The Ecological–Evolutionary Game of the Insect Gut Microbiome: Environmental Drivers, Host Regulation, and Prospects for Cross-Cutting Applications
Simple Summary
Abstract
1. Introduction
2. The Structural Features and Microbial Diversity of the Insect Gut
2.1. The Anatomical Structure and Microenvironment of the Insect Gut
2.2. The Composition of the Insect Gut Microbial Community
Insect Classification | Representative Species | Microbial Genus | Relative Abundance (%) | |
---|---|---|---|---|
Isoptera | Black-winged termite | Treponema Bacteroides | 35–60% 20–45% | |
Order Lepidoptera | Fall armyworm | Enterococcus | 25–50% | |
Order Hymenoptera | Bees | Gilliamella | 15–30% | |
Order Coleoptera | Red-bellied woodpecker | Lactobacillus | 20–40% | |
Order Diptera | Black-bellied fruit fly | Acetobacter Lactobacillus | 10–20% 5–15% | |
Order Orthoptera | Desert locust | Weissella | 30–45% | |
Order Hemiptera | Aphid | Buchnera | 90% | |
Order Odonata | Green dragonfly larva | Comamonas | 20–35% | |
Order Blattodea | Blattodea | Blattabacterium | 70–80% | |
Order Phthiraptera | Body lice | Riesia | 95% | |
Primary Functions | Representative species | Citation | ||
Wood cellulose degradation, nitrogen fixation Hemicellulose decomposition | Biomass energy conversion, soil improvement | [21] | ||
Biodegradation of microplastics | Environmental management | [22] | ||
Pollen polysaccharide metabolism | Improving agricultural pollination efficiency | [23] | ||
Pesticide (pyrethroid) degradation | Green control of agricultural pests | [24] | ||
Ethanol metabolism, lifespan regulation | Human intestinal disease model | [25] | ||
Cellulose digestion, group pheromone synthesis | Development of locust control strate gies | [26] | ||
Essential amino acid synthesis | Water pollution biological monitor ing | [27] | ||
Aquatic heavy metal (Cd/Pb) chelation | Biological monitoring of water pollution | [28] | ||
Degradation of organochlorine pesticides | Urban pest control | [29] | ||
Vitamin B synthesis | Control of animal and human parasitic disease | [30] |
2.3. Factors That Influence the Microbial Community Structure
3. Functions of Insect Gut Microbes
3.1. Function of Nutrient Metabolism
3.2. Detoxification Effect
3.3. Immunomodulatory Effects
3.4. Developmental and Behavioral Effects
4. Interaction of the Insect Gut Immune System and the Microbial Community
4.1. The Evolutionary Immune Function of Insect Pattern Recognition Receptors
4.2. Insect Immunology: Signal Networks in Biological Control
4.3. Production and Function of Antimicrobial Peptides (AMPs)
4.4. Reactive Oxygen Species (ROS) and Double Oxidase (Duox) Systems
5. Potential Applications of Insect Gut Microbiota: Agriculture
5.1. Agricultural Applications
5.2. Environmental Governance
5.3. Industrial Biotechnology
5.4. Human Health
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Buchon, N.; Broderick, N.A.; Lemaitre, B. Gut homeostasis in a microbial world: Insights from Drosophila melanogaster. Nat. Rev. Microbiol. 2013, 11, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.A.; Lee, W.J. Immune-metabolic interactions during systemic and enteric infection in Drosophila. Curr. Opin. Insect Sci. 2018, 29, 21–26. [Google Scholar] [CrossRef]
- Lanan, M.C.; Rodrigues, P.A.; Agellon, A.; Jansma, P.; Wheeler, D.E. A bacterial filter protects and structures the gut microbiome of an insect. ISME J. 2016, 10, 1866–1876. [Google Scholar] [CrossRef]
- Buchon, N.; Broderick, N.A.; Poidevin, M.; Pradervand, S.; Lemaitre, B. Drosophila intestinal response to bacterial infection: Activation of host defense and stem cell proliferation. Cell Host Microbe 2009, 5, 200–211. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, W.J. Role of DUOX in gut inflammation: Lessons from Drosophila model of gut-microbiota interactions. Front. Cell Infect. Microbiol. 2014, 3, 116. [Google Scholar] [CrossRef] [PubMed]
