatus in poultry. Int. J. Microbiol. 2011, 746356. [Google Scholar] [CrossRef]
- Dziva, F.; Stevens, M.P. Colibacillosis in poultry: Unravelling the molecular basis of virulence of avian pathogenic Escherichia coli in their natural hosts. Avian Pathol. 2008, 37, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Lister, S.A.; Barrow, P. Enterobacteriaceae. In Poultry Diseases, 6th ed.; Pattison, M., McMullin, P.F., Bradbury, J.M., Alexander, D.J., Eds.; Saunders Elsevier: Edinburgh, UK, 2008; pp. 110–145. ISBN 978-0-7020-2862-5. [Google Scholar]
- Buehler, D.M.; Tieleman, B.I.; Piersma, T. How do migratory species stay healthy over the annual cycle? A conceptual model for immune function and for resistance to disease. Integr. Comp. Biol. 2010, 50, 346–357. [Google Scholar] [CrossRef] [PubMed]
- Seyedmousavi, S.; Guillot, J.; Arné, P.; de Hoog, G.S.; Mouton, J.W.; Melchers, W.J.; Verweij, P.E. Aspergillus and aspergilloses in wild and domestic animals: A global health concern with parallels to human disease. Med. Mycol. 2015, 53, 765–797. [Google Scholar] [CrossRef] [PubMed]
- D’Arc Moretti, L.; Dias, R.A.; Telles, E.O.; Balian Sde, C. Time series evaluation of traumatic lesions and airsacculitis at one poultry abattoir in the state of Sao Paulo, Brazil (1996–2005). Prev. Vet. Med. 2010, 94, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Witkowska, D.; Sowińska, J. The effectiveness of peppermint and thyme essential oil mist in reducing bacterial contamination in broiler houses. Poult. Sci. 2013, 92, 2834–2843. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Doern, C.D. When does 2 plus 2 equal 5? A review of antimicrobial synergy testing. J. Clin. Microbiol. 2014, 52, 4124–4128. [Google Scholar] [CrossRef] [PubMed]
- Pistelli, L.; Najar, B.; Giovanelli, S.; Lorenzini, L.; Tavarini, S.; Angelini, L.G. Agronomic and phytochemical evaluation of lavandin and lavender cultivars cultivated in the Tyrrhenian area of Tuscany (Italy). Ind. Crops Prod. 2017, 109, 37–44. [Google Scholar] [CrossRef]
- Ebani, V.V.; Nardoni, S.; Bertelloni, F.; Giovanelli, S.; Rocchigiani, G.; Pistelli, L.; Mancianti, F. Antibacterial and antifungal activity of essential oils against pathogenic bacteria and yeasts shed from poultry. Flavour Fragr. J. 2016, 31, 302–309. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standard, 11th ed.; Approved Standard M02-A11; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2012. [Google Scholar]
- National Committee for Clinical Laboratory Standards (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard M7-A2; National Committee for Clinical Laboratory Standards: Villanova, PA, USA, 1990. [Google Scholar]
- Raper, K.B.; Fennel, D.I. The Genus Aspergillus, 1st ed.; Pennsylvania State University: Philadelphia, PA, USA, 1965; ISBN 0882751093. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi: Approved Standard, 2nd ed.; Approved Standard M38-A2; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2008. [Google Scholar]
