Autophagic Degradation of GPX4 Mediates Ferroptosis During Sheep Sperm Cryopreservation
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sperm Collection, Cryopreservation, and Thawing
2.3. Determination of Sperm Motility and Movement Parameters
2.4. Detection of Sperm Plasma Membrane Integrity Rate
2.5. Detection of Sperm Lipid Peroxidation Level
2.6. Detection of Sperm Iron Ion Concentration
2.7. Detection of Expression Levels of Sperm GPX4 Proteins
2.8. Statistical Analysis
3. Results
3.1. Effects of Inhibiting GPX4 Protein Degradation on Sperm Motility Parameters and Sperm Plasma Membrane Integrity Rate
3.2. Effects of Autophagy Inhibitor CQ on GPX4 Protein Expression in Frozen–Thawed Sheep Spermatozoa
3.3. Effects of Autophagy Inhibitor CQ on Ferroptosis Markers in Frozen–Thawed Sheep Sperm
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saadeldin, I.M.; Khalil, W.A.; Alharbi, M.G.; Lee, S.H. The Current Trends in Using Nanoparticles, Liposomes, and Ex-osomes for Semen Cryopreservation. Animals 2020, 10, 2281. [Google Scholar] [CrossRef]
- Bailey, J.; Morrier, A.; Cormier, N. Semen Cryopreservation: Successes and Persistent Problems in Farm Species. Can. J. Anim. Sci. 2003, 83, 393–401. [Google Scholar] [CrossRef]
- Peris-Frau, P.; Soler, A.J.; Iniesta-Cuerda, M.; Martín-Maestro, A.; Sánchez-Ajofrín, I.; Medina-Chávez, D.A.; Fernán-dez-Santos, M.R.; García-Álvarez, O.; Maroto-Morales, A.; Montoro, V.; et al. Sperm Cryodamage in Ruminants: Under-standing the Molecular Changes Induced by the Cryopreservation Process to Optimize Sperm Quality. Int. J. Mol. Sci. 2020, 21, 2781. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Prasad, J.K.; Srivastava, N.; Ghosh, S.K. Strategies to Minimize Various Stress-Related Freeze–Thaw Damages During Conventional Cryopreservation of Mammalian Spermatozoa. Biopreserv. Biobank. 2019, 17, 603–612. [Google Scholar] [CrossRef]
- Bucak, M.N.; Tuncer, P.B.; Sarıözkan, S.; Başpınar, N.; Taşpınar, M.; Coyan, K.; Bilgili, A.; Akalın, P.P.; Büyükleblebici, S.; Aydos, S.; et al. Effects of Antioxidants on Post-Thawed Bovine Sperm and Oxidative Stress Parameters: Antioxidants Protect DNA Integrity against Cryodamage. Cryobiology 2010, 61, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Hai, E.; Li, B.; Zhang, J.; Zhang, J. Sperm Freezing Damage: The Role of Regulated Cell Death. Cell Death Discov. 2024, 10, 239. [Google Scholar] [CrossRef] [PubMed]
- Hai, E.; Li, B.; Song, Y.; Zhang, J.; Zhang, J. Ferroptosis Emerges as the Predominant Form of Regulated Cell Death in Goat Sperm Cryopreservation. J. Anim. Sci. Biotechnol. 2025, 16, 26. [Google Scholar] [CrossRef]