- Coquant, G.; Grill, J.-P.; Seksik, P. Impact of N-Acyl-Homoserine Lactones, Quorum Sensing Molecules, on Gut Immunity. Front. Immunol. 2020, 11, 1827. [Google Scholar] [CrossRef]
- Dar, M.A.; Shaikh, A.F.; Pawar, K.D.; Xie, R.; Sun, J.; Kandasamy, S.; Pandit, R.S. Evaluation of cellulose degrading bacteria isolated from the gut-system of cotton bollworm, Helicoverpa armigera and their potential values in biomass conversion. PeerJ 2021, 9, e11254. [Google Scholar] [CrossRef] [PubMed]
- Broderick, N.A.; Buchon, N.; Lemaitre, B. Microbiota-induced changes in drosophila melanogaster host gene expression and gut morphology. mBio 2014, 5, e01117-14. [Google Scholar] [CrossRef]
- Engel, P.; Moran, N.A. The gut microbiota of insects—Diversity in structure and function. FEMS Microbiol. Rev. 2013, 37, 699–735. [Google Scholar] [CrossRef] [PubMed]
- Buchon, N.; Osman, D.; David, F.P.; Fang, H.Y.; Boquete, J.-P.; Deplancke, B.; Lemaitre, B. Morphological and Molecular Characterization of Adult Midgut Compartmentalization in Drosophila. Cell Rep. 2013, 3, 1725–1738. [Google Scholar] [CrossRef]
- Neyen, C.; Runchel, C.; Schüpfer, F.; Meier, P.; Lemaitre, B. The regulatory isoform rPGRP-LC induces immune resolution via endosomal degradation of receptors. Nat. Immunol. 2016, 17, 1150–1158. [Google Scholar] [CrossRef]
- Paredes, J.C.; Welchman, D.P.; Poidevin, M.; Lemaitre, B. Negative regulation by amidase PGRPs shapes the Drosophila antibacterial response and protects the fly from innocuous infection. Immunity 2011, 35, 770–779. [Google Scholar] [CrossRef]
- Ryu, J.H.; Kim, S.H.; Lee, H.Y.; Bai, J.Y.; Nam, Y.D.; Bae, J.W.; Lee, D.G.; Shin, S.C.; Ha, E.M.; Lee, W.J. Innate immune homeostasis by the homeobox gene caudal and commensal-gut mutualism in Drosophila. Science 2008, 319, 777–782. [Google Scholar] [CrossRef]
- Ha, E.M.; Oh, C.T.; Bae, Y.S.; Lee, W.J. A direct role for dual oxidase in Drosophila gut immunity. Science 2005, 310, 847–850. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Hou, Z.; Zhou, Q.; Mo, F.; Kang, W.; Ouyang, S. Enhanced carbon emission driven by the interaction between functional microbial community and hydrocarbons: An enlightenment for carbon cycle. Sci. Total Environ. 2023, 867, 161402. [Google Scholar] [CrossRef]
- Jiang, S.; Li, H.; Zhang, L.; Mu, W.; Zhang, Y.; Chen, T.; Wu, J.; Tang, H.; Zheng, S.; Liu, Y.; et al. Generic Diagramming Platform (GDP): A comprehensive database of high-quality biomedical graphics. Nucleic Acids Res. 2025, 53, D1670–D1676. [Google Scholar] [CrossRef]
- Bruno, D.; Bonelli, M.; De Filippis, F.; Di Lelio, I.; Tettamanti, G.; Casartelli, M.; Ercolini, D.; Caccia, S. The Intestinal Microbiota of Hermetia illucens Larvae Is Affected by Diet and Shows a Diverse Composition in the Different Midgut Regions. Appl. Environ. Microbiol. 2019, 85, e01864-18. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, F.; Lu, X. Diversity and Functional Roles of the Gut Microbiota in Lepidopteran Insects. Microorganisms 2022, 10, 1234. [Google Scholar] [CrossRef]
- Butera, G.; Ferraro, C.; Colazza, S.; Alonzo, G.; Quatrini, P. The culturable bacterial community of frass produced by larvae of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) in the Canary island date palm. Lett. Appl. Microbiol. 2012, 54, 530–536. [Google Scholar] [CrossRef]
- Brune, A. Symbiotic digestion of lignocellulose in termite guts. Nat. Rev. Microbiol. 2014, 12, 168–180. [Google Scholar] [CrossRef]
- Fan, Z.; Khan, M.M.; Wang, K.; Li, Y.; Jin, F.; Peng, J.; Chen, X.; Kong, W.; Lv, X.; Chen, X.; et al. Disruption of midgut homeostasis by microplastics in Spodoptera frugiperda: Insights into inflammatory and oxidative mechanisms. J. Hazard. Mater. 2025, 487, 137262. [Google Scholar] [CrossRef]
