Equine Herpesvirus Infections: Treatment Progress and Challenges in Horses and Donkeys
Simple Summary
Abstract
1. Introduction
2. The Classification of EHVs and Their Associated Glycoproteins
| Gene Sequence | Encoded Protein | Main Functions | References |
|---|---|---|---|
| ORF6 | gK | Invasion of host cells, viral replication, viral transmission between host cells | [69] |
| ORF33 | gB | Invasion of host cells, transmission of viruses between host cells, epitopes | [70,71,72,73,80,81] |
| ORF16 | gC | Invasion of host cells, epitopes, viral virulence | [71,72,73] |
| ORF39 | gH | Invasion of host cells | [60,74] |
| ORF52 | gM | Virus transmission between host cells | [74,82,83] |
| ORF62 | gL | Invasion of host cells | [75] |
| ORF70 | gG | Epitopes Immune modulation | [76,84,85,86] |
| ORF72 | gD | Invasion of host cells, epitopes | [52,71,87] |
| ORF73 | gI | Virus transmission between host cells | [88,89,90,91] |
| ORF74 | gE | Virus transmission between host cells |
3. Global Distribution and Clinical Manifestations of Herpes Virus Infections in Donkeys and Horses
| Europe | ||||
|---|---|---|---|---|
| Virus Type | Species | Reported Clinical Signs | Country | Reference |
| EHV2/5 | Horses | Herpesvirus DNA (EHV2 and EHV5) was detected in horses with head-neck, ocular, penile, and vulvar squamous cell carcinoma respectively. | Austria | [108,111] |
| EHV1 | Horses | Respiratory disorders, abortion and neonatal foal death | Belgium | [112] |
| EHV1/4 | Horses | Abortion | Bulgaria | [113] |
| EHV-1 | Horses | Abortion and neonatal foal death | Croatia | [114] |
| EHV-2 | Horses | Keratitis and keratoconjunctivitis | Czech Republic | [115] |
| EHV4 | Horses | Pyrexia, nasal discharge, mandibular lymphadenopathy and increased lung sound upon auscultation | Denmark | [59] |
| EHV1 | Horses | Myeloencephalopathy and fever | France | [102,116] |
| EHV4 | Horses | Respiratory diseases (PCR diagnosis) | Germany | [117] |
| EHV1 | Horses | Immune suppression, abortion and respiratory diseases | Germany | [118,119] |
| EHV1/4 | Horses | Rhinopneumonitis and abortion | Germany | [120] |
| EHV2 | Horses | Keratoconjunctivitis | Germany | [121] |
| EHV-8 | Horses | Abortion in pregnant mares | Ireland | [31] |
| AHV-1&5 | Donkeys | Interstitial pleuropneumonia and pulmonary fibrosis (Postmortem findings) | Italy | [92] |
| AHV7&5 | Donkeys | Respiratory distress (increased respiratory rate, nostril flaring, nasal discharge and pyrexia) | Italy | [47] |
| EHV3 | donkeys | Ulcerative stomatitis | Italy | [30] |
| EHV-1 | Horses | Myeloencephalopathy, Viremia, with nasal discharge (PCR diagnosis) | Italy | [49] |
| EHV1,4/5 | Horses | Abortion and neurological disorders. | Italy | [122] |
| EHV-8 | Donkeys | Respiratory disease, abortion and neurological disorders. | Netherlands | [57] |
| EHV1/4 | Horses | Acute respiratory disease, abortion and neurological signs (using PCR) | Netherlands | [123,124,125] |
| EHV1 | Horses | Abortion, neonatal foal death | Poland | [126,127] |
| EHV-4 | Donkeys | Upper respiratory tract infection, abortion and neurological signs | Romania | [107] |
| EHV-1 | Horses | Myeloencephalopathy and Lymphopenia | Spain | [128,129] |
| EHV2 | Horses | Immunosuppression and upper respiratory tract infection | Sweden | [130] |
| EHV5 | Horses | Equine Multinodular Pulmonary Fibrosis with Leukocytosis, hyperfibrinogenemia and hypoxemia. Thoracic radiographs showed pneumonia with a multifocal nodular pattern | Sweden | [131,132] |
| EHV-1 | Horses | Abortion and myeloencephalopathy | Switzerland | [133] |
| EHV-1/4 | Horses | Rhinopneumonitis, abortions, paresis and neonatal foal deaths. | UK | [134,135] |
| Asia | ||||
| EHV-1 | Donkeys | Respiratory distress, abortion and death of young foal | China | [50] |
| EHV-1 | Donkeys | Abortion and neurological signs | China | [136] |
| EHV-1 | Horses | Respiratory distress and abortion | China | [137,138] |
| EHV-1&4 | Donkeys | Abortion and respiratory signs | China | [58] |
| EHV-8 | Donkeys | Respiratory disease, abortion and neurological disorders. | China | [139,140,141] |
| Israel | ||||
| EHV2,4,5 | Horses | Respiratory disease (increased respiratory rate, nasal dis-charge and pyrexia) | China | [142] |
| EHV1 | Donkeys and horses | Respiratory disease (increased respiratory rate, nasal dis-charge and pyrexia) | Iraq | [143] |
| EHV1/4 | Horses | Respiratory diseases and fever | Israel | [144] |
| EHV 3 | Horses | Equine coital exanthema followed formation of papules, pustules, ulcers and scabs on the progenital skin | Japan | [95] |
| EHV 4 | Horses | Nasal discharge, mucosal inflammation of upper respiratory tract and enlargement of mandibular lymph node. | Japan | [145] |
| EHV 9 | Horses | Fever and respiratory distress | Japan | [63] |
| EHV-1 | Horses | Neurological disorders | Japan | [146] |
| EHV4 | Horses | equine rhinopneumonitis | Japan | [147] |
| EHV-1&4 | Donkey and horses | Abortion and respiratory signs | Turkey | [148,149] |
| EHV5 | Horses | Respiratory disease (increased respiratory rate, nasal discharge and pyrexia) | Turkey | [48] |
| Africa | ||||
| EHV-1 | Donkeys | Abortion and neurological signs | Ethiopia | [150] |
| EHV-1&4 | Donkeys and horses | Abortion and respiratory signs | Morocco, Ethiopia | [98,151,152] |
| EHV1,2&5 | Donkeys and horses | Respiratory distress (increased respiratory rate, nostril flaring, nasal discharge and pyrexia) | Ethiopia | [99] |
| EHV-2/5 | Donkeys and horses | Respiratory distress (increased respiratory rate, nostril flaring, nasal discharge and pyrexia) | Ethiopia | [65] |
| EHV-5 | Donkeys | Abortion, respiratory distress and neurological signs | Ethiopia | [47,97] |
| EHV1/4 | Horses | Respiratory diseases and neurological signs (ELISA diagnose) | Morocco | [110] |
| EHV4 | Horses | Abortion | Egypt | [153] |
| North and South America | ||||
| EHV1 | Horses | Abortions, perinatal foal mortality, and myeloencephalopathy | Argentina | [154,155] |
| EHV2 | Horses | Immunosuppression in foals, upper respiratory tract disease, conjunctivitis, general weakness | Argentina | [156] |
| EHV2 | Horse | Respiratory distress (increased respiratory rate, nostril flaring, nasal discharge and pyrexia) | Brazil | [64] |
| EHV1/4 | Horses | Abortion and respiratory distress | Brazil | [157,158] |
| EHV1 | Horses | Myeloencephalopathy and nasal discharge | Canada | [159] |
| EHV-1 | Horses | Myeloencephalopathy, Viremia, with nasal discharge (PCR diagnosis) | Chile | [101] |
| EHV-3 | Horses | Equine coital rash (ECE) (PCR diagnosis) | Chile | [53] |
| EHV1/4 | Horses | Abortion and respiratory distress (Indirect ELISA and PCR) | Colombia | [160] |
| EHV3 | Horses | Equine coital exanthema | Columbia | [161] |
| EHV-5 | Horses | Facial lymphohistiocytic interface dermatitis | USA | [109] |
| EHV5 | Horses | Equine multinodular pulmonary fibrosis and lymphoma | USA | [162,163] |
| EHV1 | Horses | Myeloencephalopathy, Viremia, with nasal discharge | USA | [164,165,166] |
| Oceania | ||||
| EHV1 | Horses | Idiopathic hemorrhagic cystitis | Australia | [167,168] |
| EHV1,2,4/5 | Horses | Respiratory distress (increased respiratory rate, nostril flaring, nasal discharge and pyrexia) | Australia | [169,170,171] |
| EHV2, EHV5 | Horses | Respiratory disease (increased respiratory rate, nasal discharge and pyrexia) | Australia, New Zealand | [172,173,174] |
4. The Pathogenesis of and Immune Response to EHVs
4.1. Innate Immune Responses and Viral Modulation
4.2. Viral Immune Evasion Strategies
4.3. Leukocyte-Associated Viremia and Cell-to-Cell Spread
4.4. Endothelial Cell Infection and Interferon Suppression
4.5. Pathophysiological Mechanisms of Major Disease Manifestations
4.5.1. Abortion Pathophysiology
4.5.2. Myeloencephalopathy Pathophysiology
4.5.3. Equine Multinodular Pulmonary Fibrosis Pathophysiology
5. Treatment of EHV Infection
5.1. Conventional Antivirals with Limited Efficacy
5.2. Immunomodulators and Their Uncertain Impact
5.3. Emerging Therapeutic Candidates
6. Efficacy and Limitations of Current EHV Vaccination Strategies
6.1. Fundamental Properties of Available EHV Vaccines
6.1.1. Inactivated (Killed) Vaccines
6.1.2. Modified-Live Virus (MLV) Vaccines
6.1.3. Recombinant Vector Vaccines
6.1.4. DNA and Subunit Vaccines
6.2. Vaccine Efficacy and Population-Level Limitations
7. Conclusions and Future Research Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rzekęć, A.; Vial, C.; Bigot, G. Green assets of equines in the European context of the ecological transition of agriculture. Animals 2020, 10, 106. [Google Scholar] [CrossRef]
- Khan, M.Z.; Chen, W.; Wang, X.; Liang, H.; Wei, L.; Huang, B.; Kou, X.; Liu, X.; Zhang, Z.; Chai, W. A review of genetic resources and trends of omics applications in donkey research: Focus on China. Front. Vet. Sci. 2024, 11, 1366128. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, Q.; Khan, M.Z.; Wang, M.; Xiang, F.; Zhang, X.; Kou, X.; Li, S.; Wang, C.; Li, Y. Proteomic profiling of donkey milk exosomes highlights bioactive proteins with immune-related functions. Int. J. Mol. Sci. 2025, 26, 2892. [Google Scholar] [CrossRef]
- Huimin, C.; Peng, W.; Man, C.; Hong, L.; Yuxin, Z.; Zhiyu, P.; Jiajun, P. Donkey milk supplementation alleviates renal fibrosis of chronic kidney disease by enhancing anti-inflammatory ability. J. Dairy Sci. 2025, 108, 1198–1210. [Google Scholar] [CrossRef]
- Sami, M.; Azizi, S.; Kheirandish, R.; Ebrahimnejad, H.; Alizadeh, S. Protective effects of donkey milk on ethanol-induced gastric ulcer in rat. Vet. Med. Sci. 2025, 11, e70156. [Google Scholar] [CrossRef]