- Hai, E.; Li, B.; Song, Y.; Zhang, J.; Zhang, J. Inhibiting Ferroptosis Mitigates Sheep Sperm Freezing Damage. Front. Vet. Sci. 2025, 12, 1526474. [Google Scholar] [CrossRef]
- Gan, J.; Gu, T.; Hong, L.; Cai, G. Ferroptosis-Related Genes Involved in Animal Reproduction: An Overview. Theriogenology 2022, 184, 92–99. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, Y.; Liao, Y.; Zhu, C.; Zou, Z. GPX4, Ferroptosis, and Diseases. Biomed. Pharmacother. 2024, 174, 116512. [Google Scholar] [CrossRef]
- Liu, J.; Tang, D.; Kang, R. Targeting GPX4 in Ferroptosis and Cancer: Chemical Strategies and Challenges. Trends Pharmacol. Sci. 2024, 45, 666–670. [Google Scholar] [CrossRef]
- Li, B.; Cheng, K.; Wang, T.; Peng, X.; Xu, P.; Liu, G.; Xue, D.; Jiao, N.; Wang, C. Research Progress on GPX4 Targeted Compounds. Eur. J. Med. Chem. 2024, 274, 116548. [Google Scholar] [CrossRef]
- Yang, W.S.; SriRamaratnam, R.; Welsch, M.E.; Shimada, K.; Skouta, R.; Viswanathan, V.S.; Cheah, J.H.; Clemons, P.A.; Shamji, A.F.; Clish, C.B.; et al. Regulation of Ferroptotic Cancer Cell Death by GPX4. Cell 2014, 156, 317–331. [Google Scholar] [CrossRef] [PubMed]
- Shimada, K.; Skouta, R.; Kaplan, A.; Yang, W.S.; Hayano, M.; Dixon, S.J.; Brown, L.M.; Valenzuela, C.A.; Wolpaw, A.J.; Stockwell, B.R. Global Survey of Cell Death Mechanisms Reveals Metabolic Regulation of Ferroptosis. Nat. Chem. Biol. 2016, 12, 497–503. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Chen, X.; Yang, Q.; Chen, J.; Huang, Q.; Yao, L.; Yan, D.; Wu, J.; Zhang, P.; Tang, D.; et al. Broad Spectrum Deubiquitinase Inhibition Induces Both Apoptosis and Ferroptosis in Cancer Cells. Front. Oncol. 2020, 10, 949. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, Y.; Liu, J.; Kang, R.; Tang, D. Interplay between MTOR and GPX4 Signaling Modulates Autopha-gy-Dependent Ferroptotic Cancer Cell Death. Cancer Gene Ther. 2021, 28, 55–63. [Google Scholar] [CrossRef]
- Ingold, I.; Aichler, M.; Yefremova, E.; Roveri, A.; Buday, K.; Doll, S.; Tasdemir, A.; Hoffard, N.; Wurst, W.; Walch, A.; et al. Expression of a Catalytically Inactive Mutant Form of Glutathione Peroxidase 4 (Gpx4) Confers a Dominant-Negative Effect in Male Fertility. J. Biol. Chem. 2015, 290, 14668–14678. [Google Scholar] [CrossRef]
- Imai, H.; Hakkaku, N.; Iwamoto, R.; Suzuki, J.; Suzuki, T.; Tajima, Y.; Konishi, K.; Minami, S.; Ichinose, S.; Ishizaka, K.; et al. Depletion of Selenoprotein GPx4 in Spermatocytes Causes Male Infertility in Mice. J. Biol. Chem. 2009, 284, 32522–32532. [Google Scholar] [CrossRef]
- Ursini, F.; Bosello Travain, V.; Cozza, G.; Miotto, G.; Roveri, A.; Toppo, S.; Maiorino, M. A White Paper on Phospholipid Hydroperoxide Glutathione Peroxidase (GPx4) Forty Years Later. Free Radic. Biol. Med. 2022, 188, 117–133. [Google Scholar] [CrossRef]