- Kwong, W.K.; Medina, L.A.; Koch, H.; Sing, K.-W.; Soh, E.J.Y.; Ascher, J.S.; Jaffé, R.; Moran, N.A. Dynamic microbiome evolution in social bees. Sci. Adv. 2017, 3, e1600513. [Google Scholar] [CrossRef]
- Shukla, S.P.; Beran, F. Gut microbiota degrades toxic isothiocyanates in a flea beetle pest. Mol. Ecol. 2020, 29, 4692–4705. [Google Scholar] [CrossRef] [PubMed]
- Broderick, N.A.; Lemaitre, B. Gut-associated microbes of Drosophila melanogaster. Gut Microbes 2012, 3, 307–321. [Google Scholar] [CrossRef]
- Dillon, R.; Charnley, K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res. Microbiol. 2002, 153, 503–509. [Google Scholar] [CrossRef] [PubMed]
- Douglas, A.E. Nutritional interactions in insect-microbial symbioses: Aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 1998, 43, 17–37. [Google Scholar] [CrossRef]
- Sinclair, C.A.; Garcia, T.S.; Vasta, R.; Eagles-Smith, C.A. Mercury trophic transfer to a freshwater biosentinel: Quantifying controlled bioaccumulation in larval dragonflies. Environ. Toxicol. Chem. 2025, 44, 1824–1834. [Google Scholar] [CrossRef]
- Pan, X.; Wang, X.; Zhang, F. New Insights into Cockroach Control: Using Functional Diversity of Blattella germanica Symbionts. Insects 2020, 11, 696. [Google Scholar] [CrossRef] [PubMed]
- Kirkness, E.F.; Haas, B.J.; Sun, W.; Braig, H.R.; Perotti, M.A.; Clark, J.M.; Lee, S.H.; Robertson, H.M.; Kennedy, R.C.; Elhaik, E.; et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc. Natl. Acad. Sci. USA 2010, 107, 12168–12173. [Google Scholar] [CrossRef]
- Shan, H.W.; Xia, X.J.; Feng, Y.L.; Wu, W.; Li, H.J.; Sun, Z.T.; Li, J.M.; Chen, J.P. The plant-sucking insect selects assembly of the gut microbiota from environment to enhance host reproduction. NPJ Biofilms Microbiomes 2024, 10, 64. [Google Scholar] [CrossRef]
- Yang, X.G.; Wen, P.P.; Yang, Y.F.; Jia, P.P.; Li, W.G.; Pei, D.S. Corrigendum: Plastic biodegradation by in vitro environmental microorganisms and in vivo gut microorganisms of insects. Front. Microbiol. 2024, 15, 1444678. [Google Scholar] [CrossRef]
- Yao, L.; Jiao, J.; Wu, C.; Jiang, B.; Fan, L. Effects of thinning on the structure of soil microbial communities in a subtropical secondary evergreen broad-leaved forest. Front. Plant Sci. 2024, 15, 1465237. [Google Scholar] [CrossRef]
- Zhou, J.; Duan, J.; Gao, M.; Wang, Y.; Wang, X.; Zhao, K. Diversity, Roles, and Biotechnological Applications of Symbiotic Microorganisms in the Gut of Termite. Curr. Microbiol. 2019, 76, 755–761. [Google Scholar] [CrossRef] [PubMed]
- Warnecke, F.; Luginbühl, P.; Ivanova, N.; Ghassemian, M.; Richardson, T.H.; Stege, J.T.; Cayouette, M.; McHardy, A.C.; Djordjevic, G.; Aboushadi, N.; et al. Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 2007, 450, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Sun, S.; Yang, X.; Cheng, J.; Wei, H.; Li, Z.; Michaud, J.P.; Liu, X. Variability of Gut Microbiota Across the Life Cycle of Grapholita molesta (Lepidoptera: Tortricidae). Front. Microbiol. 2020, 11, 1366. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Li, Z.; Wang, L.; Xu, Z.; Zhang, S.; Zhang, Q. Progress in polystyrene biodegradation by insect gut microbiota. World J. Microbiol. Biotechnol. 2024, 40, 143. [Google Scholar] [CrossRef]
- Talà, A.; Guerra, F.; Resta, S.C.; Calcagnile, M.; Barca, A.; Tredici, S.M.; De Donno, M.D.; Vacca, M.; Liso, M.; Chieppa, M.; et al. Phenotyping of Fecal Microbiota of Winnie, a Rodent Model of Spontaneous Chronic Colitis, Reveals Specific Metabolic, Genotoxic, and Pro-inflammatory Properties. Inflammation 2022, 45, 2477–2497. [Google Scholar] [CrossRef]
- Zhang, J.; Xia, X.; Huang, W.; Li, Y.; Lin, X.; Li, Y.; Yang, Z. Photoaging of biodegradable nanoplastics regulates their toxicity to aquatic insects (Chironomus kiinensis) by impairing gut and disrupting intestinal microbiota. Environ. Int. 2024, 185, 108483. [Google Scholar] [CrossRef]