- Xu, Q.; Wei, L.; Chen, X.; Zhu, H.; Wei, J.; Zhu, M.; Khan, M.Z.; Wang, C.; Zhang, Z. Nutritional composition and biological activities of donkey milk: A narrative review. Foods 2025, 14, 2337. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ma, Q.; Li, M.; Liu, W.; Liu, Y.; Wang, M.; Wang, C.; Khan, M.Z.; Zhu, M.; Wang, C.; et al. Non-bovine milk as functional foods with focus on their antioxidant and anti-inflammatory bioactivities. Antioxidants 2025, 14, 801. [Google Scholar] [CrossRef]
- Khan, M.Z.; Chen, W.; Li, M.; Ren, W.; Huang, B.; Kou, X.; Ullah, Q.; Wei, L.; Wang, T.; Khan, A.; et al. Is there sufficient evidence to support the health benefits of including donkey milk in the diet? Front. Nutr. 2024, 11, 1404998. [Google Scholar] [CrossRef] [PubMed]
- Aroua, M.; Fehri, N.E.; Ben Said, S.; Quattrone, A.; Agradi, S.; Brecchia, G.; Balzaretti, C.M.; Mahouachi, M.; Castrica, M. The use of horse and donkey meat to enhance the quality of the traditional meat product (kaddid): Analysis of physicochemical traits. Foods 2024, 13, 2974. [Google Scholar] [CrossRef]
- Aroua, M.; Haj Koubaier, H.; Rekik, C.; Fatica, A.; Ben Said, S.; Malek, A.; Mahouachi, M.; Salimei, E. Comparative study of carcass characteristics and meat quality of local Mediterranean donkey breeds. Foods 2024, 13, 942. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Qu, H.; Wang, X.; Wang, T.; Ma, Q.; Khan, M.Z.; Zhu, M.; Wang, C.; Liu, W.; Chai, W. Data-independent acquisition method for in-depth proteomic screening of donkey meat. Agriculture 2024, 14, 2102. [Google Scholar] [CrossRef]
- Zhao, Y.; Du, X.; Liu, S.; Sun, M.; Man, L.; Zhu, M.; Liu, G.; Zahoor Khan, M.; Wang, C.; Li, M. Characterization and discrimination of volatile compounds of donkey and horse meat based on gas chromatography–ion mobility spectrometry. Foods 2025, 14, 1203. [Google Scholar] [CrossRef]
- Râpă, M.; Gaidau, C.; Stefan, L.M.; Lazea-Stoyanova, A.; Berechet, M.D.; Iosageanu, A.; Matei, E.; Jankauskaitė, V.; Predescu, C.; Valeika, V.; et al. Donkey gelatin and keratin nanofibers loaded with antioxidant agents for wound healing dressings. Gels 2024, 10, 391. [Google Scholar] [CrossRef]
- Wang, X.; Peng, Y.; Liang, H.; Zahoor Khan, M.; Ren, W.; Huang, B.; Chen, Y.; Xing, S.; Zhan, Y.; Wang, C. Comprehensive transcriptomic analysis unveils the interplay of mRNA and LncRNA expression in shaping collagen organization and skin development in Dezhou donkeys. Front. Genet. 2024, 15, 1335591. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Ren, W.; Peng, Y.; Khan, M.Z.; Liang, H.; Zhang, Y.; Wang, L.; Wang, C.; Zhan, Y. Elucidating the role of transcriptomic networks and DNA methylation in collagen deposition of Dezhou donkey skin. Animals 2024, 14, 1222. [Google Scholar] [CrossRef]
- Wang, Q.; Zou, Y. China’s equine industries in a transitional economy: Development, trends, challenges, and opportunities. Sustainability 2020, 12, 5135. [Google Scholar] [CrossRef]
- Armstrong, A.A.; Kayser, J.P.; Gardner, J.G. The beneficial effects of equine events on the local economy. J. Equine Vet. Sci. 2011, 31, 288–289. [Google Scholar] [CrossRef]
- Khan, M.Z.; Li, Y.; Zhu, M.; Li, M.; Wang, T.; Zhang, Z.; Liu, W.; Ma, Q.; Wang, C. Advances in donkey disease surveillance and microbiome characterization in China. Microorganisms 2025, 13, 749. [Google Scholar] [CrossRef]
- Li, L.; Li, S.; Ma, H.; Akhtar, M.F.; Tan, Y.; Wang, T.; Liu, W.; Khan, A.; Khan, M.Z.; Wang, C. An overview of infectious and non-infectious causes of pregnancy losses in equine. Animals 2024, 14, 1961. [Google Scholar] [CrossRef]
- Wilkes, R.P.; Kattoor, J. Herpesviridae. In Veterinary Microbiology; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 496–521. [Google Scholar]
- Afify, A.F.; Hassanien, R.T.; El Naggar, R.F.; Rohaim, M.A.; Munir, M. Unmasking the ongoing challenge of equid herpesvirus-1 (EHV-1): A comprehensive review. Microb. Pathog. 2024, 193, 106755. [Google Scholar] [CrossRef]
- Goehring, L.; Dorman, D.C.; Osterrieder, K.; Burgess, B.A.; Dougherty, K.; Gross, P.; Neinast, C.; Pusterla, N.; Soboll-Hussey, G.; Lunn, D.P. Pharmacologic interventions for the treatment of equine herpesvirus-1 in domesticated horses: A systematic review. J. Vet. Intern. Med. 2024, 38, 1892–1905. [Google Scholar] [CrossRef] [PubMed]
- Martins-Bessa, A.; McLean, A.K. Advances in donkey and mule research. Animals 2024, 14, 2238. [Google Scholar] [CrossRef]
- Lebrasseur, O.; More, K.D.; Orlando, L. Equine herpesvirus 4 infected domestic horses associated with Sintashta spoke-wheeled chariots around 4,000 years ago. Virus Evol. 2024, 10, vead087. [Google Scholar] [CrossRef]
- Mahmoud, H.Y.; Fouad, S.S.; Amin, Y.A. Review of two viral agents of economic importance to the equine industry (equine herpesvirus-1, and equine arteritis virus). Equine Vet. Educ. 2023, 35, 92–102. [Google Scholar] [CrossRef]
- Pusterla, N.; Hussey, G.S.; Goehring, L.S. Equine herpesvirus-1 myeloencephalopathy. Vet. Clin. N. Am. Equine Pract. 2022, 38, 339–362. [Google Scholar] [CrossRef]
- Câmara, R.J.; Bueno, B.L.; Resende, C.F.; Balasuriya, U.B.; Sakamoto, S.M.; Reis, J.K. Viral diseases that affect donkeys and mules. Animals 2020, 10, 2203. [Google Scholar] [CrossRef]
- Osterrieder, K.; Dorman, D.C.; Burgess, B.A.; Goehring, L.S.; Gross, P.; Neinast, C.; Pusterla, N.; Hussey, G.S.; Lunn, D.P. Vaccination for the prevention of equine herpesvirus-1 disease in domesticated horses: A systematic review and meta-analysis. J. Vet. Intern. Med. 2024, 38, 1858–1871. [Google Scholar] [CrossRef]
- Wang, T.; Hu, L.; Wang, Y.; Liu, W.; Liu, G.; Zhu, M.; Zhang, W.; Wang, C.; Ren, H.; Li, L. Identification of equine herpesvirus 8 in donkey abortion: A case report. Virol. J. 2022, 19, 10. [Google Scholar] [CrossRef]
- Martella, V.; Lanave, G.; Camero, M.; Larocca, V.; Lorusso, E.; Catella, C.; Capozza, P.; Tempesta, M.; Buonavoglia, C. Identification of a novel α-herpesvirus associated with ulcerative stomatitis in donkeys. Emerg. Infect. Dis. 2020, 26, 3044. [Google Scholar] [CrossRef] [PubMed]
- Garvey, M.; Suarez, N.M.; Kerr, K.; Hector, R.; Moloney-Quinn, L.; Arkins, S.; Davison, A.J.; Cullinane, A. Equid herpesvirus 8: Complete genome sequence and association with abortion in mares. PLoS ONE 2018, 13, e0192301. [Google Scholar] [CrossRef] [PubMed]
- Bryant, N.A.; Wilkie, G.S.; Russell, C.A.; Compston, L.; Grafham, D.; Clissold, L.; McLay, K.; Medcalf, L.; Newton, R.; Davison, A.J.; et al. Genetic diversity of equine herpesvirus 1 isolated from neurological, abortigenic and respiratory disease outbreaks. Transbound. Emerg. Dis. 2018, 65, 817–832. [Google Scholar] [CrossRef]
- Azab, W.; Bedair, S.; Abdelgawad, A.; Eschke, K.; Farag, G.K.; Abdel-Raheim, A.; Greenwood, A.D.; Osterrieder, N.; Ali, A.A.H. Detection of equid herpesviruses among different Arabian horse populations in Egypt. Vet. Med. Sci. 2019, 5, 361–371. [Google Scholar] [CrossRef]
- Negussie, H.; Gizaw, D.; Tesfaw, L.; Li, Y.; Oguma, K.; Sentsui, H.; Tessema, T.S.; Nauwynck, H.J. Detection of equine herpesvirus (EHV)-1,-2,-4 and-5 in ethiopian equids with and without respiratory problems and genetic characterization of EHV-2 and EHV-5 strains. Transbound. Emerg. Dis. 2017, 64, 1970–1978. [Google Scholar] [CrossRef] [PubMed]
- Marenzoni, M.L.; Stefanetti, V.; Danzetta, M.L.; Timoney, P.J. Gammaherpesvirus infections in equids: A review. Vet. Med. Res. Rep. 2015, 6, 91–101. [Google Scholar] [CrossRef]
- Reed, S.M.; Toribio, R.E. Equine herpesvirus 1 and 4. Vet. Clin. N. Am. Equine Pract. 2004, 20, 631–642. [Google Scholar] [CrossRef]
- Barrandeguy, M.E.; Carossino, M. Infectious diseases in donkeys and mules: An overview and update. J. Equine Vet. Sci. 2018, 65, 98–105. [Google Scholar] [CrossRef]
- Hussey, G.S.; Giessler, K.S. Contribution of the immune response to the pathogenesis of equine herpesvirus-1 (EHV-1): Are there immune correlates that predict increased risk or protection from EHV-1 myeloencephalopathy? Vet. J. 2022, 282, 105827. [Google Scholar] [CrossRef] [PubMed]
- Van Crombrugge, E.; Vanbeylen, E.; Van Cleemput, J.; Van den Broeck, W.; Laval, K.; Nauwynck, H. Bacterial toxins from Staphylococcus aureus and Bordetella bronchiseptica predispose the horse’s respiratory tract to equine herpesvirus type 1 infection. Viruses 2022, 14, 149. [Google Scholar] [CrossRef]
- Klouth, E.; Zablotski, Y.; Petersen, J.L.; de Bruijn, M.; Gröndahl, G.; Müller, S.; Goehring, L.S. Epidemiological aspects of equid herpesvirus-associated myeloencephalopathy (EHM) outbreaks. Viruses 2022, 14, 2576. [Google Scholar] [CrossRef] [PubMed]
- Saklou, N.T.; Burgess, B.A.; Ashton, L.V.; Morley, P.S.; Goehring, L.S. Environmental persistence of equid herpesvirus type-1. Equine Vet. J. 2021, 53, 349–355. [Google Scholar] [CrossRef]
- Dayaram, A.; Seeber, P.A.; Greenwood, A.D. Environmental detection and potential transmission of equine herpesviruses. Pathogens 2021, 10, 423. [Google Scholar] [CrossRef]
- European Food Safety Authority (EFSA); Carvelli, A.; Nielsen, S.S.; Paillot, R.; Broglia, A.; Kohnle, L. Clinical impact, diagnosis and control of Equine Herpesvirus-1 infection in Europe. EFSA J. 2022, 20, e07230. [Google Scholar]
- EFSA Panel on Animal Health and Welfare (AHAW); Nielsen, S.S.; Alvarez, J.; Bicout, D.J.; Calistri, P.; Canali, E.; Drewe, J.A.; Garin-Bastuji, B.; Gonzales, R.J.L.; Gortázar, C.; et al. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): Infection with Equine Herpesvirus-1. EFSA J. 2022, 20, e07036. [Google Scholar]