- Marchese, A.; Barbieri, R.; Coppo, E.; Orhan, I.E.; Daglia, M.; Nabavi, S.F.; Izadi, M.; Abdollahi, M.; Nabavi, S.M.; Ajami, M. Antimicrobial activity of eugenol and essential oils containing eugenol: A mechanistic viewpoint. Crit. Rev. Microbiol. 2017, 43, 668–689. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, X.; Wang, Y.; Jiang, P.; Quek, S.Y. Antibacterial activity and mechanism of cinnamon essential oil against Escherichia coli and Staphylococcus aureus. Food Control 2016, 59, 282–289. [Google Scholar] [CrossRef]
- Rhayour, K.; Bouchikhi, T.; Tantaoui-Elaraki, A.; Sendide, K.; Remmal, A. The Mechanism of Bactericidal Action of Oregano and Clove Essential Oils and of Their Phenolic Major Components on Escherichia coli and Bacillus subtilis. J. Essent. Oils Res. 2003, 15, 356–362. [Google Scholar] [CrossRef]
- Li, W.-R.; Shi, Q.-S.; Liang, Q.; Xie, X.-B.; Huang, X.-M.; Chen, Y.-B. Antibacterial Activity and Kinetics of Litsea cubeba Oil on Escherichia coli. PLoS ONE 2014, 9, e110983. [Google Scholar] [CrossRef] [PubMed]
- Goudjil, M.B.; Ladjel, S.; Bencheikh, S.E.; Zighmi, S.; Hamada, D. Chemical composition, antibacterial and antioxidant activities of the essential oil extracted from the Mentha piperita of Southern Algeria. Res. J. Phytochemistry 2015, 9, 79–87. [Google Scholar]
- Iscan, G.; Kirimer, N.; Kurkcuoglu, K.; Baser, K.H.C.; Demirci, F. Antimicrobial screening of Mentha piperita essential oils. J. Agric. Food Chem. 2002, 50, 3943–3946. [Google Scholar] [CrossRef] [PubMed]
- Rasooli, I.; Gachkar, L.; Yadegarinia, D.; Bagher Rezaei, M.; Alipoor Astaneh, S. Antibacterial and antioxidative characterisation of essential oils from Mentha piperita and Mentha spicata grown in Iran. Acta Aliment. Hung. 2007, 37, 41–52. [Google Scholar] [CrossRef]
- Shah, G.; Shri, R.; Panchal, V.; Sharma, N.; Singh, B.; Mann, A.S. Scientific basis for the therapeutic use of Cymbopogon citratus, stapf (Lemon grass). J. Adv. Pharm. Technol. Res. 2011, 2, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Hamidpour, R.; Hamidpour, S.; Hamidpour, M.; Marshall, V.; Hamidpour, R. Pelargonium graveolens (Rose Geranium)—A novel therapeutic agent for antibacterial, antioxidant, antifungal and diabetics. Arch. Can. Res. 2017, 5. [Google Scholar] [CrossRef]
- Stefan, M.; Zamfirache, M.M.; Padurariu, C.; Trută, E.; Gostin, I. The composition and antibacterial activity of essential oils in three Ocimum species growing in Romania. Cent. Eur. J. Biol. 2013, 8, 600–608. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety, 2nd ed.; Churchill Livingstone Elsevier: New York, NY, USA, 2014; pp. 187–189. [Google Scholar]
- Paranagama, P.A.; Abeysekera, K.H.; Abeywickrama, K.; Nugaliyadde, L. Fungicidal and anti-aflatoxigenic effects of the essential oil of Cymbopogon citratus (DC.) Stapf. (Lemon grass) against Aspergillus flavus Link. isolated from stored rice. Lett. Appl. Microbiol. 2003, 37, 86–90. [Google Scholar] [CrossRef] [PubMed]
- Fandohan, P.; Gnonlonfin, B.; Laleye, A.; Gbenou, J.D.; Darboux, R.; Moudachirou, M. Toxicity and gastric tolerance of essential oils from Cymbopogon citratus, Ocimum gratissimum and Ocimum basilicum in Wistar rats. Food Chem. Toxicol. 2008, 46, 2493–2497. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Jiang, L.K.; Zou, G.L. Acute and genetic toxicity of essential oil extracted from Litsea cubeba (Lour.). Pers. J. Food Prot. 2005, 68, 581–588. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Dubey, N.K. Evaluation of some essential oils for their toxicity against fungi causing deterioration of stored food commodities. Appl. Environ. Microbiol. 1994, 60, 1101–1105. [Google Scholar] [PubMed]