- Sun, Z.B.; Hu, Y.F.; Song, H.J.; Cong, S.B.; Wang, L. Cry1Ac Mixed with Gentamicin Influences the Intestinal Microbial Diversity and Community Composition of Pink Bollworms. Life 2023, 14, 58. [Google Scholar] [CrossRef]
- Huerta-García, A.; Álvarez-Cervantes, J. The gut microbiota of insects: A potential source of bacteria and metabolites. Int. J. Trop. Insect Sci. 2024, 44, 13–30. [Google Scholar] [CrossRef]
- Deng, Y.; Yang, X.; Chen, J.; Yang, S.; Chi, H.; Chen, C.; Yang, X.; Hou, C. Correction to “Jute (Corchorus olitorius L.) Nanocrystalline Cellulose Inhibits Insect Virus via Gut Microbiota and Metabolism”. ACS Nano 2023, 17, 24417. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Xu, L. The pivotal roles of gut microbiota in insect plant interactions for sustainable pest management. NPJ Biofilms Microbiomes 2023, 9, 66. [Google Scholar] [CrossRef]
- Chang, C.J.; Chang, C.W.; Lu, H.P.; Hsieh, C.H.; Wu, J.H. Bioenergetically constrained dynamical microbial interactions govern the performance and stability of methane-producing bioreactors. NPJ Biofilms Microbiomes 2025, 11, 31. [Google Scholar] [CrossRef]
- Biasato, I.; Gasco, L.; Schiavone, A.; Capucchio, M.T.; Ferrocino, I. Gut microbiota changes in insect-fed monogastric species: State-of-the-art and future perspectives. Anim. Front. 2023, 13, 72–80. [Google Scholar] [CrossRef]
- Li, J.; Sauers, L.; Zhuang, D.; Ren, H.; Guo, J.; Wang, L.; Zhuang, M.; Guo, Y.; Zhang, Z.; Wu, J.; et al. Divergence and convergence of gut microbiomes of wild insect pollinators. mBio 2023, 14, e0127023. [Google Scholar] [CrossRef] [PubMed]
- Rong, X.; Zhu, L.; Shu, Q. Synergistic gut microbiome-mediated degradation of Astragalus membranaceus polysaccharides and Codonopsis pilosula polysaccharides into butyric acid: A metatranscriptomic analysis. Microbiol. Spectr. 2025, 13, e0303924. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Sun, M.; Zhang, J.; Lei, A.; Chen, H.; Kang, X.; Ni, H.; Yang, S. Comparative Metagenomic and Metatranscriptomic Analyses Reveal the Response of Black Soldier Fly (Hermetia illucens) Larvae Intestinal Microbes and Reduction Mechanisms to High Concentrations of Tetracycline. Toxics 2023, 11, 611. [Google Scholar] [CrossRef]
- McMillan, H.M. Plants target gut microbes to reduce insect herbivore damage. Proc. Natl. Acad. Sci. USA 2023, 120, e2308568120. [Google Scholar] [CrossRef]
- Siddiqui, S.A.; Harahap, I.A.; Osei-Owusu, J.; Saikia, T.; Wu, Y.S.; Fernando, I.; Perestrelo, R.; Câmara, J.S. Bioconversion of organic waste by insects—A comprehensive review. Process Saf. Environ. Prot. 2024, 187, 1–25. [Google Scholar] [CrossRef]
- Zhao, Y.; Song, Q.; Song, Y. The role of insect intestinal microbes in controlling of Empoasca onukii Matsuda (Hemiptera: Cicadellidae) pest infestations in the production of tea garden: A review. Arch. Microbiol. 2023, 205, 266. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Ling, Y.; Li, W.J.; Wang, L.; Xue, X.B.; Gao, Y.Y.; Li, F.F.; Li, X.J. Analysis of Intestinal Microbial Diversity of Four Species of Grasshoppers and Determination of Cellulose Digestibility. Insects 2022, 13, 432. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ni, B.; Wu, Y.; Yang, Y.; Mu, D.; Wu, K.; Zhang, A.; Du, Y.; Li, Q. The cultivable gut bacteria Enterococcus mundtii promotes early-instar larval growth of Conogethes punctiferalis via enhancing digestive enzyme activity. Pest Manag. Sci. 2024, 80, 6179–6188. [Google Scholar] [CrossRef]
- Li, X.D.; Xin, L.; Rong, W.T.; Liu, X.Y.; Deng, W.A.; Qin, Y.C.; Li, X.L. Effect of heavy metals pollution on the composition and diversity of the intestinal microbial community of a pygmy grasshopper (Eucriotettix oculatus). Ecotoxicol. Environ. Saf. 2021, 223, 112582. [Google Scholar] [CrossRef]
- Ma, M.; Liu, P.; Yu, J.; Han, R.; Xu, L. Preparing and Rearing Axenic Insects with Tissue Cultured Seedlings for Host-Gut Microbiota Interaction Studies of the Leaf Beetle. J. Vis. Exp. 2021, 176, e63195. [Google Scholar]