- Khusro, A.; Aarti, C.; Rivas-Caceres, R.R.; Barbabosa-Pliego, A. Equine herpesvirus-I infection in horses: Recent updates on its pathogenicity, vaccination, and preventive management strategies. J. Equine Vet. Sci. 2020, 87, 102923. [Google Scholar] [CrossRef]
- Liu, D.; Zhao, X.; Wang, X. The genomic characterization of equid alphaherpesviruses: Structure, function, and genetic similarity. Vet. Sci. 2025, 12, 228. [Google Scholar] [CrossRef]
- Mira, F.; Canuti, M.; Di Bella, S.; Puleio, R.; Lavazza, A.; Lelli, D.; Vicari, D.; Purpari, G.; Cannella, V.; Chiaramonte, G.; et al. Detection and molecular characterization of two gammaherpesviruses from Pantesco breed donkeys during an outbreak of mild respiratory disease. Viruses 2021, 13, 1527. [Google Scholar] [CrossRef] [PubMed]
- Akkutay, A.Z.; Osterrieder, N.; Damiani, A.; Tischer, B.K.; Borchers, K.; Alkan, F. Prevalence of equine gammaherpesviruses on breeding farms in Turkey and development of a TaqMan MGB real-time PCR to detect equine herpesvirus 5 (EHV-5). Arch. Virol. 2014, 159, 2989–2995. [Google Scholar] [CrossRef]
- Perkins, G.A.; Wagner, B.; Rollins, A.; Sfraga, H.; Pearson, E.; Cercone, M. Serum and mucosal antibody testing to detect viral exposure in contact horses during an equine herpesvirus myeloencephalopathy outbreak. Am. J. Vet. Res. 2025, 1, 1–9. [Google Scholar] [CrossRef]
- Ruan, L.; Li, L.; Yang, R.; You, A.; Khan, M.Z.; Yu, Y.; Chen, L.; Li, Y.; Liu, G.; Wang, C.; et al. Equine herpesvirus-1 induced respiratory disease in Dezhou donkey foals: Case study from China, 2024. Vet. Sci. 2025, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Musoles-Cuenca, B.; Padilla-Blanco, M.; Vitale, V.; Lorenzo-Bermejo, T.; de la Cuesta-Torrado, M.; Ballester, B.; Maiques, E.; Rubio-Guerri, C.; Velloso Alvarez, A. First molecular evidence of equine herpesvirus type 1 (EHV-1) in ocular swabs of clinically affected horses. Viruses 2025, 17, 862. [Google Scholar] [CrossRef] [PubMed]
- Azab, W.; Zajic, L.; Osterrieder, N. The role of glycoprotein H of equine herpesviruses 1 and 4 (EHV-1 and EHV-4) in cellular host range and integrin binding. Vet. Res. 2012, 43, 61. [Google Scholar] [CrossRef]
- Troncoso, I.; Calvanese, R.; Saravia, F.; Muñoz-Leal, S.; Zegpi, N.A.; Ortega, R. First molecular detection of Equine Herpesvirus type 3 (EHV-3) in Chile. Vet. Med. Sci. 2023, 9, 717–720. [Google Scholar] [CrossRef]
- Thorsteinsdóttir, L.; Guðmundsson, G.Ö.; Jensson, H.; Torsteinsdóttir, S.; Svansson, V. Isolation of equid alphaherpesvirus 3 from a horse in Iceland with equine coital exanthema. Acta Vet. Scand. 2021, 63, 6. [Google Scholar] [CrossRef]
- Toishi, Y.; Tsunoda, N.; Kirisawa, R. Period of excretion of equine herpesvirus 3 (EHV-3) from a stallion before showing clinical signs of equine coital exanthema and the effect of acyclovir treatment on the duration of EHV-3 excretion. J. Vet. Med. Sci. 2020, 82, 1299–1305. [Google Scholar] [CrossRef]
- Kirisawa, R.; Toishi, Y.; Akamatsu, A.; Soejima, K.; Miyashita, T.; Tsunoda, N. Isolation of equine herpesvirus 3 (EHV-3) from equine coital exanthema of two stallions and sero-epidemiology of EHV-3 infection in Japan. J. Vet. Med. Sci. 2017, 79, 636–643. [Google Scholar] [CrossRef] [PubMed]
- van Maanen, K.; van der Zaag, E.; Buter, R.; van den Wollenberg, L.; van Oldruitenborgh-Oosterbaan, M.S. Asinine herpesvirus-3 (equine herpesvirus-8)-associated neurological disease in a donkey. Vet. Rec. Case Rep. 2017, 5, e000498. [Google Scholar] [CrossRef]
- Ji, Y.; Zhao, X.; Liu, W. Detection of equine herpesvirus antibodies in large-scale donkey farms in Liaocheng area. Vet. Med. Sci. 2024, 10, e70016. [Google Scholar] [CrossRef]
- Ryt-Hansen, P.; Johansen, V.K.; Cuicani, M.M.; Larsen, L.E.; Hansen, S. Outbreak of equine herpesvirus 4 (EHV-4) in Denmark: Tracing patient zero and viral characterization. BMC Vet. Res. 2024, 20, 287. [Google Scholar] [CrossRef]
- Azab, W.; Osterrieder, N. Glycoproteins D of equine herpesvirus type 1 (EHV-1) and EHV-4 determine cellular tropism independently of integrins. J. Virol. 2012, 86, 2031–2044. [Google Scholar] [CrossRef]
- Ji, Y.; Xu, D.; Si, W.; Zhang, Y.; Khan, M.Z.; Zhao, X.; Liu, W. Transcriptomic and proteomic profiling of rabbit kidney cells infected with equine herpesvirus 8. Viruses 2025, 17, 647. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Xu, D.; Si, W.; Zhang, Y.; Khan, M.Z.; Zhao, X.; Liu, W. Characterization and pathogenicity of equine herpesvirus type 8 using in-vitro and in-vivo models. Vet. Sci. 2025, 12, 367. [Google Scholar] [CrossRef]
- Taniguchi, A.; Fukushi, H.; Matsumura, T.; Yanai, T.; Masegi, T.; Hirai, K. Pathogenicity of a new neurotropic equine herpesvirus 9 (gazelle herpesvirus 1) in horses. J. Vet. Med. Sci. 2000, 62, 215–218. [Google Scholar] [CrossRef] [PubMed]
- de Almeida Campos, A.C.; Cicolo, S.; De Oliveira, C.M.; Molina, C.V.; Navas-Suárez, P.E.; Poltronieri dos Santos, T.; da Silveira, V.B.; Barbosa, C.M.; Baccarin, R.Y.A.; Durigon, E.L.; et al. Potential outbreak by herpesvirus in equines: Detection, clinical, and genetic analysis of equid gammaherpesvirus 2 (EHV-2). Braz. J. Microbiol. 2023, 54, 1137–1143. [Google Scholar] [CrossRef]
- Wondimagegnehu, K.; Leta, S.; Amenu, K.; Negussie, H. Molecular detection and assessment of the epidemiological risk factors associated with equine herpesvirus 2 and 5 in working equids in central Ethiopia. Vet. Med. Sci. 2022, 8, 2396–2403. [Google Scholar] [CrossRef]
- James, K.; Chappell, D.E.; Craig, B.; Pariseau, C.; Wright, C.; van Harreveld, P.; Barnum, S.; Pusterla, N. Investigation of selected prevalence factors associated with EHV-2 and/or EHV-5 infection in horses with acute onset of fever and respiratory signs. Viruses 2025, 17, 612. [Google Scholar] [CrossRef] [PubMed]
- LeCuyer, T.E.; Rink, A.; Bradway, D.S.; Evermann, J.F.; Nicola, A.V.; Baszler, T.; Haldorson, G.J. Abortion in a Mediterranean miniature donkey (Equus asinus) associated with a gammaherpesvirus similar to Equid herpesvirus 7. J. Vet. Diagn. Investig. 2015, 27, 749–753. [Google Scholar] [CrossRef]
- Osterrieder, N.; Van de Walle, G.R. Pathogenic potential of equine alphaherpesviruses: The importance of the mononuclear cell compartment in disease outcome. Vet. Microbiol. 2010, 143, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Neubauer, A.; Osterrieder, N. Equine herpesvirus type 1 (EHV-1) glycoprotein K is required for efficient cell-to-cell spread and virus egress. Virology 2004, 329, 18–32. [Google Scholar] [CrossRef]
- Stasiak, K.; Dunowska, M.; Trewick, S.; Rola, J. Genetic variation in the glycoprotein b sequence of equid herpesvirus 5 among horses of various breeds at polish national studs. Pathogens 2021, 10, 322. [Google Scholar] [CrossRef]
- Hussey, G.S. Key determinants in the pathogenesis of equine herpesvirus 1 and 4 infections. Vet. Pathol. 2019, 56, 656–659. [Google Scholar] [CrossRef]
- Mahmoud, H.Y.; Andoh, K.; Hattori, S.; Terada, Y.; Noguchi, K.; Shimoda, H.; Maeda, K. Characterization of glycoproteins in equine herpesvirus-1. J. Vet. Med. Sci. 2013, 75, 1317–1321. [Google Scholar] [CrossRef]
- Azab, W.; Tsujimura, K.; Maeda, K.; Kobayashi, K.; Mohamed, Y.M.; Kato, K.; Matsumura, T.; Akashi, H. Glycoprotein C of equine herpesvirus 4 plays a role in viral binding to cell surface heparan sulfate. Virus Res. 2010, 151, 1–9. [Google Scholar] [CrossRef]
- Azab, W.; Lehmann, M.J.; Osterrieder, N. Glycoprotein H and α4β1 integrins determine the entry pathway of alphaherpesviruses. J. Virol. 2013, 87, 5937–5948. [Google Scholar] [CrossRef]
- Jambunathan, N.; Clark, C.M.; Musarrat, F.; Chouljenko, V.N.; Rudd, J.; Kousoulas, K.G. Two sides to every story: Herpes simplex type-1 viral glycoproteins gB, gD, gH/gL, gK, and cellular receptors function as key players in membrane fusion. Viruses 2021, 13, 1849. [Google Scholar]
- Losinno, A.; Vissani, M.A.; Sanchez, D.; Damiani, A.M. Equid herpesvirus type 3 infection produces membrane-associated and secreted forms of glycoprotein G that are not required for efficient cell-to-cell spread of the virus in vitro. Arch. Virol. 2023, 168, 122. [Google Scholar] [CrossRef]
- Kremling, V.; Loll, B.; Pach, S.; Dahmani, I.; Weise, C.; Wolber, G.; Chiantia, S.; Wahl, M.C.; Osterrieder, N.; Azab, W. Crystal structures of glycoprotein D of equine alphaherpesviruses reveal potential binding sites to the entry receptor MHC-I. Front. Microbiol. 2023, 14, 1197120. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Hasebe, R.; Makino, Y.; Suzuki, T.; Fukushi, H.; Okamoto, M.; Matsuda, K.; Taniyama, H.; Sawa, H.; Kimura, T. Equine major histocompatibility complex class I molecules act as entry receptors that bind to equine herpesvirus-1 glycoprotein D. Genes Cells 2011, 16, 343–357. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, M.; Kim, E.; Igarashi, M.; Ito, K.; Hasebe, R.; Fukushi, H.; Sawa, H.; Kimura, T. Single amino acid residue in the A2 domain of major histocompatibility complex class I is involved in the efficiency of equine herpesvirus-1 entry. J. Biol. Chem. 2011, 286, 39370–39378. [Google Scholar] [CrossRef] [PubMed]
- Spiesschaert, B.; Osterrieder, N.; Azab, W. Comparative analysis of glycoprotein B (gB) of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in cellular tropism and cell-to-cell transmission. Viruses 2015, 7, 522–542. [Google Scholar]