- Roh, J.; Shin, S. Antifungal and Antioxidant Activities of the Essential Oil from Angelica koreana Nakai. Evid. Based Complement. Alternat. Med. 2014, 398503. [Google Scholar] [CrossRef]
- Aguiar, R.W.; Ootani, M.A.; Ascencio, S.D.; Ferreira, T.P.; Dos Santos, M.M.; dos Santos, G.R. Fumigant antifungal activity of Corymbia citriodora and Cymbopogon nardus essential oils and citronellal against three fungal species. Sci. World J. 2014, 492138. [Google Scholar] [CrossRef]
- Correa-Royero, J.; Tangarife, V.; Duran, C.; Stashenko, E.; Mesa-Arango, A. In vitro antifungal activity and cytotoxic effect of essential oils and extracts of medicinal and aromatic plants against Candida krusei and Aspergillus fumigatus. Rev. Bras. Farmacogn. 2010, 20. [Google Scholar] [CrossRef]
- Oliva Mde, L.; Carezzano, M.E.; Gallucci, M.N.; Demo, M.S. Antimycotic effect of the essential oil of Aloysia triphylla against Candida species obtained from human pathologies. Nat. Prod. Commun. 2011, 6, 1039–1043. [Google Scholar] [PubMed]
- Ali, H.F.N.; El-Beltagi, H.S.; Nasr, F.N. Evaluation of antioxidant and antimicrobial activity of Aloysia triphylla. Agric. Food Chem. 2011, 10, 2689–2699. [Google Scholar]
- Ghasempour, M.; Omran, S.M.; Moghadamnia, A.A.; Shafiee, F. Effect of aqueous and ethanolic extracts of Lippia citriodora on Candida albicans. Electron. Phys. 2016, 8, 2752–2758. [Google Scholar] [CrossRef] [PubMed]
- Inouye, S.; Tsuruoka, T.; Watanabe, M.; Takeo, K.; Akao, M.; Nishiyama, Y.; Yamaguchi, H. Inhibitory effect of essential oils on apical growth of Aspergillus fumigatus by vapour contact. Mycoses 2000, 43, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Tsortzakis, N.G.; Economakis, C.D. Antifungal activity of lemongrass (Cympopogon citratus L.) essential oil against key postharvest pathogens. Innov. Food Sci. Emerg. Technol. 2007, 8, 253–258. [Google Scholar] [CrossRef]
Clade | Asterids | Magnoliids | Rosids | Mixture (1:1) | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | Lamiales | Poales | Laurales | Myrtales | Sapindales | ||||||||||||||||||
Family | Lamiaceae | Lauraceae | Myrtaceae | Rutaceae | |||||||||||||||||||
Relative Percentage (%) b | |||||||||||||||||||||||
Chemical Component | LRI a | L. h | M. p | O. b | A. t | C. c | C. z | L. c | P. g | E. g | M. a | S. a | B. s | C. a | C. b | C. l | C. r | M1 | M2 | M3 | M4 | M5 | |
α-Thujene | MH | 930 | 0.2 | 0.1 | 0.3 | 0.9 | 54.2 | 0.3 | 0.4 | 0.5 | 0.1 | 0.2 | 0.2 | ||||||||||
α-Pinene | MH | 939 | 0.8 | 0.2 | 2.0 | 2.9 | 6.2 | 0.8 | 1.2 | 0.8 | 1.3 | 0.2 | |||||||||||
Thuja-2,4(10)-diene | MH | 960 | 7.3 | ||||||||||||||||||||
Sabinene | MH | 975 | 0.1 | 1.8 | 0.2 | 24.0 | 0.1 | 1.0 | 0.9 | 0.4 | 0.3 | 1.1 | 2.3 | 1.5 | 0.4 | 13.7 | 16.8 | 11.9 | |||||
β-Pinene | MH | 979 | 0.4 | 0.5 | 0.5 | 1.2 | 1.1 | 0.1 | 5.4 | 11.9 | 0.6 | ||||||||||||
α-Phellandrene | MH | 1003 | 2.1 | 0.5 | 3.7 | 0.3 | |||||||||||||||||