- Banerjee, S.; Maiti, T.K.; Roy, R.N. Enzyme producing insect gut microbes: An unexplored biotechnological aspect. Crit. Rev. Biotechnol. 2022, 42, 384–402. [Google Scholar] [CrossRef]
- Wu, S.; Zhong, J.; Lei, Q.; Song, H.; Chen, S.F.; Wahla, A.Q.; Bhatt, K.; Chen, S. New roles for Bacillus thuringiensis in the removal of environmental pollutants. Environ. Res. 2023, 236, 116699. [Google Scholar] [CrossRef]
- Lau, E.; Maccaro, J.; McFrederick, Q.S.; Nieh, J.C. Exploring the interactions between Nosema ceranae infection and the honey bee gut microbiome. Sci. Rep. 2024, 14, 20037. [Google Scholar] [CrossRef]
- Tang, Y.L.; Kong, Y.H.; Qin, S.; Merchant, A.; Shi, J.Z.; Zhou, X.G.; Li, M.W.; Wang, Q. Transcriptomic dissection of termite gut microbiota following entomopathogenic fungal infection. Front. Physiol. 2023, 14, 1194370. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Lou, Y.; Wang, J.; Liu, Q.; Yang, S.S.; Ren, N.; Wu, W.M.; Xing, D. Understanding the Ecological Robustness and Adaptability of the Gut Microbiome in Plastic-Degrading Superworms (Zophobas atratus) in Response to Microplastics and Antibiotics. Environ. Sci. Technol. 2024, 58, 12028–12041. [Google Scholar] [CrossRef]
- Kannan, M.; Mubarakali, D.; Thiyonila, B.; Krishnan, M.; Padmanaban, B.; Shantkriti, S. Insect gut as a bioresource for potential enzymes-an unexploited area for industrial biotechnology. Biocatal. Agric. Biotechnol. 2019, 18, 101010. [Google Scholar]
- Wang, Z.; Fan, N.; Li, X.; Yue, L.; Wang, X.; Liao, H.; Xiao, Z. Trophic Transfer of Metal Oxide Nanoparticles in the Tomato-Helicoverpa armigera Food Chain: Effects on Phyllosphere Microbiota, Insect Oxidative Stress, and Gut Microbiome. ACS Nano 2024, 18, 26631–26642. [Google Scholar] [CrossRef]
- Morimura, H.; Ishigami, K.; Sato, T.; Sone, T.; Kikuchi, Y. Geographical, Seasonal, and Growth-Related Dynamics of Gut Microbiota in a Grapevine Pest, Apolygus spinolae (Heteroptera: Miridae). Microb. Ecol. 2024, 87, 112. [Google Scholar] [CrossRef]
- Robino, P.; Galosi, L.; Bellato, A.; Vincenzetti, S.; Gonella, E.; Ferrocino, I.; Serri, E.; Biagini, L.; Roncarati, A.; Nebbia, P.; et al. Effects of a supplemented diet containing 7 probiotic strains (Honeybeeotic) on honeybee physiology and immune response: Analysis of hemolymph cytology, phenoloxidase activity, and gut microbiome. Biol. Res. 2024, 57, 50. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, M.; Cai, M.; Zhang, Y.; Fan, Y.; Lin, Z.; Wang, Z.; Niu, Q.; Ji, T. Possible interactions between gut microbiome and division of labor in honey bees. Ecol. Evol. 2024, 14, e11707. [Google Scholar] [CrossRef]
- Li, B.; Chen, X.; Ke, L.; Dai, P.; Ge, Y.; Liu, Y.J. Early-Life Sublethal Exposure to Thiacloprid Alters Adult Honeybee Gut Microbiota. Genes 2024, 15, 1001. [Google Scholar] [CrossRef] [PubMed]
- Liberti, J.; Frank, E.T.; Kay, T.; Kesner, L.; Monié-Ibanes, M.; Quinn, A.; Schmitt, T.; Keller, L.; Engel, P. Gut microbiota influences onset of foraging-related behavior but not physiological hallmarks of division of labor in honeybees. mBio 2024, 15, e0103424. [Google Scholar] [CrossRef] [PubMed]
- Adesemoye, A.O.; Antony-Babu, S.; Nagy, E.M.; Kafle, B.D.; Gregory, T.A.; Xiong, C.; Fadamiro, H.Y. Bacteria-based artificial diets modulate larval development, survival and gut microbiota of two insect pests. Biol. Control 2025, 205, 105769. [Google Scholar]
- Ding, X.; Liu, J.; Zheng, L.; Song, J.; Li, N.; Hu, H.; Tong, X.; Dai, F. Genome-Wide Identification and Expression Profiling of Wnt Family Genes in the Silkworm, Bombyx mori. Int. J. Mol. Sci. 2019, 20, 1221. [Google Scholar] [CrossRef]