- Diallo, I.S.; Hewitson, G.; Wright, L.L.; Kelly, M.A.; Rodwell, B.J.; Corney, B.G. Multiplex real-time PCR for the detection and differentiation of equid herpesvirus 1 (EHV-1) and equid herpesvirus 4 (EHV-4). Vet. Microbiol. 2007, 123, 93–103. [Google Scholar] [CrossRef]
- Seyboldt, C.; Granzow, H.; Osterrieder, N. Equine herpesvirus 1 (EHV-1) glycoprotein M: Effect of deletions of transmembrane domains. Virology 2000, 278, 477–489. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ziegler, C.; Just, F.T.; Lischewski, A.; Elbers, K.; Neubauer, A. A glycoprotein M-deleted equid herpesvirus 4 is severely impaired in virus egress and cell-to-cell spread. J. Gen. Virol. 2005, 86, 11–21. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.; Azab, W.; Osterrieder, N. Equine herpesviruses type 1 (EHV-1) and 4 (EHV-4)—Masters of co-evolution and a constant threat to equids and beyond. Vet. Microbiol. 2013, 167, 123–134. [Google Scholar] [CrossRef] [PubMed]
- Thormann, N.; Van de Walle, G.R.; Azab, W.; Osterrieder, N. The role of secreted glycoprotein G of equine herpesvirus type 1 and type 4 (EHV-1 and EHV-4) in immune modulation and virulence. Virus Res. 2012, 169, 203–211. [Google Scholar] [CrossRef]
- von Einem, J.; Smith, P.M.; Van de Walle, G.R.; O’Callaghan, D.J.; Osterrieder, N. In vitro and in vivo characterization of equine herpesvirus type 1 (EHV-1) mutants devoid of the viral chemokine-binding glycoprotein G (gG). Virology 2007, 362, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.L.A.; Stanfield, B.A.; Vladimir, N.; Leib, D.A. Intramuscular immunization of mice with the live-attended herpes simplex virus 1 vaccine strain VC2 expressing equine herpesvirus 1 (EHV-1) glycoprotein D generates anti-EHV-1 immune responses in mice. J. Virol. 2017, 91, e02389-16. [Google Scholar] [CrossRef]
- Andoh, K.; Takasugi, M.; Mahmoud, H.Y.; Hattori, S.; Terada, Y.; Noguchi, K.; Shimoda, H.; Bannai, H.; Tsujimura, K.; Matsumura, T.; et al. Identification of a major immunogenic region of equine herpesvirus-1 glycoprotein E and its application to enzyme-linked immunosorbent assay. Vet. Microbiol. 2013, 164, 18–26. [Google Scholar] [CrossRef]
- Tsujimura, K.; Shiose, T.; Yamanaka, T.; Nemoto, M.; Kondo, T.; Matsumura, T. Equine herpesvirus type 1 mutant defective in glycoprotein E gene as candidate vaccine strain. J. Vet. Med. Sci. 2009, 71, 1439–1448. [Google Scholar] [CrossRef][Green Version]
- Tsujimura, K.; Yamanaka, T.; Kondo, T.; Fukushi, H.; Matsumura, T. Pathogenicity and immunogenicity of equine herpesvirus type 1 mutants defective in either gI or gE gene in murine and hamster models. J. Vet. Med. Sci. 2006, 68, 1029–1038. [Google Scholar] [CrossRef]
- Damiani, A.M.; Matsumura, T.; Yokoyama, N.; Mikami, T.; Takahashi, E. A deletion in the gI and gE genes of equine herpesvirus type 4 reduces viral virulence in the natural host and affects virus transmission during cell-to-cell spread. Virus Res. 2000, 67, 189–202. [Google Scholar] [CrossRef]
- Imposimato, I.; Muscatello, L.V.; Ellero, N.; Lelli, D.; Mira, F.; Sarli, G.; Freccero, F. Identification of asinine gamma herpesviruses in a donkey with interstitial pulmonary fibrosis, pleural effusion and thrombocytopenia. J. Equine Vet. Sci. 2024, 134, 105014. [Google Scholar] [CrossRef]
- Osterrieder, N.; Seyboldt, C.; Elbers, K. Deletion of gene 52 encoding glycoprotein M of equine herpesvirus type 1 strain RacH results in increased immunogenicity. Vet. Microbiol. 2001, 81, 219–226. [Google Scholar] [CrossRef]
- Wang, T.; Xi, C.; Yu, Y.; Liu, W.; Akhtar, M.F.; Li, Y.; Wang, C.; Li, L. Characteristics and epidemiological investigation of equid herpesvirus 8 in donkeys in Shandong, China. Arch. Virol. 2023, 168, 99. [Google Scholar] [CrossRef]
- Seki, Y.; Seimiya, Y.M.; Yaegashi, G.; Kumagai, S.I.; Sentsui, H.; Nishimori, T.; Ishihara, R. Occurrence of equine coital exanthema in pastured draft horses and isolation of equine herpesvirus 3 from progenital lesions. J. Vet. Med. Sci. 2004, 66, 1503–1508. [Google Scholar] [CrossRef]
- Seo, M.G.; Ouh, I.O.; Lee, S.K.; Lee, J.S.; Kwon, O.D.; Kwak, D. Molecular detection and genetic characteristics of equine herpesvirus in Korea. Pathogens 2020, 9, 110. [Google Scholar] [CrossRef]
- Worku, A.; Molla, W.; Kenubih, A.; Negussie, H.; Admassu, B.; Ejo, M.; Dagnaw, G.G.; Bitew, A.B.; Fentahun, T.; Getnet, K.; et al. Molecular detection of equine herpesviruses from field outbreaks in donkeys in northwest Amhara region, Ethiopia. Vet. Med. Int. 2024, 2024, 9928835. [Google Scholar] [CrossRef]
- Worku, A.; Molla, W.; Kenubih, A.; Gizaw, D.; Muluneh, A.; Admassu, B.; Ejo, M.; Dagnaw, G.G.; Bitew, A.B.; Fentahun, T.; et al. Seroprevalence and associated risk factors of equine herpesvirus type-1/-4 in selected districts of Northwest Amhara, Ethiopia. Comp. Immunol. Microbiol. Infect. Dis. 2024, 107, 102155. [Google Scholar] [CrossRef]
- Temesgen, T.; Getachew, Y.; Negussie, H. Molecular identification of equine herpesvirus 1, 2, and 5 in equids with signs of respiratory disease in central Ethiopia. Vet. Med. Res. Rep. 2021, 12, 337–345. [Google Scholar] [CrossRef]
- Soboll-Hussey, G.; Dorman, D.C.; Burgess, B.A.; Goehring, L.; Gross, P.; Neinast, C.; Osterrieder, K.; Pusterla, N.; Lunn, D.P. Relationship between equine herpesvirus-1 viremia and abortion or equine herpesvirus myeloencephalopathy in domesticated horses: A systematic review. J. Vet. Intern. Med. 2024, 38, 1872–1891. [Google Scholar] [CrossRef]
- Durán, M.C.; Suazo, M.; Maturana, A.; Vargas, M.P.; García, A.; Ahumada, C.; Pezoa, A.; Goehring, L.S.; Lara, F. First equine herpes myeloencephalopathy (EHM) outbreak in Chile. Animals 2025, 15, 2344. [Google Scholar] [CrossRef]
- Couroucé, A.; Normand, C.; Tessier, C.; Pomares, R.; Thévenot, J.; Marcillaud-Pitel, C.; Legrand, L.; Pitel, P.H.; Pronost, S.; Lupo, C. Equine herpesvirus-1 outbreak during a show-jumping competition: A clinical and epidemiological study. J. Equine Vet. Sci. 2023, 128, 104869. [Google Scholar] [CrossRef]
- de la Cuesta-Torrado, M.; Velloso Alvarez, A.; Santiago-Llorente, I.; Armengou, L.; Nieto, F.; Ríos, J.; Cruz-López, F.; Jose-Cunilleras, E. Risk factors and long-term outcomes in horses after the 2021 outbreak of equine herpesvirus 1 myeloencephalopathy, Valencia, Spain. J. Vet. Intern. Med. 2025, 39, e70040. [Google Scholar] [CrossRef]
- de la Cuesta-Torrado, M.; Vitale, V.; Velloso Alvarez, A.; Neira-Egea, P.; Diss, C.; Cuervo-Arango, J. The effect of vaccination status on total lymphocyte count in horses affected by equine herpes virus-1 myeloencephalopathy. Animals 2025, 15, 1019. [Google Scholar] [CrossRef] [PubMed]
- Pusterla, N.; Lawton, K.; Barnum, S.; Ross, K.; Purcell, K. Investigation of an outbreak of equine herpesvirus-1 myeloencephalopathy in a population of aged working equids. Viruses 2024, 16, 1963. [Google Scholar] [CrossRef]
- Pusterla, N.; Dorman, D.C.; Burgess, B.A.; Goehring, L.; Gross, M.; Osterrieder, K.; Soboll, H.G.; Lunn, D.P. Viremia and nasal shedding for the diagnosis of equine herpesvirus-1 infection in domesticated horses. J. Vet. Intern. Med. 2024, 38, 1765–1791. [Google Scholar] [CrossRef]
- Mureşan, A.; Mureşan, C.; Siteavu, M.; Avram, E.; Bochynska, D.; Taulescu, M. An outbreak of equine herpesvirus-4 in an ecological donkey milk farm in Romania. Vaccines 2022, 10, 468. [Google Scholar] [CrossRef] [PubMed]
- Miglinci, L.; Reicher, P.; Nell, B.; Koch, M.; Jindra, C.; Brandt, S. Detection of equine papillomaviruses and gamma-herpesviruses in equine squamous cell carcinoma. Pathogens 2023, 12, 179. [Google Scholar] [CrossRef]
- Peters-Kennedy, J.; Löhr, C.V.; Cossic, B.; Glaser, A.L.; Duhamel, G.E. Association of equine gammaherpesvirus-5 with facial lymphohistiocytic interface dermatitis in seven adult horses from the United States. Vet. Pathol. 2023, 60, 888–897. [Google Scholar] [CrossRef]
- El Brini, Z.; Fassi Fihri, O.; Paillot, R.; Lotfi, C.; Amraoui, F.; El Ouadi, H.; Dehhaoui, M.; Colitti, B.; Alyakine, H.; Piro, M. Seroprevalence of equine herpesvirus 1 (EHV-1) and equine herpesvirus 4 (EHV-4) in the Northern Moroccan horse populations. Animals 2021, 11, 2851. [Google Scholar] [CrossRef]
- Rushton, J.O.; Kolodziejek, J.; Tichy, A.; Nowotny, N.; Nell, B. Clinical course of ophthalmic findings and potential influence factors of herpesvirus infections: 18 month follow-up of a closed herd of lipizzaners. PLoS ONE 2013, 8, e79888. [Google Scholar] [CrossRef]
- van der Meulen, K.M.; Nauwynck, H.J.; Buddaert, W.; Pensaert, M.B. Replication of equine herpesvirus type 1 in freshly isolated equine peripheral blood mononuclear cells and changes in susceptibility following mitogen stimulation. J. Gen. Virol. 2000, 81, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Martinov, S.P.; Chenchev, I.; Yordanov, S.; Nordengrahn, A. Equine herpesvirus infections in Bulgaria. Biotechnol. Biotechnol. Equip. 2000, 14, 60–62. [Google Scholar] [CrossRef][Green Version]
- Barbić, L.; Lojkić, I.; Stevanović, V.; Bedeković, T.; Starešina, V.; Lemo, N.; Lojkić, M.; Madić, J. Two outbreaks of neuropathogenic equine herpesvirus type 1 with breed-dependent clinical signs. Vet. Rec. 2012, 170, 227. [Google Scholar] [CrossRef] [PubMed]
- Krisová, Š.; Tóthová, K.; Molinková, D.; Makra, Z.; Zisopoulou, A.M. Prevalence of equine herpesvirus 2 (EHV-2) in equine ocular disease. Acta Vet. Brno 2020, 89, 115–123. [Google Scholar] [CrossRef]
- Pronost, S.; Legrand, L.; Pitel, P.H.; Wegge, B.; Lissens, J.; Freymuth, F.; Richard, E.; Fortier, G. Outbreak of equine herpesvirus myeloencephalopathy in France: A clinical and molecular investigation. Transbound. Emerg. Dis. 2012, 59, 256–263. [Google Scholar] [CrossRef]