- Li, J.; Chen, D.; Suo, J.; Li, J.; Zhang, Y.; Wang, Y.; Deng, Z.; Zhang, Q.; Ma, B. Triptolide Induced Spermatogenesis Dys-function via Ferroptosis Activation by Promoting K63-Linked GPX4 Polyubiquitination in Spermatocytes. Chem. Biol. Interact. 2024, 399, 111130. [Google Scholar] [CrossRef]
- Maiorino, M.; Conrad, M.; Ursini, F. GPx4, Lipid Peroxidation, and Cell Death: Discoveries, Rediscoveries, and Open Issues. Antioxid. Redox Signal. 2018, 29, 61–74. [Google Scholar] [CrossRef]
- Ji, M.-M.; Lee, J.M.; Mon, H.; Xu, J.; Tatsuke, T.; Kusakabe, T. Proteasome Inhibitor MG132 Impairs Autophagic Flux through Compromising Formation of Autophagosomes in Bombyx Cells. Biochem. Biophys. Res. Commun. 2016, 479, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.H.; Goldberg, A.L. Selective Inhibitors of the Proteasome-Dependent and Vacuolar Pathways of Protein Degra-dation in Saccharomyces Cerevisiae. J. Biol. Chem. 1996, 271, 27280–27284. [Google Scholar] [CrossRef]
- Zhu, Y.; Fujimaki, M.; Rubinsztein, D.C. Autophagy-Dependent versus Autophagy-Independent Ferroptosis. Trends Cell Biol. 2025, S0962-8924(25)00005-4. [Google Scholar] [CrossRef] [PubMed]
- Freedman, A. Chloroquine and Rheumatoid Arthritis; a Short-Term Controlled Trial. Ann. Rheum. Dis. 1956, 15, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Yoshimori, T.; Levine, B. Methods in Mammalian Autophagy Research. Cell 2010, 140, 313–326. [Google Scholar] [CrossRef]
- Xu, B.; Wang, Z.; Wang, R.; Song, G.; Zhang, Y.; Su, R.; Liu, Y.; Li, J.; Zhang, J. Metabolomics Analysis of Buck Semen Cryopreserved with Trehalose. Front. Genet. 2022, 13, 938622. [Google Scholar] [CrossRef]
- Jaiswal, B.S.; Cohen-Dayag, A.; Tur-Kaspa, I.; Eisenbach, M. Sperm Capacitation Is, after All, a Prerequisite for Both Partial and Complete Acrosome Reaction. FEBS Lett. 1998, 427, 309–313. [Google Scholar] [CrossRef]
- Koppula, P.; Zhuang, L.; Gan, B. Cystine Transporter SLC7A11/xCT in Cancer: Ferroptosis, Nutrient Dependency, and Cancer Therapy. Protein Cell 2021, 12, 599–620. [Google Scholar] [CrossRef]
- Xie, Y.; Kang, R.; Klionsky, D.J.; Tang, D. GPX4 in Cell Death, Autophagy, and Disease. Autophagy 2023, 19, 2621–2638. [Google Scholar] [CrossRef]
- Akiyama, H.; Zhao, R.; Ostermann, L.B.; Li, Z.; Tcheng, M.; Yazdani, S.J.; Moayed, A.; Pryor, M.L.; Slngh, S.; Baran, N.; et al. Mitochondrial Regulation of GPX4 Inhibition–Mediated Ferroptosis in Acute Myeloid Leukemia. Leukemia 2024, 38, 729–740. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Zhang, H.-L.; Li, J.; Ye, Z.-P.; Du, T.; Li, L.-C.; Guo, Y.-Q.; Yang, D.; Li, Z.-L.; Cao, J.-H.; et al. Tubastatin A Potently Inhibits GPX4 Activity to Potentiate Cancer Radiotherapy through Boosting Ferroptosis. Redox Biol. 2023, 62, 102677. [Google Scholar] [CrossRef]