- Steiner, H. Peptidoglycan recognition proteins: On and off switches for innate immunity. Immunol. Rev. 2004, 198, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Pereira, M.F.; Rossi, C.C.; da Silva, G.C.; Rosa, J.N.; Bazzolli, D.M.S. Galleria mellonella as an infection model: An in-depth look at why it works and practical considerations for successful application. Pathog. Dis. 2020, 78, ftaa056. [Google Scholar] [CrossRef]
- Wang, Y.; Li, D.D.; Jiang, Y.Y.; Mylonakis, E. Utility of insects for studying human pathogens and evaluating new antimicrobial agents. Adv. Biochem. Eng. Biotechnol. 2013, 135, 1–25. [Google Scholar]
- Hoffmann, J.A.; Kafatos, F.C.; Janeway, C.A.; Ezekowitz, R.A. Phylogenetic perspectives in innate immunity. Science 1999, 284, 1313–1318. [Google Scholar] [CrossRef]
- Silverman, N.; Maniatis, T. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 2001, 15, 2321–2342. [Google Scholar] [CrossRef]
- Wand, M.E.; McCowen, J.W.I.; Nugent, P.G.; Sutton, J.M. Complex interactions of Klebsiella pneumoniae with the host immune system in a Galleria mellonella infection model. J. Med. Microbiol. 2013, 62, 1790–1798. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, H.; Cheng, Y.; An, C.; Chu, Y.; Raikhel, A.S.; Zou, Z. Activation of Aedes aegypti prophenoloxidase-3 and its role in the immune response against entomopathogenic fungi. Insect Mol. Biol. 2017, 26, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ma, L.; Wang, W.; Li, L.; Lu, Z. Phenoloxidases are required for the pea aphid’s defence against bacterial and fungal infection. Insect Mol. Biol. 2019, 28, 176–186. [Google Scholar] [CrossRef]
- Stanley, D.; Haas, E.; Kim, Y. Beyond Cellular Immunity: On the Biological Significance of Insect Hemocytes. Cells 2023, 12, 599. [Google Scholar] [CrossRef]
- Zhang, Q.Y.; Yan, Z.B.; Meng, Y.M.; Hong, X.Y.; Shao, G.; Ma, J.J.; Cheng, X.R.; Liu, J.; Kang, J.; Fu, C.Y. Antimicrobial peptides: Mechanism of action, activity and clinical potential. Mil. Med. Res. 2021, 8, 48. [Google Scholar] [CrossRef] [PubMed]
- Hetru, C.; Hoffmann, J.A. NF-kappaB in the immune response of Drosophila. Cold Spring Harb. Perspect. Biol. 2009, 1, a000232. [Google Scholar] [CrossRef]
- Leulier, F.; Parquet, C.; Pili-Floury, S.; Ryu, J.H.; Caroff, M.; Lee, W.J.; Mengin-Lecreulx, D.; Lemaitre, B. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 2003, 4, 478–484. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Luo, J.; Feng, K.; Zhou, Y.; Tang, F. Prophenoloxidase of Odontotermes formosanus (Shiraki) (Blattodea: Termitidae) Is a Key Gene in Melanization and Has a Defensive Role during Bacterial Infection. Int. J. Mol. Sci. 2022, 24, 406. [Google Scholar] [CrossRef]
- Prabu, S.; Jing, D.; Shabbir, M.Z.; Yuan, W.; Wang, Z.; He, K. Contribution of phenoloxidase activation mechanism to Bt insecticidal protein resistance in Asian corn borer. Int. J. Biol. Macromol. 2020, 153, 88–99. [Google Scholar] [CrossRef]
- Wang, J.; Dou, X.; Song, J.; Lyu, Y.; Zhu, X.; Xu, L.; Li, W.; Shan, A. Antimicrobial peptides: Promising alternatives in the post feeding antibiotic era. Med. Res. Rev. 2019, 39, 831–859. [Google Scholar] [CrossRef]
- Cerenius, L.; Lee, B.L.; Söderhäll, K. The proPO-system: Pros and cons for its role in invertebrate immunity. Trends Immunol. 2008, 29, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, O.; Akira, S. Pattern recognition receptors and inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef]
- Patin, E.C.; Thompson, A.; Orr, S.J. Pattern recognition receptors in fungal immunity. Semin. Cell Dev. Biol. 2019, 89, 24–33. [Google Scholar] [CrossRef]
- Zhang, W.; Tettamanti, G.; Bassal, T.; Heryanto, C.; Eleftherianos, I.; Mohamed, A. Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021, 83, 110003. [Google Scholar] [CrossRef]