- Pavulraj, S.; Eschke, K.; Theisen, J.; Westhoff, S.; Reimers, G.; Andreotti, S.; Osterrieder, N.; Azab, W. Equine herpesvirus type 4 (EHV-4) outbreak in Germany: Virological, serological, and molecular investigations. Pathogens 2021, 10, 810. [Google Scholar] [CrossRef]
- Damiani, A.M.; de Vries, M.; Reimers, G.; Winkler, S.; Osterrieder, N. A severe equine herpesvirus type 1 (EHV-1) abortion outbreak caused by a neuropathogenic strain at a breeding farm in northern Germany. Vet. Microbiol. 2014, 172, 555–562. [Google Scholar] [CrossRef]
- Stierstorfer, B.; Eichhorn, W.; Schmahl, W.; Brandmüller, C.; Kaaden, O.R.; Neubauer, A. Equine herpesvirus type 1 (EHV-1) myeloencephalopathy: A case report. J. Vet. Med. B 2002, 49, 37–41. [Google Scholar] [CrossRef]
- Lang, A.; de Vries, M.; Feineis, S.; Müller, E.; Osterrieder, N.; Damiani, A.M. Development of a peptide ELISA for discrimination between serological responses to equine herpesvirus type 1 and 4. J. Virol. Methods 2013, 193, 667–673. [Google Scholar] [CrossRef]
- Kershaw, O.; Von Oppen, T.; Glitz, F.; Deegen, E.; Ludwig, H.; Borchers, K. Detection of equine herpesvirus type 2 (EHV-2) in horses with keratoconjunctivitis. Virus Res. 2001, 80, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Marenzoni, M.L.; Bietta, A.; Lepri, E.; Casagrande Proietti, P.; Cordioli, P.; Canelli, E.; Stefanetti, V.; Coletti, M.; Timoney, P.J.; Passamonti, F. Role of equine herpesviruses as co-infecting agents in cases of abortion, placental disease and neonatal foal mortality. Vet. Res. Commun. 2013, 37, 311–317. [Google Scholar] [CrossRef]
- van Maanen, K.; van den Wollenberg, L.; de Haan, T.; Frippiat, T. Epidemiology of infectious pathogens in horses with acute respiratory disease, abortion, and neurological signs: Insights gained from the veterinary surveillance system for horses in The Netherlands (SEIN). Vet. Sci. 2025, 12, 567. [Google Scholar] [CrossRef]
- van Maanen, C. Equine herpesvirus 1 and 4 infections: An update. Vet. Q. 2002, 24, 57–78. [Google Scholar] [CrossRef]
- Heldens, J.G.; Kersten, A.J.; Weststrate, M.W.; Van Den Hoven, R. Vaccinology: Duration of immunity induced by an adjuvanted and inactivated equine influenza, tetanus and equine herpesvirus 1 and 4 combination vaccine. Vet. Q. 2001, 23, 210–217. [Google Scholar] [CrossRef] [PubMed]
- Stasiak, K.; Dunowska, M.; Rola, J. Outbreak of equid herpesvirus 1 abortions at the Arabian stud in Poland. BMC Vet. Res. 2020, 16, 374. [Google Scholar] [CrossRef] [PubMed]
- Matczuk, A.K.; Skarbek, M.; Jackulak, N.A.; Rola, J. Molecular characterisation of equid alphaherpesvirus 1 strains isolated from aborted fetuses in Poland. Virol. J. 2018, 15, 186. [Google Scholar] [CrossRef]
- de la Cuesta-Torrado, M.; Velloso Alvarez, A.; Neira-Egea, P.; Cuervo-Arango, J. Long-term performance of show-jumping horses and relationship with severity of ataxia and complications associated with myeloencephalopathy caused by equine herpes virus-1. J. Vet. Intern. Med. 2024, 38, 1799–1807. [Google Scholar] [CrossRef]
- Vereecke, N.; Carnet, F.; Pronost, S.; Vanschandevijl, K.; Theuns, S.; Nauwynck, H. Genome sequences of equine herpesvirus 1 strains from a European outbreak of neurological disorders linked to a horse gathering in Valencia, Spain, in 2021. Microbiol. Resour. Announc. 2021, 10, e00128-21. [Google Scholar] [CrossRef]
- Nordengrahn, A.; Klingeborn, B.; Lindholm, A.; Merza, M. The use of a neutralizing monoclonal antibody to detect infections of equine herpesvirus type 2 (EHV-2). J. Vet. Diagn. Investig. 2001, 13, 389–393. [Google Scholar] [CrossRef]
- Back, H.; Ullman, K.; Leijon, M.; Söderlund, R.; Penell, J.; Ståhl, K.; Pringle, J.; Valarcher, J.F. Genetic variation and dynamics of infections of equid herpesvirus 5 in individual horses. J. Gen. Virol. 2016, 97, 169–178. [Google Scholar] [CrossRef]
- Back, H.; Kendall, A.; Grandön, R.; Ullman, K.; Treiberg-Berndtsson, L.; Ståhl, K.; Pringle, J. Equine multinodular pulmonary fibrosis in association with asinine herpesvirus type 5 and equine herpesvirus type 5: A case report. Acta Vet. Scand. 2012, 54, 57. [Google Scholar] [CrossRef]
- Walter, J.; Seeh, C.; Fey, K.; Bleul, U.; Osterrieder, N. Clinical observations and management of a severe equine herpesvirus type 1 outbreak with abortion and encephalomyelitis. Acta Vet. Scand. 2013, 55, 19. [Google Scholar] [CrossRef]
- Smith, D.J.; Hamblin, A.S.; Edington, N. Infection of endothelial cells with Equine herpesvirus-1 (EHV-1) occurs where there is activation of putative adhesion molecules: A mechanism for transfer of virus. Equine Vet. J. 2001, 33, 138–142. [Google Scholar] [CrossRef]
- Tearle, J.P.; Smith, K.C.; Platt, A.J.; Hannant, D.; Davis-Poynter, N.J.; Mumford, J.A. In vitro characterisation of high and low virulence isolates of equine herpesvirus-1 and-4. Res. Vet. Sci. 2003, 75, 83–86. [Google Scholar] [CrossRef]
- Tong, P.; Pan, J.; Dang, Y.; Yang, E.; Jia, C.; Duan, R.; Tian, S.; Palidan, N.; Kuang, L.; Wang, C.; et al. First identification and isolation of equine herpesvirus type 1 in aborted fetal lung tissues of donkeys. Virol. J. 2024, 21, 117. [Google Scholar] [CrossRef]
- Tong, P.; Yang, E.; Liu, B.; Tian, S.; Suo, Y.; Pan, J.; Dang, Y.; Palidan, N.; Jia, C.; Kuang, L.; et al. Identification of neuropathogenic Varicellovirus equidalpha1 as a potential cause of respiratory disease outbreaks among horses in North Xinjiang, China, from 2021–2023. BMC Vet. Res. 2024, 20, 77. [Google Scholar] [CrossRef] [PubMed]
- Tong, P.; Duan, R.; Palidan, N.; Deng, H.; Duan, L.; Ren, M.; Song, X.; Jia, C.; Tian, S.; Yang, E.; et al. Outbreak of neuropathogenic equid herpesvirus 1 causing abortions in Yili horses of Zhaosu, North Xinjiang, China. BMC Vet. Res. 2022, 18, 83. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Cui, X.; Yu, Y.; Sun, Q.; Li, W.; Li, Y.; Li, S.; Chen, L.; Khan, M.Z.; Wang, C.; et al. Blebbistatin as a novel antiviral agent targeting equid herpesvirus type 8. Front. Vet. Sci. 2024, 11, 1390304. [Google Scholar] [CrossRef]
- Wang, T.; Hu, L.; Liu, M.; Wang, T.; Hu, X.; Li, Y.; Liu, W.; Li, Y.; Wang, Y.; Ren, H.; et al. The emergence of viral encephalitis in donkeys by equid herpesvirus 8 in China. Front. Microbiol. 2022, 13, 840754. [Google Scholar] [CrossRef]
- Schvartz, G.; Edery, N.; Moss, L.; Hadad, R.; Steinman, A.; Karniely, S. Equid herpesvirus 8 isolated from an adult donkey in Israel. J. Equine Vet. Sci. 2020, 94, 103247. [Google Scholar] [CrossRef]
- Xie, J.; Tong, P.; Zhang, L.; Ren, M.; Song, X.; Jia, C.; Palidan, N.; Zhang, L.; Kuang, L. First detection and genetic characterization of equid herpesvirus 2, 4, and 5 in China. Arch. Virol. 2021, 166, 1421–1426. [Google Scholar] [CrossRef]
- Al-Ajeeli, K.S. Molecular detection of equine herpes virus-1 in local horses (Equus ferus caballus) and donkeys (Equus asinus). Iraqi J. Vet. Med. 2018, 42, 72–78. [Google Scholar] [CrossRef]
- Aharonson-Raz, K.; Davidson, I.; Porat, Y.; Altory, A.; Klement, E.; Steinman, A. Seroprevalence and rate of infection of equine influenza virus (H3N8 and H7N7) and equine herpesvirus (1 and 4) in the horse population in Israel. J. Equine Vet. Sci. 2014, 34, 828–832. [Google Scholar] [CrossRef]
- Mizukoshi, F.; Maeda, K.; Hamano, M.; Iwata, H.; Matsumura, T.; Kondo, T.; Sugiura, T. IgG antibody subclass response against equine herpesvirus type 4 in horses. Vet. Immunol. Immunopathol. 2002, 88, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Tsujimura, K.; Oyama, T.; Katayama, Y.; Muranaka, M.; Bannai, H.; Nemoto, M.; Yamanaka, T.; Kondo, T.; Kato, M.; Matsumura, T. Prevalence of equine herpesvirus type 1 strains of neuropathogenic genotype in a major breeding area of Japan. J. Vet. Med. Sci. 2011, 73, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K.; Kai, K.; Matsumura, T. Genomic diversity among equine herpesvirus-4 field isolates. J. Vet. Med. Sci. 2005, 67, 555–561. [Google Scholar] [CrossRef][Green Version]
- Yildirim, Y.; Yilmaz, V.; Kirmizigul, A.H. Equine herpes virus type 1 (EHV-1) and 4 (EHV-4) infections in horses and donkeys in northeastern Turkey. Iran J. Vet. Res. 2015, 16, 341–346. [Google Scholar][Green Version]
- Ataseven, V.S.; Dağalp, S.B.; Güzel, M.; Başaran, Z.; Tan, M.T.; Geraghty, B. Prevalence of equine herpesvirus-1 and equine herpesvirus-4 infections in equidae species in Turkey as determined by ELISA and multiplex nested PCR. Res. Vet. Sci. 2009, 86, 339–344. [Google Scholar] [CrossRef]
- Negussie, H.; Gizaw, D.; Tessema, T.S.; Nauwynck, H.J. Equine herpesvirus-1 myeloencephalopathy, an emerging threat of working equids in ethiopia. Transbound. Emerg. Dis. 2017, 64, 389–397. [Google Scholar] [CrossRef]
- El Brini, Z.; Cullinane, A.; Garvey, M.; Fassi Fihri, O.; Fellahi, S.; Amraoui, F.; Loutfi, C.; Sebbar, G.; Paillot, R.; Piro, M. First molecular and phylogenetic characterization of equine herpesvirus-1 (EHV-1) and equine herpesvirus-4 (EHV-4) in Morocco. Animals 2025, 15, 102. [Google Scholar] [CrossRef]
- Mekonnen, A.; Eshetu, A.; Gizaw, D. Equine herpesvirus 1 and/or 4 in working equids: Seroprevalence and risk factors in North Shewa Zone, Ethiopia. Ethiop. Vet. J. 2017, 21, 28–39. [Google Scholar] [CrossRef][Green Version]
- Khattab, O.M.; AbdelmegeedHK, M.M.; HamdyME, H.N.; Hamed, A.; Fahmy, H.A.; Ibrahim, E.; Ahmed, E.M. Equine herpes virus 4 (EHV4) investigation in aborted Egyptian mares; molecular detection, isolation, and phylogeny for viral glycoprotein B. Adv. Anim. Vet. Sci. 2022, 10, 1907–1915. [Google Scholar] [CrossRef]