- Imai, H.; Suzuki, K.; Ishizaka, K.; Ichinose, S.; Oshima, H.; Okayasu, I.; Emoto, K.; Umeda, M.; Nakagawa, Y. Failure of the Expression of Phospholipid Hydroperoxide Glutathione Peroxidase in the Spermatozoa of Human Infertile Males. Biol. Reprod. 2001, 64, 674–683. [Google Scholar] [CrossRef]
- Friedmann Angeli, J.P.; Schneider, M.; Proneth, B.; Tyurina, Y.Y.; Tyurin, V.A.; Hammond, V.J.; Herbach, N.; Aichler, M.; Walch, A.; Eggenhofer, E.; et al. Inactivation of the Ferroptosis Regulator Gpx4 Triggers Acute Renal Failure in Mice. Nat. Cell Biol. 2014, 16, 1180–1191. [Google Scholar] [CrossRef]
- Zhou, Y.; Shen, Y.; Chen, C.; Sui, X.; Yang, J.; Wang, L.; Zhou, J. The Crosstalk between Autophagy and Ferroptosis: What Can We Learn to Target Drug Resistance in Cancer? Cancer Biol. Med. 2019, 16, 630–646. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Kuang, F.; Kroemer, G.; Klionsky, D.J.; Kang, R.; Tang, D. Autophagy-Dependent Ferroptosis: Machinery and Regulation. Cell Chem. Biol. 2020, 27, 420–435. [Google Scholar] [CrossRef]
- Park, E.; Chung, S.W. ROS-Mediated Autophagy Increases Intracellular Iron Levels and Ferroptosis by Ferritin and Transferrin Receptor Regulation. Cell Death Dis. 2019, 10, 822. [Google Scholar] [CrossRef]
- Hou, W.; Xie, Y.; Song, X.; Sun, X.; Lotze, M.T.; Zeh, H.J.; Kang, R.; Tang, D. Autophagy Promotes Ferroptosis by Deg-radation of Ferritin. Autophagy 2016, 12, 1425–1428. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Dielschneider, R.F.; Henson, E.S.; Xiao, W.; Choquette, T.R.; Blankstein, A.R.; Chen, Y.; Gibson, S.B. Ferroptosis and Autophagy Induced Cell Death Occur Independently after Siramesine and Lapatinib Treatment in Breast Cancer Cells. PLoS ONE 2017, 12, e0182921. [Google Scholar] [CrossRef]
- Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S.J.; Gibson, S.B. Oxidative Stress Induces Autophagic Cell Death Inde-pendent of Apoptosis in Transformed and Cancer Cells. Cell Death Differ. 2008, 15, 171–182. [Google Scholar] [CrossRef]
- Mauthe, M.; Orhon, I.; Rocchi, C.; Zhou, X.; Luhr, M.; Hijlkema, K.-J.; Coppes, R.P.; Engedal, N.; Mari, M.; Reggiori, F. Chloroquine Inhibits Autophagic Flux by Decreasing Autophagosome-Lysosome Fusion. Autophagy 2018, 14, 1435–1455. [Google Scholar] [CrossRef] [PubMed]
- Mu, Y.; Yan, W.-J.; Yin, T.-L.; Zhang, Y.; Li, J.; Yang, J. Diet-Induced Obesity Impairs Spermatogenesis: A Potential Role for Autophagy. Sci. Rep. 2017, 7, 43475. [Google Scholar] [CrossRef]