- Calzas, C.; Lemire, P.; Auray, G.; Gerdts, V.; Gottschalk, M.; Segura, M. Antibody response specific to the capsular polysaccharide is impaired in Streptococcus suis serotype 2-infected animals. Infect. Immun. 2015, 83, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Swaminathan, C.P.; Brown, P.H.; Roychowdhury, A.; Wang, Q.; Guan, R.; Silverman, N.; Goldman, W.E.; Boons, G.J.; Mariuzza, R.A. Dual strategies for peptidoglycan discrimination by peptidoglycan recognition proteins (PGRPs). Proc. Natl. Acad. Sci. USA 2006, 103, 684–689. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Ma, C.; Lu, Z.Q.; Kanost, M.R. Beta-1,3-glucan recognition protein-2 (betaGRP-2)from Manduca sexta; an acute-phase protein that binds beta-1,3-glucan and lipoteichoic acid to aggregate fungi and bacteria and stimulate prophenoloxidase activation. Insect Biochem. Mol. Biol. 2004, 34, 89–100. [Google Scholar] [CrossRef]
- Geijtenbeek, T.B.; Van Vliet, S.J.; Koppel, E.A.; Sanchez-Hernandez, M.; Vandenbroucke-Grauls, C.M.; Appelmelk, B.; Van Kooyk, Y. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 2003, 197, 7–17. [Google Scholar] [CrossRef]
- Hayashi, F.; Smith, K.D.; Ozinsky, A.; Hawn, T.R.; Yi, E.C.; Goodlett, D.R.; Eng, J.K.; Akira, S.; Underhill, D.M.; Aderem, A. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 2001, 410, 1099–1103. [Google Scholar] [CrossRef]
- Wu, J.; Chen, Z.J. Innate immune sensing and signaling of cytosolic nucleic acids. Annu. Rev. Immunol. 2014, 32, 461–488. [Google Scholar] [CrossRef]
- Jentho, E.; Weis, S. DAMPs and Innate Immune Training. Front. Immunol. 2021, 12, 699563. [Google Scholar] [CrossRef]
- Chen, G.Y.; Nuñez, G. Sterile inflammation: Sensing and reacting to damage. Nat. Rev. Immunol. 2010, 10, 826–837. [Google Scholar] [CrossRef] [PubMed]
- Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol. 2020, 20, 95–112. [Google Scholar] [CrossRef]
- Matzinger, P. Tolerance, danger, and the extended family. Annu. Rev. Immunol. 1994, 12, 991–1045. [Google Scholar] [CrossRef]
- Hrithik, M.T.H.; Ahmed, S.; Kim, Y. Damage signal induced by Bacillus thuringiensis infection triggers immune responses via a DAMP molecule in lepidopteran insect, Spodoptera exigua. Dev. Comp. Immunol. 2023, 139, 104559. [Google Scholar] [CrossRef] [PubMed]
- Chierici, E.; Marchetti, E.; Poccia, A.; Russo, A.; Giannuzzi, V.A.; Governatori, L.; Zucchi, L.; Rondoni, G.; Conti, E. Laboratory and field efficacy of natural products against the invasive pest Halyomorpha halys and side effects on the biocontrol agent Trissolcus japonicus. Sci. Rep. 2025, 15, 4622. [Google Scholar] [CrossRef]
- Hancz, C.; Sultana, S.; Nagy, Z.; Biró, J. The Role of Insects in Sustainable Animal Feed Production for Environmentally Friendly Agriculture: A Review. Animals 2024, 14, 1009. [Google Scholar] [CrossRef]
- Haider, K.; Abbas, D.; Galian, J.; Ghafar, M.A.; Kabir, K.; Ijaz, M.; Hussain, M.; Khan, K.A.; Ghramh, H.A.; Raza, A. The multifaceted roles of gut microbiota in insect physiology, metabolism, and environmental adaptation: Implications for pest management strategies. World J. Microbiol. Biotechnol. 2025, 41, 75. [Google Scholar] [CrossRef] [PubMed]
- Mannaa, M.; Mansour, A.; Park, I.; Lee, D.-W.; Seo, Y.-S. Insect-based agri-food waste valorization: Agricultural applications and roles of insect gut microbiota. Environ. Sci. Ecotechnol. 2024, 17, 100287. [Google Scholar] [CrossRef]
- Crotti, E.; Balloi, A.; Hamdi, C.; Sansonno, L.; Marzorati, M.; Gonella, E.; Favia, G.; Cherif, A.; Bandi, C.; Alma, A. Microbial symbionts: A resource for the management of insect-related problems. Microb. Biotechnol. 2012, 5, 307–317. [Google Scholar] [CrossRef]
- Bode, H.B. Insect-Associated Microorganisms as a Source for Novel Secondary Metabolites with Therapeutic Potential. In Insect Biotechnology; Vilcinskas, A., Ed.; Springer: Dordrecht, The Netherlands, 2011; pp. 77–93. [Google Scholar]
- Krishnan, M.; Bharathiraja, C.; Pandiarajan, J.; Prasanna, V.A.; Rajendhran, J.; Gunasekaran, P. Insect gut microbiome–An unexploited reserve for biotechnological application. Asian Pac. J. Trop. Biomed. 2014, 4, S16–S21. [Google Scholar] [CrossRef]