- Tau, R.L.; Marandino, A.E.; Panzera, Y.; Alamos, F.; Vissani, M.A.; Romera, S.A.; Pérez, R.; Maidana, S.S. The complete genome of equid herpesvirus-1 (EHV-1) field isolates from Argentina reveals an interspecific recombinant strain. Virus Genes 2024, 60, 559–562. [Google Scholar] [CrossRef] [PubMed]
- Martín Ocampos, G.P.; Fuentealba, N.A.; Sguazza, G.H.; Jones, L.R.; Cigliano, M.M.; Barbeito, C.G.; Galosi, C.M. Genomic and phylogenetic analysis of Argentinian Equid Herpesvirus 1 strains. Virus Genes 2009, 38, 113–117. [Google Scholar] [CrossRef]
- Craig, M.I.; Barrandeguy, M.E.; Fernández, F.M. Equine herpesvirus 2 (EHV-2) infection in thoroughbred horses in Argentina. BMC Vet. Res. 2005, 1, 9. [Google Scholar] [CrossRef]
- Carvalho, R.; Oliveira, A.M.; Souza, A.M.; Passos, L.M.; Martins, A.S. Prevalence of equine herpesvirus type 1 latency detected by polymerase chain reaction. Arch. Virol. 2000, 145, 1773–1787. [Google Scholar] [CrossRef]
- Carvalho, R.; Passos, L.M.; Martins, A.S. Development of a differential multiplex PCR assay for equine herpesvirus 1 and 4 as a diagnostic tool. J. Vet. Med. B 2000, 47, 351–359. [Google Scholar] [CrossRef]
- Burgess, B.A.; Tokateloff, N.; Manning, S.; Lohmann, K.; Lunn, D.P.; Hussey, S.B.; Morley, P.S. Nasal shedding of equine herpesvirus-1 from horses in an outbreak of equine herpes myeloencephalopathy in Western Canada. J. Vet. Intern. Med. 2012, 26, 384–392. [Google Scholar] [CrossRef]
- Petano-Duque, J.M.; Urueña-Martinez, E.; Cabezas-Callejas, L.L.; Perilla-Amaya, J.; Rueda-García, V.; Rondón-Barragán, I.S.; Lopera-Vásquez, R. Molecular and serological investigation of equine herpesvirus type 1 (EHV-1) and type 4 (EHV-4) in horses in Ibagué, Tolima. Vet. Med. Int. 2025, 2025, 1661949. [Google Scholar] [CrossRef]
- Kleiboeker, S.B.; Schommer, S.K.; Johnson, P.J.; Ehlers, B.; Turnquist, S.E.; Boucher, M.; Kreeger, J.M. Association of two newly recognized herpesviruses with interstitial pneumonia in donkeys (Equus asinus). J. Vet. Diagn. Investig. 2002, 14, 273–280. [Google Scholar] [CrossRef]
- Bawa, B.; Vander Werf, K.; Beard, L.; Davis, E.; Andrews, G.; Almes, K. Equine multinodular pulmonary fibrosis and lymphoma in a horse associated with equine herpesvirus-5. J. Equine Vet. Sci. 2014, 34, 694–700. [Google Scholar] [CrossRef]
- Vander Werf, K.A.; Davis, E.G.; Janardhan, K.; Bawa, B.; Bolin, S.; Almes, K. Identification of equine herpesvirus 5 in horses with lymphoma. J. Equine Vet. Sci. 2014, 34, 738–741. [Google Scholar] [CrossRef]
- Wilcox, A.; Barnum, S.; Wademan, C.; Corbin, R.; Escobar, E.; Hodzic, E.; Schumacher, S.; Pusterla, N. Frequency of detection of respiratory pathogens in clinically healthy show horses following a multi-county outbreak of equine herpesvirus-1 myeloencephalopathy in California. Pathogens 2022, 11, 1161. [Google Scholar] [CrossRef]
- Breathnach, C.C.; Yeargan, M.R.; Sheoran, A.S.; Allen, G.P. The mucosal humoral immune response of the horse to infective challenge and vaccination with equine herpesvirus-1 antigens. Equine Vet. J. 2001, 33, 651–657. [Google Scholar] [CrossRef]
- Friday, P.A.; Scarratt, W.K.; Elvinger, F.; Timoney, P.J.; Bonda, A. Ataxia and paresis with equine herpesvirus type 1 infection in a herd of riding school horses. J. Vet. Intern. Med. 2000, 14, 197–201. [Google Scholar] [CrossRef]
- Easther, R.; Manthorpe, E.; Woolford, L.; Kawarizadeh, A.; Hemmatzadeh, F.; Agne, G.F. Eosinophilic inflammation and equine herpesvirus-1 associated with haemorrhagic cystitis in a horse. J. Equine Vet. Sci. 2022, 119, 104161. [Google Scholar] [CrossRef]
- Studdert, M.J.; Hartley, C.A.; Dynon, K.; Sandy, J.R.; Slocombe, R.R.; Charles, J.A.; Milne, M.E.; Clarke, A.F.; El-Hage, C. Outbreak of equine herpesvirus type 1 myeloencephalitis: New insights from virus identification by PCR and the application of an EHV-1-specific antibody detection ELISA. Vet. Rec. 2003, 153, 417–423. [Google Scholar] [CrossRef]
- Wang, L.; Raidal, S.L.; Pizzirani, A.; Wilcox, G.E. Detection of respiratory herpesviruses in foals and adult horses determined by nested multiplex PCR. Vet. Microbiol. 2007, 121, 18–28. [Google Scholar] [CrossRef] [PubMed]
- Varrasso, A.; Dynon, K.; Ficorilli, N.; Hartley, C.A.; Studdert, M.J.; Drummer, H.E. Identification of equine herpesviruses 1 and 4 by polymerase chain reaction. Aust. Vet. J. 2001, 79, 563–569. [Google Scholar] [CrossRef]
- Ruitenberg, K.M.; Love, D.N.; Gilkerson, J.R.; Wellington, J.E.; Whalley, J.M. Equine herpesvirus 1 (EHV-1) glycoprotein D DNA inoculation in horses with pre-existing EHV-1/EHV-4 antibody. Vet. Microbiol. 2000, 76, 117–127. [Google Scholar] [CrossRef] [PubMed]
- El-Hage, C.; Mekuria, Z.; Dynon, K.; Hartley, C.; McBride, K.; Gilkerson, J. Association of equine herpesvirus 5 with mild respiratory disease in a survey of EHV1,-2,-4 and-5 in 407 Australian horses. Animals 2021, 11, 3418. [Google Scholar] [CrossRef]
- Dunowska, M.; Howe, L.; Hanlon, D.; Stevenson, M. Kinetics of Equid herpesvirus type 2 infections in a group of Thoroughbred foals. Vet. Microbiol. 2011, 152, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Dunowska, M.; Holloway, S.A.; Wilks, C.R.; Meers, J. Genomic variability of equine herpesvirus-5. Arch. Virol. 2000, 145, 1359–1371. [Google Scholar] [CrossRef] [PubMed]
- Van Cleemput, J.; Poelaert, K.C.K.; Laval, K.; Vanderheijden, N.; Dhaenens, M.; Daled, S.; Boyen, F.; Pasmans, F.; Nauwynck, H.J. An alphaherpesvirus exploits antimicrobial β-defensins to initiate respiratory tract infection. J. Virol. 2020, 94, e01676-19. [Google Scholar] [CrossRef] [PubMed]
- Baghi, H.B.; Nauwynck, H.J. Impact of equine herpesvirus type 1 (EHV-1) infection on the migration of monocytic cells through equine nasal mucosa. Comp. Immunol. Microbiol. Infect. Dis. 2014, 37, 321–329. [Google Scholar] [CrossRef]
- Hussey, G.S.; Ashton, L.V.; Quintana, A.M.; Lunn, D.P.; Goehring, L.S.; Annis, K.; Landolt, G. Innate immune responses of airway epithelial cells to infection with equine herpesvirus-1. Vet. Microbiol. 2014, 170, 28–38. [Google Scholar] [CrossRef]
- Gryspeerdt, A.C.; Vandekerckhove, A.; Garré, B.; Barbé, F.; Van de Walle, G.; Nauwynck, H. Differences in replication kinetics and cell tropism between neurovirulent and non-neurovirulent EHV1 strains during the acute phase of infection in horses. Vet. Microbiol. 2010, 142, 242–253. [Google Scholar] [CrossRef]
- Vandekerckhove, A.P.; Glorieux, S.; Gryspeerdt, A.C.; Steukers, L.; Duchateau, L.; Osterrieder, N.; Van-de-Walle, G.R.; Nauwynck, H.J. Replication kinetics of neurovirulent versus non-neurovirulent equine herpesvirus type 1 strains in equine nasal mucosal explants. J. Gen. Virol. 2010, 91, 2019–2028. [Google Scholar] [CrossRef]
- Holmes, C.M.; Babasyan, S.; Eady, N.; Schnabel, C.L.; Wagner, B. Immune horses rapidly increase antileukoproteinase and lack type I interferon secretion during mucosal innate immune responses against equine herpesvirus type 1. Microbiol. Spectr. 2024, 12, e01092-24. [Google Scholar] [CrossRef]
- Holmes, C.M.; Wagner, B. Characterization of nasal mucosal T cells in horses and their response to equine herpesvirus type 1. Viruses 2024, 16, 1514. [Google Scholar] [CrossRef]
- Laval, K.; Poelaert, K.C.; Van Cleemput, J.; Zhao, J.; Vandekerckhove, A.P.; Gryspeerdt, A.C.; Garré, B.; van-der-Meulen, K.; Baghi, H.B.; Dubale, H.N.; et al. The pathogenesis and immune evasive mechanisms of equine herpesvirus type 1. Front. Microbiol. 2021, 12, 662686. [Google Scholar] [CrossRef]
- Hu, L.; Wang, T.; Ren, H.; Liu, W.; Li, Y.; Wang, C.; Li, L. Characterizing the pathogenesis and immune response of equine herpesvirus 8 infection in lung of mice. Animals 2022, 12, 2495. [Google Scholar] [CrossRef]
- Giessler, K.S.; Goehring, L.S.; Jacob, S.I.; Davis, A.; Esser, M.M.; Lee, Y.; Zarski, L.M.; Weber, P.S.D.; Hussey, G.S. Impact of the host immune response on the development of equine herpesvirus myeloencephalopathy in horses. J. Gen. Virol. 2024, 105, 001987. [Google Scholar] [CrossRef]
- Poelaert, K.C.K.; Van Cleemput, J.; Laval, K.; Favoreel, H.W.; Soboll Hussey, G.; Maes, R.K.; Nauwynck, H.J. Abortigenic but not neurotropic equine Herpes Virus 1 modulates the interferon antiviral defense. Front. Cell. Infect. Microbiol. 2018, 8, 312. [Google Scholar] [CrossRef]
- Poelaert, K.C.K.; Van Cleemput, J.; Laval, K.; Xie, J.; Favoreel, H.W.; Nauwynck, H.J. Equine herpesvirus 1 infection orchestrates the expression of chemokines in equine respiratory epithelial cells. J. Gen. Virol. 2019, 100, 1567–1579. [Google Scholar] [CrossRef]
- Zhao, J.; Poelaert, K.C.K.; Van Cleemput, J.; Nauwynck, H.J. CCL2 and CCL5 driven attraction of CD172a+ monocytic cells during an equine herpesvirus type 1 (EHV-1) infection in equine nasal mucosa and the impact of two migration inhibitors, rosiglitazone (RSG) and quinacrine (QC). Vet. Res. 2017, 48, 14. [Google Scholar] [CrossRef] [PubMed]
- Poelaert, K.C.K.; Van Cleemput, J.; Laval, K.; Favoreel, H.W.; Couck, L.; Van den Broeck, W.; Azab, W.; Nauwynck, H.J. Equine herpesvirus 1 bridles T lymphocytes to reach its target organs. J. Virol. 2019, 93, e02098-18. [Google Scholar] [CrossRef] [PubMed]
- Pusterla, N.; Miller, J.; Varnell, S.; Armstrong, W.; Frost, L.; Michon, C.; Lambert, K.; Whitfield, S.; Cowles, B. Investigation of the usefulness of serum amyloid A in characterizing selected disease forms of equine herpesvirus-1 infection. J. Equine Vet. Sci. 2021, 104, 103699. [Google Scholar] [CrossRef]