- Aparicio, I.M.; Martin Muñoz, P.; Salido, G.M.; Peña, F.J.; Tapia, J.A. The Autophagy-Related Protein LC3 Is Processed in Stallion Spermatozoa during Short-and Long-Term Storage and the Related Stressful Conditions. Animal 2016, 10, 1182–1191. [Google Scholar] [CrossRef] [PubMed]
- Rynes, R.I. Antimalarial Drugs in the Treatment of Rheumatological Diseases. Rheumatology 1997, 36, 799–805. [Google Scholar] [CrossRef] [PubMed]
- Poole, B.; Ohkuma, S. Effect of Weak Bases on the Intralysosomal pH in Mouse Peritoneal Macrophages. J. Cell Biol. 1981, 90, 665–669. [Google Scholar] [CrossRef]
- Yucel-Lindberg, T.; Jansson, H.; Glaumann, H. Proteolysis in Isolated Autophagic Vacuoles from the Rat Pancreas. Effects of Chloroquine Administration. Virchows Arch. B Cell Pathol. Incl. Mol. Pathol. 1991, 61, 141–145. [Google Scholar] [CrossRef]
- Glaumann, H.; Ahlberg, J.; Berkenstam, A.; Henell, F. Rapid Isolation of Rat Liver Secondary Lysosomes—Autophagic Vacuoles—Following Chloroquine Administration. Exp. Cell Res. 1986, 163, 151–158. [Google Scholar] [CrossRef]
- Xue, Q.; Yan, D.; Chen, X.; Li, X.; Kang, R.; Klionsky, D.J.; Kroemer, G.; Chen, X.; Tang, D.; Liu, J. Copper-Dependent Autophagic Degradation of GPX4 Drives Ferroptosis. Autophagy 2023, 19, 1982–1996. [Google Scholar] [CrossRef]
- Chen, C.; Wang, D.; Yu, Y.; Zhao, T.; Min, N.; Wu, Y.; Kang, L.; Zhao, Y.; Du, L.; Zhang, M.; et al. Legumain Promotes Tubular Ferroptosis by Facilitating Chaperone-Mediated Autophagy of GPX4 in AKI. Cell Death Dis. 2021, 12, 65. [Google Scholar] [CrossRef]
- Seibt, T.M.; Proneth, B.; Conrad, M. Role of GPX4 in Ferroptosis and Its Pharmacological Implication. Free Radic. Biol. Med. 2019, 133, 144–152. [Google Scholar] [CrossRef]
- Lei, P.; Bai, T.; Sun, Y. Mechanisms of Ferroptosis and Relations With Regulated Cell Death: A Review. Front. Physiol. 2019, 10, 139. [Google Scholar] [CrossRef]
- Maharjan, Y.; Dutta, R.K.; Son, J.; Wei, X.; Park, C.; Kwon, H.M.; Park, R. Intracellular Cholesterol Transport Inhibition Impairs Autophagy Flux by Decreasing Autophagosome-Lysosome Fusion. Cell Commun. Signal. 2022, 20, 189. [Google Scholar] [CrossRef]
- Gao, M.; Monian, P.; Pan, Q.; Zhang, W.; Xiang, J.; Jiang, X. Ferroptosis Is an Autophagic Cell Death Process. Cell Res. 2016, 26, 1021–1032. [Google Scholar] [CrossRef]
- Liu, R.; Liang, Q.; Luo, J.-Q.; Li, Y.-X.; Zhang, X.; Fan, K.; Du, J.-Z. Ferritin-Based Nanocomposite Hydrogel Promotes Tumor Penetration and Enhances Cancer Chemoimmunotherapy. Adv. Sci. 2024, 11, e2305217. [Google Scholar] [CrossRef]
Constituent | Control | CQ (2 μM) | CQ (5 μM) | CQ (10 μM) | CQ (20 μM) | CQ (40 μM) |
---|---|---|---|---|---|---|
Tris (Sigma Aldrich, St. Louis, MO, USA) | 1.8 g | 1.8 g | 1.8 g | 1.8 g | 1.8 g | 1.8 g |
Citric acid (Sigma Aldrich, MO, USA) | 1 g | 1 g | 1 g | 1 g | 1 g | 1 g |