- Singh, B.; Mal, G.; Gautam, S.K.; Mukesh, M.; Singh, B.; Mal, G.; Gautam, S.K.; Mukesh, M. Insect Gut—A treasure of microbes and microbial enzymes. In Advances in Animal Biotechnology; Springer: Cham, Switzerland, 2019; pp. 51–58. [Google Scholar]
- Xie, S.; Lan, Y.; Sun, C.; Shao, Y. Insect microbial symbionts as a novel source for biotechnology. World J. Microbiol. Biotechnol. 2019, 35, 1–7. [Google Scholar] [CrossRef]
- Liang, X.; Sun, C.; Chen, B.; Du, K.; Yu, T.; Luang-In, V.; Lu, X.; Shao, Y. Insect symbionts as valuable grist for the biotechnological mill: An alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl. Microbiol. Biotechnol. 2018, 102, 4951–4962. [Google Scholar] [CrossRef]
- Mondal, S.; Somani, J.; Roy, S.; Babu, A.; Pandey, A.K. Insect microbial symbionts: Ecology, interactions, and biological significance. Microorganisms 2023, 11, 2665. [Google Scholar] [CrossRef] [PubMed]
- Mika, N.; Zorn, H.; Rühl, M. Insect-derived enzymes: A treasure for industrial biotechnology and food biotechnology. In Yellow Biotechnology II: Insect Biotechnology in Plant Protection and Industry; Springer: Cham, Switzerland, 2013; pp. 1–17. [Google Scholar]
- Shi, W.; Xie, S.; Chen, X.; Sun, S.; Zhou, X.; Liu, L.; Gao, P.; Kyrpides, N.C.; No, E.-G.; Yuan, J.S. Comparative genomic analysis of the endosymbionts of herbivorous insects reveals eco-environmental adaptations: Biotechnology applications. PLoS Genet. 2013, 9, e1003131. [Google Scholar] [CrossRef]
- Kipkoech, C. Beyond proteins—Edible insects as a source of dietary fiber. Polysaccharides 2023, 4, 116–128. [Google Scholar] [CrossRef]
- Khanal, P.; Pandey, D.; Næss, G.; Cabrita, A.R.; Fonseca, A.J.; Maia, M.R.; Timilsina, B.; Veldkamp, T.; Sapkota, R.; Overrein, H. Yellow mealworms (Tenebrio molitor) as an alternative animal feed source: A comprehensive characterization of nutritional values and the larval gut microbiome. J. Clean. Prod. 2023, 389, 136104. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Cruz-Monterrosa, R.G.; Liceaga, A.M. Beyond Human Nutrition of Edible Insects: Health Benefits and Safety Aspects. Insects 2022, 13, 1007. [Google Scholar] [CrossRef] [PubMed]
- Baiano, A. Edible insects: An overview on nutritional characteristics, safety, farming, production technologies, regulatory framework, and socio-economic and ethical implications. Trends Food Sci. Technol. 2020, 100, 35–50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Tang, J.; Chen, Y.; Chen, S.; Chen, S.; Yu, X.; Wan, C.; Xiang, G.; Chen, Y.; Li, Q. The Ecological–Evolutionary Game of the Insect Gut Microbiome: Environmental Drivers, Host Regulation, and Prospects for Cross-Cutting Applications. Vet. Sci. 2025, 12, 866. https://doi.org/10.3390/vetsci12090866
Wang Y, Tang J, Chen Y, Chen S, Chen S, Yu X, Wan C, Xiang G, Chen Y, Li Q. The Ecological–Evolutionary Game of the Insect Gut Microbiome: Environmental Drivers, Host Regulation, and Prospects for Cross-Cutting Applications. Veterinary Sciences. 2025; 12(9):866. https://doi.org/10.3390/vetsci12090866
Chicago/Turabian StyleWang, Ying, Jie Tang, Yao Chen, Shuyi Chen, Sumin Chen, Xin Yu, Caijing Wan, Guoqi Xiang, Yaping Chen, and Qiang Li. 2025. "The Ecological–Evolutionary Game of the Insect Gut Microbiome: Environmental Drivers, Host Regulation, and Prospects for Cross-Cutting Applications" Veterinary Sciences 12, no. 9: 866. https://doi.org/10.3390/vetsci12090866
APA StyleWang, Y., Tang, J., Chen, Y., Chen, S., Chen, S., Yu, X., Wan, C., Xiang, G., Chen, Y., & Li, Q. (2025). The Ecological–Evolutionary Game of the Insect Gut Microbiome: Environmental Drivers, Host Regulation, and Prospects for Cross-Cutting Applications. Veterinary Sciences, 12(9), 866. https://doi.org/10.3390/vetsci12090866