- Bryant, N.A.; Davis-Poynter, N.; Vanderplasschen, A.; Alcami, A. Glycoprotein G isoforms from some alphaherpesviruses function as broad-spectrum chemokine binding proteins. EMBO J. 2003, 22, 833–846. [Google Scholar] [CrossRef]
- Van de Walle, G.R.; May, M.L.; Sukhumavasi, W.; von Einem, J.; Osterrieder, N. Herpesvirus chemokine-binding glycoprotein G (gG) efficiently inhibits neutrophil chemotaxis in vitro and in vivo. J. Immunol. 2007, 179, 4161–4169. [Google Scholar] [CrossRef]
- Soboll Hussey, G.; Hussey, S.B.; Wagner, B.; Horohov, D.W.; Van de Walle, G.R.; Osterrieder, N.; Goehring, L.S.; Rao, S.; Lunn, D.P. Evaluation of immune responses following infection of ponies with an EHV-1 ORF1/2 deletion mutant. Vet. Res. 2011, 42, 23. [Google Scholar] [CrossRef]
- Gryspeerdt, A.C.; Vandekerckhove, A.P.; Baghi, H.B.; Van de Walle, G.R.; Nauwynck, H.J. Expression of late viral proteins is restricted in nasal mucosal leucocytes but not in epithelial cells during early-stage equine herpes virus-1 infection. Vet. J. 2012, 193, 576–578. [Google Scholar] [CrossRef]
- van der Meulen, K.; Caij, B.; Pensaert, M.; Nauwynck, H. Absence of viral envelope proteins in equine herpesvirus 1-infected blood mononuclear cells during cell-associated viremia. Vet. Microbiol. 2006, 113, 265–273. [Google Scholar] [CrossRef]
- Laval, K.; Favoreel, H.W.; Nauwynck, H.J. Equine herpesvirus type 1 replication is delayed in CD172a+ monocytic cells and controlled by histone deacetylases. J. Gen. Virol. 2015, 96, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Laval, K.; Van Cleemput, J.; Poelaert, K.C.; Brown, I.K.; Nauwynck, H.J. Replication of neurovirulent equine herpesvirus type 1 (EHV-1) in CD172a(+) monocytic cells. Comp. Immunol. Microbiol. Infect. Dis. 2017, 50, 58–62. [Google Scholar] [CrossRef] [PubMed]
- Laval, K.; Favoreel, H.W.; Van Cleemput, J.; Poelaert, K.C.K.; Brown, I.K.; Verhasselt, B.; Nauwynck, H.J. Entry of equid herpesvirus 1 into CD172a+ monocytic cells. J. Gen. Virol. 2016, 97, 733–746. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Laval, K.; Favoreel, H.W.; Poelaert, K.C.; Van Cleemput, J.; Nauwynck, H.J. Equine herpesvirus type 1 enhances viral replication in CD172a+ monocytic cells upon adhesion to endothelial cells. J. Virol. 2015, 89, 10912–10923. [Google Scholar] [CrossRef]
- Oladunni, F.S.; Sarkar, S.; Reedy, S.; Balasuriya, U.B.R.; Horohov, D.W.; Chambers, T.M. Equid herpesvirus 1 targets the sensitization and induction steps to inhibit the type I interferon response in equine endothelial cells. J. Virol. 2019, 93, e01342-19. [Google Scholar] [CrossRef]
- Sarkar, S.; Balasuriya, U.B.; Horohov, D.W.; Chambers, T.M. Equine herpesvirus-1 suppresses type-I interferon induction in equine endothelial cells. Vet. Immunol. Immunopathol. 2015, 167, 122–129. [Google Scholar] [CrossRef]
- Sarkar, S.; Balasuriya, U.B.; Horohov, D.W.; Chambers, T.M. Equine herpesvirus-1 infection disrupts interferon regulatory factor-3 (IRF-3) signaling pathways in equine endothelial cells. Vet. Immunol. Immunopathol. 2016, 173, 1–9. [Google Scholar] [CrossRef]
- Sarkar, S.; Balasuriya, U.B.; Horohov, D.W.; Chambers, T.M. The neuropathogenic T953 strain of equine herpesvirus-1 inhibits type-I IFN mediated antiviral activity in equine endothelial cells. Vet. Microbiol. 2016, 183, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Goehring, L.S.; Hussey, G.S.; Ashton, L.V.; Schenkel, A.R.; Lunn, D.P. Infection of central nervous system endothelial cells by cell-associated EHV-1. Vet. Microbiol. 2011, 148, 389–395. [Google Scholar] [CrossRef]
- Smith, K.C.; Whitwell, K.E.; Blunden, A.S.; Bestbier, M.E.; Scase, T.J.; Geraghty, R.J.; Nugent, J.; Davis-Poynter, N.J.; Cardwell, J.M. Equine herpesvirus-1 abortion: Atypical cases with lesions largely or wholly restricted to the placenta. Equine Vet. J. 2004, 36, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Smith, K.C.; Mumford, J.A.; Lakhani, K. A comparison of equid herpesvirus-1 (EHV-1) vascular lesions in the early versus late pregnant equine uterus. J. Comp. Pathol. 1996, 114, 231–247. [Google Scholar] [CrossRef]
- Edington, N.; Smyth, B.; Griffiths, L. The role of endothelial cell infection in the endometrium, placenta and foetus of equid herpesvirus 1 (EHV-1) abortions. J. Comp. Pathol. 1991, 104, 379–387. [Google Scholar] [CrossRef]
- Wilsterman, S.; Soboll-Hussey, G.; Lunn, D.P.; Ashton, L.V.; Callan, R.J.; Hussey, S.B.; Rao, S.; Goehring, L.S. Equine herpesvirus-1 infected peripheral blood mononuclear cell subpopulations during viremia. Vet. Microbiol. 2011, 149, 40–47. [Google Scholar] [CrossRef]
- Hussey, G.S.; Goehring, L.S.; Lunn, D.P.; Hussey, S.B.; Huang, T.; Osterrieder, N.; Powell, C.; Hand, J.; Holz, C.; Slater, J. Experimental infection with equine herpesvirus type 1 (EHV-1) induces chorioretinal lesions. Vet. Res. 2013, 44, 118. [Google Scholar] [CrossRef]
- Smith, K.C.; Borchers, K. A study of the pathogenesis of equid herpesvirus-1 (EHV-1) abortion by DNA in-situ hybridization. J. Comp. Pathol. 2001, 125, 304–310. [Google Scholar] [CrossRef]
- Allen, G.P. Risk factors for development of neurologic disease after experimental exposure to equine herpesvirus-1 in horses. Am. J. Vet. Res. 2008, 69, 1595–1600. [Google Scholar] [CrossRef] [PubMed]
- Lunn, D.P.; Davis-Poynter, N.; Flaminio, M.J.; Horohov, D.W.; Osterrieder, K.; Pusterla, N.; Townsend, H.G. Equine herpesvirus-1 consensus statement. J. Vet. Intern. Med. 2009, 23, 450–461. [Google Scholar] [CrossRef]
- Allen, G.P.; Breathnach, C.C. Quantification by real-time PCR of the magnitude and duration of leucocyte-associated viraemia in horses infected with neuropathogenic vs. non-neuropathogenic strains of EHV-1. Equine Vet. J. 2006, 38, 252–257. [Google Scholar] [CrossRef]
- Nugent, J.; Birch-Machin, I.; Smith, K.C.; Mumford, J.A.; Swann, Z.; Newton, J.R.; Bowden, R.J.; Allen, G.P.; Davis-Poynter, N. Analysis of equid herpesvirus 1 strain variation reveals a point mutation of the DNA polymerase strongly associated with neuropathogenic versus nonneuropathogenic disease outbreaks. J. Virol. 2006, 80, 4047–4060. [Google Scholar] [CrossRef] [PubMed]
- Perkins, G.A.; Goodman, L.B.; Tsujimura, K.; Van de Walle, G.R.; Kim, S.G.; Dubovi, E.J.; Osterrieder, N. Investigation of the prevalence of neurologic equine herpes virus type 1 (EHV-1) in a 23-year retrospective analysis (1984–2007). Vet. Microbiol. 2009, 139, 375–378. [Google Scholar] [CrossRef]
- Van de Walle, G.R.; Goupil, R.; Wishon, C.; Damiani, A.; Perkins, G.A.; Osterrieder, N. A single-nucleotide polymorphism in a herpesvirus DNA polymerase is sufficient to cause lethal neurological disease. J. Infect. Dis. 2009, 200, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Pusterla, N.; Barnum, S.; Lawton, K.; Wademan, C.; Corbin, R.; Hodzic, E. Investigation of the EHV-1 genotype (N752, D752, and H752) in swabs collected from equids with respiratory and neurological disease and abortion from the United States (2019–2022). J. Equine Vet. Sci. 2023, 123, 104244. [Google Scholar] [CrossRef]
- Pusterla, N.; Hussey, G.S. Equine herpesvirus 1 myeloencephalopathy. Vet. Clin. N. Am. Equine Pract. 2014, 30, 489–506. [Google Scholar] [CrossRef]
- Edington, N.; Bridges, C.G.; Patel, J.R. Endothelial cell infection and thrombosis in paralysis caused by equid herpesvirus-1: Equine stroke. Arch. Virol. 1986, 90, 111–124. [Google Scholar] [CrossRef]
- Mesquita, L.P.; Costa, R.C.; Zanatto, D.A.; Bruhn, F.R.; Mesquita, L.L.; Lara, M.C.; Villalobos, E.M.; Massoco, C.O.; Mori, C.M.; Mori, E.; et al. Equine herpesvirus 1 elicits a strong pro-inflammatory response in the brain of mice. J. Gen. Virol. 2021, 102, 001556. [Google Scholar] [CrossRef] [PubMed]
- Pusterla, N.; Magdesian, K.G.; Mapes, S.M.; Zavodovskaya, R.; Kass, P.H. Assessment of quantitative polymerase chain reaction for equine herpesvirus-5 in blood, nasal secretions and bronchoalveolar lavage fluid for the laboratory diagnosis of equine multinodular pulmonary fibrosis. Equine Vet. J. 2017, 49, 34–38. [Google Scholar] [CrossRef]
- Williams, K.J.; Maes, R.; Del Piero, F.; Lim, A.; Wise, A.; Bolin, D.C.; Caswell, J.; Jackson, C.; Robinson, N.E.; Derksen, F.; et al. Equine multinodular pulmonary fibrosis: A newly recognized herpesvirus-associated fibrotic lung disease. Vet. Pathol. 2007, 44, 849–862. [Google Scholar] [CrossRef]
- Van Cleemput, J.; Poelaert, K.C.; Laval, K.; Nauwynck, H.J. Unravelling the first key steps in equine herpesvirus type 5 (EHV5) pathogenesis using ex vivo and in vitro equine models. Vet. Res. 2019, 50, 13. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.J.; Robinson, N.E.; Lim, A.; Brandenberger, C.; Maes, R.; Behan, A.; Bolin, S.R. Experimental induction of pulmonary fibrosis in horses with the gammaherpesvirus equine herpesvirus 5. PLoS ONE 2013, 8, e77754. [Google Scholar] [CrossRef] [PubMed]
- Williams, K.J. Gammaherpesviruses and pulmonary fibrosis: Evidence from humans, horses, and rodents. Vet. Pathol. 2014, 51, 372–384. [Google Scholar] [CrossRef]
- Wong, D.M.; Belgrave, R.L.; Williams, K.J.; Del Piero, F.; Alcott, C.J.; Bolin, S.R.; Marr, C.M.; Nolen-Walston, R.; Myers, R.K.; Wilkins, P.A. Multinodular pulmonary fibrosis in five horses. J. Am. Vet. Med. Assoc. 2008, 232, 898–905. [Google Scholar] [CrossRef]
- Lauteri, E.; Tortereau, A.; Peyrecave, X.; Pin, D.; Desjardins, I. Equine multinodular pulmonary fibrosis and presumed corticosteroid-induced side effects in a horse. Equine Vet. Educ. 2023, 35, e563–e570. [Google Scholar] [CrossRef]