Glucose (Sigma Aldrich, MO, USA) | 0.5 g | 0.5 g | 0.5 g | 0.5 g | 0.5 g | 0.5 g |
Pen Strep (Gibco, Grand Island, NY, USA) | 0.5 mL | 0.5 mL | 0.5 mL | 0.5 mL | 0.5 mL | 0.5 mL |
6% glycerol (Sigma Aldrich, MO, USA) | 3 mL | 3 mL | 3 mL | 3 mL | 3 mL | 3 mL |
Egg yolk (Charoen Pokphand Group, Beijing, China) | 15 mL | 15 mL | 15 mL | 15 mL | 15 mL | 15 mL |
CQ (Proteintech, IL, USA) | 0 μM | 2 μM | 5 μM | 10 μM | 20 μM | 40 μM |
Total volume | 50 mL | 50 mL | 50 mL | 50 mL | 50 mL | 50 mL |
Constituent | Control | MG132 (2 μM) | MG132 (5 μM) | MG132 (10 μM) | MG132 (20 μM) | MG132 (40 μM) |
---|---|---|---|---|---|---|
Tris (Sigma Aldrich, MO, USA) | 1.8 g | 1.8 g | 1.8 g | 1.8 g | 1.8 g | 1.8 g |
Citric acid (Sigma Aldrich, MO, USA) | 1 g | 1 g | 1 g | 1 g | 1 g | 1 g |
Glucose (Sigma Aldrich, MO, USA) | 0.5 g | 0.5 g | 0.5 g | 0.5 g | 0.5 g | 0.5 g |
Pen Strep (Gibco, NY, USA) | 0.5 mL | 0.5 mL | 0.5 mL | 0.5 mL | 0.5 mL | 0.5 mL |
6% glycerol (Sigma Aldrich, MO, USA) | 3 mL | 3 mL | 3 mL | 3 mL | 3 mL | 3 mL |
Egg yolk (Charoen Pokphand Group, Beijing, China) | 15 mL | 15 mL | 15 mL | 15 mL | 15 mL | 15 mL |
MG132 (MedChemExpress, NJ, USA) | 0 μM | 2 μM | 5 μM | 10 μM | 20 μM | 40 μM |
Total volume | 50 mL | 50 mL | 50 mL | 50 mL | 50 mL | 50 mL |
Group | TM(%) | PM(%) |
---|---|---|
C | 59.36 ± 3.20 b | 27.72 ± 1.66 cd |
CQ (2 μm) | 61.23 ± 2.86 b | 52.39 ± 2.84 a |
CQ (5 μm) | 72.71 ± 4.18 a | 54.47 ± 4.12 a |
CQ (10 μm) | 57.70 ± 4.56 bc | 41.14 ± 5.00 b |
CQ (20 μm) | 48.64 ± 4.48 ef | 38.44 ± 3.83 b |
CQ (40 μm) | 45.38 ± 3.88 f | 30.70 ± 3.23 c |
MG132 (2 μm) | 53.85 ± 2.59 cd | 29.80 ± 4.41 cd |
MG132(5 μm) | 58.64 ± 3.17 bc | 31.36 ± 4.00 c |
MG132 (10 μm) | 51.61 ± 2.67 de | 26.01 ± 3.48 d |
MG132 (20 μm) | 51.28 ± 4.38 de | 20.83 ± 1.66 e |
MG132 (40 μm) | 32.29 ± 5.09 h | 12.89 ± 4.00 f |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, B.; Hai, E.; Song, Y.; Zhang, J. Autophagic Degradation of GPX4 Mediates Ferroptosis During Sheep Sperm Cryopreservation. Vet. Sci. 2025, 12, 490. https://doi.org/10.3390/vetsci12050490
Li B, Hai E, Song Y, Zhang J. Autophagic Degradation of GPX4 Mediates Ferroptosis During Sheep Sperm Cryopreservation. Veterinary Sciences. 2025; 12(5):490. https://doi.org/10.3390/vetsci12050490
Chicago/Turabian StyleLi, Boyuan, Erhan Hai, Yukun Song, and Jiaxin Zhang. 2025. "Autophagic Degradation of GPX4 Mediates Ferroptosis During Sheep Sperm Cryopreservation" Veterinary Sciences 12, no. 5: 490. https://doi.org/10.3390/vetsci12050490
APA StyleLi, B., Hai, E., Song, Y., & Zhang, J. (2025). Autophagic Degradation of GPX4 Mediates Ferroptosis During Sheep Sperm Cryopreservation. Veterinary Sciences, 12(5), 490. https://doi.org/10.3390/vetsci12050490