α-Terpinene | MH | 1017 | 0.2 | 0.2 | 1.0 | 9.1 | 5.1 | 0.2 | 0.4 | 0.2 | 0.1 | 0.1 | |||||||||||
p-Cymene | MH | 1025 | 0.4 | 0.4 | 3.0 | 0.2 | 67.7 | 3.6 | 0.1 | 0.2 | 1.8 | 0.1 | 0.3 | 0.2 | 0.5 | ||||||||
o-Cymene | MH | 1026 | 3.3 | ||||||||||||||||||||
Limonene | MH | 1029 | 3.0 | 0.3 | 36.7 | 2.0 | 16.3 | 3.0 | 0.4 | 94.7 | 33.2 | 65.7 | 72.1 | 9.1 | 24.6 | 21.7 | 20.2 | ||||||
β-Phellandrene | MH | 1030 | 5.9 | 1.1 | |||||||||||||||||||
1,8-Cineole | OM | 1031 | 7.7 | 5.0 | 5.9 | 0.3 | 2.3 | 89.8 | 4.0 | ||||||||||||||
γ-Terpinene | MH | 1060 | 0.1 | 0.3 | 0.3 | 0.1 | 16.9 | 0.1 | 6.4 | 9.3 | 19.2 | 0.3 | 0.2 | 0.2 | |||||||||
Terpinolene | MH | 1089 | 0.5 | 0.1 | 0.1 | 0.1 | 0.3 | 3.9 | 0.4 | 0.2 | 0.5 | 1.1 | 0.1 | 0.1 | |||||||||
Linalool | OM | 1097 | 31.5 | 0.4 | 46.0 | 3.0 | 1.5 | 6.3 | 1.5 | 3.9 | 0.2 | 0.4 | 14.2 | 2.1 | 2.5 | 2.3 | 2.2 | 1.5 | |||||
Camphor | OM | 1146 | 7.3 | 0.8 | 0.4 | 0.3 | |||||||||||||||||
Menthone | OM | 1153 | 26.6 | 1.1 | |||||||||||||||||||
Citronellal | OM | 1153 | 12.0 | 0.5 | 0.9 | 1.6 | 7.0 | 5.6 | 4.4 | ||||||||||||||
iso-Menthone | OM | 1163 | 3.5 | ||||||||||||||||||||
Menthofuran | OM | 1164 | 12.5 | ||||||||||||||||||||
Menthol | OM | 1172 | 32.4 | ||||||||||||||||||||
4-Terpineol | OM | 1177 | 4.0 | 0.3 | 0.7 | 0.3 | 0.1 | 30.2 | 0.2 | 0.6 | 0.6 | 0.5 | 0.1 | ||||||||||
α-Terpineol | OM | 1189 | 2.1 | 0.3 | 0.8 | 0.4 | 0.8 | 0.5 | 0.3 | 4.4 | 0.2 | 0.3 | 0.8 | 0.6 | 0.3 | 0.5 | 0.3 | ||||||
Citronellol | OM | 1226 | 1.9 | 44.5 | 0.8 | 1.9 | 2.0 | 1.6 | |||||||||||||||
Neral | OM | 1238 | 0.7 | 35.2 | 32.5 | 0.2 | 0.4 | 0.7 | 32.0 | 17.2 | 14.7 | 18.6 | |||||||||||
Geraniol | OM | 1253 | 0.2 | 4.4 | 0.5 | 13.7 | 0.2 | 0.2 | 2.5 | 2.2 | |||||||||||||
Linalyl acetate | OM | 1257 | 26.8 | 1.4 | 31.7 | ||||||||||||||||||
Geranial | OM | 1267 | 1.2 | 38.4 | 36.4 | 0.7 | 0.4 | 1.2 | 31.7 | 16.9 | 14.0 | 19.5 | |||||||||||
(E)-Cinnamaldehyde | NT | 1270 | 56.4 | 18.5 | |||||||||||||||||||
Citronellyl formate | OM | 1274 | 7.3 | ||||||||||||||||||||
Menthyl acetate | OM | 1295 | 6.1 | ||||||||||||||||||||
Eugenol | pp | 1359 | 11.5 | 3,0 | 77.9 | 51.7 | |||||||||||||||||
β-Caryophyllene | SH | 1419 | 2.2 | 2.8 | 0.3 | 1.3 | 2.3 | 10.3 | 0.8 | 0.7 | 0.8 | 8.9 | 0.2 | 0.7 | 0.4 | 0.1 | 1.6 | 1.2 | 1.6 | 1.5 | 7.6 | ||
Germacrene D | SH | 1485 | 0.8 | 0.7 | 3.5 | 0.7 | 0.2 | 0.2 | 0.9 | 0.3 | 0.4 | 0.2 | |||||||||||
Eugenyl acetate | PP | 1523 | 12.2 | 12.7 | |||||||||||||||||||
δ-Cadinene | SH | 1523 | 0.2 | 0.3 | 0.3 | 0.2 | 0.7 | 3.1 | 0.2 | 0.2 | 0.2 | 0.2 | 0.9 | ||||||||||
τ-Cadinol | OS | 1640 | 0.2 | 5.8 | 0.1 | 0.1 | |||||||||||||||||
Unknown | 0.2 | 0.8 | 0.5 | 0.4 | 0.3 | 0.6 | 0.7 | 1.8 | 5.1 | 0.2 | 1.8 | 1.5 | 1.8 | 1.3 | 0.1 | ||||||||
Total Identified | 100.0 | 99.8 | 99.2 | 99.5 | 99.6 | 99.7 | 99.4 | 99.3 | 100.0 | 98.2 | 100.0 | 94.9 | 100.0 | 100.0 | 100.0 | 99.8 | 98.2 | 98.5 | 98.2 | 98.7 | 99.9 |
Clade | Asterids | Magnoliids | Rosids | Mixture (1:1) | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Order | Lamiales | Poales | Laurales | Myrtales | Sapindales | ||||||||||||||||
Family | Lamiaceae | Lauraceae | Myrtaceae | Rutaceae | |||||||||||||||||