- Vissani, M.A.; Damiani, A.M.; Barrandeguy, M.E. Equine coital exanthema: New insights on the knowledge and leading perspectives for treatment and prevention. Pathogens 2021, 10, 1055. [Google Scholar] [CrossRef] [PubMed]
- Vissani, M.A.; Perglione, C.O.; Zabal, O.; Alvarez, G.; Thiry, E.; Barrandeguy, M.; Parreño, V. Topical ganciclovir reduces viral excretion in mares with equine coital exanthema. J. Equine Vet. Sci. 2020, 94, 103199. [Google Scholar] [CrossRef]
- Toishi, Y.; Tsunoda, N.; Kirisawa, R. Occurrence of equine coital exanthema (ECE) in stallions in Japan and effectiveness of treatment with valacyclovir for ECE. J. Vet. Med. Sci. 2017, 79, 632–635. [Google Scholar] [CrossRef][Green Version]
- Hue, E.S.; Richard, E.A.; Fortier, C.I.; Fortier, G.D.; Paillot, R.; Raue, R.; Pronost, S.L. Equine PBMC Cytokines Profile after In Vitro α- and γ-EHV Infection: Efficacy of a Parapoxvirus Ovis Based-Immunomodulator Treatment. Vaccines 2017, 5, 28. [Google Scholar] [CrossRef]
- Lunn, D.P.; Burgess, B.A.; Dorman, D.C.; Goehring, L.S.; Gross, P.; Osterrieder, K.; Pusterla, N.; Soboll Hussey, G. Updated ACVIM Consensus Statement on Equine Herpesvirus-1. J. Vet. Intern. Med. 2024, 38, 1290–1299. [Google Scholar] [CrossRef]
- Ons, E.; Van Brussel, L.; Lane, S.; King, V.; Cullinane, A.; Kenna, R.; Lyons, P.; Hammond, T.A.; Salt, J.; Raue, R. Efficacy of a Parapoxvirus ovis-based immunomodulator against equine herpesvirus type 1 and Streptococcus equi equi infections in horses. Vet. Microbiol. 2014, 173, 232–240. [Google Scholar] [CrossRef] [PubMed]
- Paillot, R. A Systematic Review of the Immune-Modulators Parapoxvirus ovis and Propionibacterium acnes for the Prevention of Respiratory Disease and Other Infections in the Horse. Vet. Immunol. Immunopathol. 2013, 153, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; He, Y.; Ge, L.; Quan, R.; Chen, J.; Hu, Y.; Sa, R.; Liu, J.; Ran, D.; Fu, Q.; et al. Berbamine, a bioactive alkaloid, suppresses equine herpesvirus type 1 in vitro and in vivo. Front. Vet. Sci. 2023, 10, 1163780. [Google Scholar] [CrossRef]
- Li, S.; Li, L.; Sun, Y.; Khan, M.Z.; Yu, Y.; Ruan, L.; Chen, L.; Zhao, J.; Jia, J.; Li, Y.; et al. Protective role of cepharanthine against equid herpesvirus type 8 through AMPK and Nrf2/HO-1 pathway activation. Viruses 2024, 16, 1765. [Google Scholar] [CrossRef]
- Yu, Y.; Wang, J.; Ruan, L.; Chen, L.; Khan, M.Z.; You, A.; Wang, C.; Li, L.; Ren, H.; Wang, T.; et al. Evaluation of Celastrol antiviral activity against equid alphaherpesvirus type 8 infection. Viruses 2025, 17, 347. [Google Scholar] [CrossRef]
- Wang, T.; Hu, L.; Li, R.; Ren, H.; Li, S.; Sun, Q.; Ding, X.; Li, Y.; Wang, C.; Li, L. Hyperoside inhibits EHV-8 infection via alleviating oxidative stress and IFN production through activating JNK/Keap1/Nrf2/HO-1 signaling pathways. J. Virol. 2024, 98, e00159-24. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Hu, X.; Li, S.; Li, Y.; Zhao, S.; Shen, F.; Wang, C.; Li, Y.; Wang, T. Cobalt protoporphyrin blocks EHV-8 infection via IFN-α/β production. Animals 2023, 13, 2690. [Google Scholar] [CrossRef]
- Attili, A.R.; Colognato, R.; Preziuso, S.; Moriconi, M.; Valentini, S.; Petrini, S.; De Mia, G.M.; Cuteri, V. Evaluation of three different vaccination protocols against EHV1/EHV4 infection in mares: Double blind, randomized clinical trial. Vaccines 2020, 8, 268. [Google Scholar] [CrossRef]
- Warda, F.F.; Ahmed, H.E.; Shafik, N.G.; Mikhael, C.A.; Abd-ElAziz, H.M.; Mohammed, W.A.; Shosha, E.A. Application of equine herpesvirus-1 vaccine inactivated by both formaldehyde and binary ethylenimine in equine. Vet. World 2021, 14, 1815. [Google Scholar] [CrossRef] [PubMed]
- Bannai, H.; Tsujimura, K.; Nemoto, M.; Ohta, M.; Yamanaka, T.; Kokado, H.; Matsumura, T. Epizootiological investigation of equine herpesvirus type 1 infection among Japanese racehorses before and after the replacement of an inactivated vaccine with a modified live vaccine. BMC Vet. Res. 2019, 15, 280. [Google Scholar] [CrossRef]
- Patel, J.R.; Heldens, J. Equine herpesviruses 1 (EHV-1) and 4 (EHV-4)–epidemiology, disease and immunoprophylaxis: A brief review. Vet. J. 2005, 170, 14–23. [Google Scholar] [CrossRef]
- Breathnach, C.C.; Yeargan, M.R.; Timoney, J.F.; Allen, G.P. Detection of equine herpesvirus-specific effector and memory cytotoxic immunity in the equine upper respiratory mucosa. Vet. Immunol. Immunopathol. 2006, 111, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Goodman, L.B.; Loregian, A.; Perkins, G.A.; Nugent, J.; Buckles, E.L.; Mercorelli, B.; Kydd, J.H.; Palù, G.; Smith, K.C.; Osterrieder, N.; et al. A point mutation in a herpesvirus polymerase determines neuropathogenicity. PLoS Pathog. 2007, 3, e160. [Google Scholar] [CrossRef] [PubMed]
- Goodman, L.B.; Wagner, B.; Flaminio, M.J.B.F.; Sussman, K.H.; Metzger, S.M.; Holland, R.; Osterrieder, N. Comparison of the efficacy of inactivated combination and modified-live virus vaccines against challenge infection with neuropathogenic equine herpesvirus type 1 (EHV-1). Vaccine 2006, 24, 3636–3645. [Google Scholar] [CrossRef] [PubMed]
- Hussey, S.B.; Clark, R.; Lunn, K.F.; Breathnach, C.; Soboll, G.; Whalley, J.M.; Lunn, D.P. Detection and quantification of equine herpesvirus-1 viremia and nasal shedding by real-time polymerase chain reaction. J. Vet. Diagn. Investig. 2006, 18, 335–342. [Google Scholar] [CrossRef]
- Goodman, L.B.; Wimer, C.; Dubovi, E.J.; Gold, C.; Wagner, B. Immunological correlates of vaccination and infection for equine herpesvirus 1. Clin. Vaccine Immunol. 2012, 19, 235–241. [Google Scholar] [CrossRef]
- Wagner, B.; Schnabel, C.L.; Rollins, A. Increase in virus-specific mucosal antibodies in the upper respiratory tract following intramuscular vaccination of previously exposed horses against equine herpesvirus type-1/4. Vaccines 2025, 13, 290. [Google Scholar] [CrossRef]
- Schnabel, C.L.; Babasyan, S.; Rollins, A.; Freer, H.; Wimer, C.L.; Perkins, G.A.; Raza, F.; Osterrieder, N.; Wagner, B. An equine herpesvirus type 1 (EHV-1) Ab4 open reading frame 2 deletion mutant provides immunity and protection from EHV-1 infection and disease. J. Virol. 2019, 93, e01245-19. [Google Scholar] [CrossRef]
- Houben, R.M.; van Maanen, C.; Newton, J.R.; van den Broek, J.; van Oldruitenborgh-Oosterbaan, M.S.; Heesterbeek, J.A. A model-based approach to evaluate the effect of vaccination of the herd on transmission of equine herpesvirus 1 in naturally occurring outbreaks. Prev. Vet. Med. 2025, 236, 106418. [Google Scholar] [CrossRef]
- Marenzoni, M.L.; De Waure, C.; Timoney, P.J. Efficacy of vaccination against equine herpesvirus type 1 (EHV-1) infection: Systematic review and meta-analysis of randomised controlled challenge trials. Equine Vet. J. 2023, 55, 389–404. [Google Scholar] [CrossRef]
- Spann, K.; Barnum, S.; Pusterla, N. Investigation of the systemic antibody response and antigen detection following intranasal administration of two commercial equine herpesvirus-1 vaccines to adult horses. J. Equine Vet. Sci. 2023, 122, 104229. [Google Scholar] [CrossRef] [PubMed]
- Ji, C.; Cai, S.; Lu, G.; Zhang, G. Challenges to develop an equine herpesvirus vaccine in China. J. Infect. 2020, 80, 578–606. [Google Scholar] [CrossRef]
- Yasunaga, S.; Maeda, K.; Matsumura, T.; Kondo, T.; Kai, K. Application of a type-specific enzyme-linked immunosorbent assay for equine herpesvirus types 1 and 4 (EHV-1 and-4) to horse populations inoculated with inactivated EHV-1 vaccine. J. Vet. Med. Sci. 2000, 62, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Pusterla, N.; Barnum, S.; Miller, J.; Varnell, S.; Dallap-Schaer, B.; Aceto, H.; Marlin, D. Investigation of an EHV-1 Outbreak in the United States Caused by a New H752 Genotype. Pathogens 2021, 10, 747. [Google Scholar] [CrossRef] [PubMed]

| Virus Type | Subfamily/Genus | Primary Host | References |
|---|---|---|---|
| EHV-1 | Alphaherpesvirinae/Varicellovirus | Donkeys and Horses | [49,50,51,52] |
| EHV-3 | Alphaherpesvirinae/Varicellovirus | Horses, donkeys (rare) | [30,53,54,55,56] |
| EHV-4 | Alphaherpesvirinae/Varicellovirus | Horses, Donkeys | [57,58,59,60] |
| EHV-8 | Alphaherpesvirinae/Varicellovirus | Horses (Rare), Donkeys | [61,62] |
| EHV-9 | Alphaherpesvirinae/Varicellovirus | Horses (Rare) | [63] |
| EHV-2 | Gammaherpesvirinae/Percavirus | Horses, Donkeys (Rare) | [64,65] |
| EHV-5 | Gammaherpesvirinae/Percavirus | Horses, Donkeys | [65,66] |
| EHV-7 | Gammaherpesvirinae/Varicellovirus | Donkeys (Rare) and Horses (rare) | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.Z.; Ji, Y.; Fan, X.; Liu, Y.; Liu, W.; Wang, C. Equine Herpesvirus Infections: Treatment Progress and Challenges in Horses and Donkeys. Vet. Sci. 2025, 12, 1082. https://doi.org/10.3390/vetsci12111082
Khan MZ, Ji Y, Fan X, Liu Y, Liu W, Wang C. Equine Herpesvirus Infections: Treatment Progress and Challenges in Horses and Donkeys. Veterinary Sciences. 2025; 12(11):1082. https://doi.org/10.3390/vetsci12111082
Chicago/Turabian StyleKhan, Muhammad Zahoor, Yanfei Ji, Xuewei Fan, Yihong Liu, Wenqiang Liu, and Changfa Wang. 2025. "Equine Herpesvirus Infections: Treatment Progress and Challenges in Horses and Donkeys" Veterinary Sciences 12, no. 11: 1082. https://doi.org/10.3390/vetsci12111082
APA StyleKhan, M. Z., Ji, Y., Fan, X., Liu, Y., Liu, W., & Wang, C. (2025). Equine Herpesvirus Infections: Treatment Progress and Challenges in Horses and Donkeys. Veterinary Sciences, 12(11), 1082. https://doi.org/10.3390/vetsci12111082