Relative Percentage (%) | |||||||||||||||||||||
Class of Compounds | L. h | M. p | O. b | A. t | C. c | C. z | L. c | P. g | E. g | M. a | S. a | B. s | C. a | C. b | C. l | C. r | M1 | M2 | M3 | M4 | M5 |
Monoterpene Hydrocarbons (MH) | 6.4 | 6.9 | 2.3 | 66.0 | 3.9 | 15.5 | 21.3 | 9.1 | 41.6 | 84.3 | 97.4 | 49.0 | 94.3 | 99.7 | 12.6 | 42.3 | 42.5 | 36.7 | 2.2 | ||
Oxygenated Monoterpenes (OM) | 85.0 | 87.8 | 56.1 | 26.4 | 86.3 | 7.4 | 75.7 | 83.4 | 90.5 | 39.1 | 6.7 | 1.9 | 48.5 | 3.6 | 80.0 | 51.2 | 49.0 | 56.0 | 1.9 | ||
Sesquiterpene Hydrocarbons (SH) | 5.4 | 4.6 | 20.0 | 4.7 | 4.5 | 14.7 | 0.9 | 7.8 | 0.3 | 14.8 | 9.5 | 3.7 | 0.2 | 2.4 | 2.0 | 0.1 | 3.4 | 2.9 | 4.3 | 3.5 | 10.1 |
Oxygenated Sesquiterpenes (OS) | 1.3 | 0.3 | 7.9 | 1.9 | 0.9 | 0.8 | 6.9 | 0.1 | 1.8 | 0.4 | 0.5 | 1.2 | 1.2 | 0.8 | 1.2 | ||||||
Phenylpropanoides (PP) | 12.7 | 2.0 | 60.3 | 1.2 | 90.1 | 0.2 | 64.4 | ||||||||||||||
Non-terpenes (NT) | 1.9 | 0.2 | 0.2 | 0.5 | 2.0 | 1.0 | 1.5 | 0.9 | 0.5 | 0.1 | 0.1 | 1.7 | 0.9 | 1.2 | 1.7 | 20.1 |
Essential Oil | Escherichia coli MIC (mg/mL) | Aspergillus fumigatus MIC (mg/mL) |
---|---|---|
Aloysia tryphilla | ne | 0.855 |
Boswellia sacra | ne | >8.50 |
Cinnamomum zeylanicum | 2.52 | 5.05 |
Citrus aurantium | ne | >8.50 |
Citrus bergamia | ne | 8.70 |
Citrus limon | ne | 4.25 |
Citrus reticulata | ne | 4.25 |
Cymbopogon citratus | 1.118 | 0.895 |
Eucalyptus globulus | ne | 4.575 |
Lavandula hybrida | ne | 8.85 |
Litsea cubeba | 1.106 | 1.770 |
Ocimum basilicum | 9.15 | 9.15 |
Melaleuca alternifolia | ne | 1.780 |
Mentha piperita | 1.14 | 9.12 |
Pelargonium graveolens | 17.8 | >8.90 |
Syzygium aromaticum | 1.318 | 8.95 |
M1 | 4.449 | >17 |
M2 | 8.75 | >17.5 |
M3 | 4.349 | >17.4 |
M4 | 3.292 | >26.35 |
M5 | 2.578 | >20.65 |
Amoxycillin-clavulanic acid | 0.008/0.004 | |
Voriconazole | 1 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ebani, V.V.; Najar, B.; Bertelloni, F.; Pistelli, L.; Mancianti, F.; Nardoni, S. Chemical Composition and In Vitro Antimicrobial Efficacy of Sixteen Essential Oils against Escherichia coli and Aspergillus fumigatus Isolated from Poultry. Vet. Sci. 2018, 5, 62. https://doi.org/10.3390/vetsci5030062
Ebani VV, Najar B, Bertelloni F, Pistelli L, Mancianti F, Nardoni S. Chemical Composition and In Vitro Antimicrobial Efficacy of Sixteen Essential Oils against Escherichia coli and Aspergillus fumigatus Isolated from Poultry. Veterinary Sciences. 2018; 5(3):62. https://doi.org/10.3390/vetsci5030062
Chicago/Turabian StyleEbani, Valentina Virginia, Basma Najar, Fabrizio Bertelloni, Luisa Pistelli, Francesca Mancianti, and Simona Nardoni. 2018. "Chemical Composition and In Vitro Antimicrobial Efficacy of Sixteen Essential Oils against Escherichia coli and Aspergillus fumigatus Isolated from Poultry" Veterinary Sciences 5, no. 3: 62. https://doi.org/10.3390/vetsci5030062
APA StyleEbani, V. V., Najar, B., Bertelloni, F., Pistelli, L., Mancianti, F., & Nardoni, S. (2018). Chemical Composition and In Vitro Antimicrobial Efficacy of Sixteen Essential Oils against Escherichia coli and Aspergillus fumigatus Isolated from Poultry. Veterinary Sciences, 5(3), 62. https://doi.org/10.3390/vetsci5030062