Evaluation of In Vitro Inhibitory Activity of Extracts of Garlic, Ginger, and Onion Against Escherichia coli and Staphylococcus aureus Isolated from Milk of Dairy Cows
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods [23]
2.1. Location
2.2. Extract Preparation
2.3. Minimum Inhibitory Concentration (MIC)
2.4. Minimum Bactericidal Concentration (MBC)
2.5. Statistical Analysis
3. Results
3.1. MIC of Extracts Against E. coli and S. aureus Isolates
3.2. MBC of Extracts Against E. coli and S. aureus Isolates
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
MIC | Minimum Inhibitory Concentration |
MBC | Minimum Bactericidal Concentration |
References
- de Campos, J.L.; Kates, A.; Steinberger, A.; Sethi, A.; Suen, G.; Shutske, J.; Safdar, N.; Goldberg, T.; Ruegg, P.L. Quantification of antimicrobial usage in adult cows and preweaned calves on 40 large Wisconsin dairy farms using dose-based and mass-based metrics. J. Dairy Sci. 2021, 104, 4727–4745. [Google Scholar] [CrossRef]
- Saini, V.; McClure, J.T.; Leger, D.; Dufour, S.; Sheldon, A.G.; Scholl, D.T.; Barkema, H.W. Antimicrobial use on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1209–1221. [Google Scholar] [CrossRef] [PubMed]
- Pol, M.; Ruegg, P.L. Treatment practices and quantification of antimicrobial drug usage in conventional and organic dairy farms in Wisconsin. J. Dairy Sci. 2007, 90, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Wemette, M.; Greiner Safi, A.; Wolverton, A.K.; Beauvais, W.; Shapiro, M.; Moroni, P.; Welcome, F.L.; Ivanek, R. Public perceptions of antibiotic use on dairy farms in the United States. J. Dairy Sci. 2021, 104, 2807–2821. [Google Scholar] [CrossRef]
- Anonymous. Critically Important Antimcrobials for Human Health, 6th ed.; WHO: Geneva, Switzerland, 2019. [Google Scholar]
- Koops, W.J.; Ekstrom, J.; Armstrong, D. 5.8 Report on Practical Strategies to Reduce Antimicrobial Use in Dairy Farming; EuroDairy; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Nina, P.B.; Jp, D.; Kumar, S.; Singh, B.; Tiwari, R.R. Futuristic Non-antibiotic Therapies to Combat Antibiotic Resistance: A Review. Front. Microbiol. 2021, 12, 609459. [Google Scholar] [CrossRef]
- Arip, M.; Selvaraja, M.; R, M.; Tan, L.F.; Leong, M.Y.; Tan, P.L.; Yap, V.L.; Chinnapan, S.; Tat, N.C.; Abdullah, M.; et al. Review on Plant-Based Management in Combating Antimicrobial Resistance—Mechanistic Perspective. Front. Pharmacol. 2022, 13, 879495. [Google Scholar] [CrossRef] [PubMed]
- Mazzei, R.; Leonti, M.; Spadafora, S.; Patitucci, A.; Tagarelli, G. A review of the antimicrobial potential of herbal drugs used in popular Italian medicine (1850s–1950s) to treat bacterial skin diseases. J. Ethnopharmacol. 2020, 250, 112443. [Google Scholar] [CrossRef]
- Song, L.; Zhang, J.; Lai, R.; Li, Q.; Ju, J.; Xu, H. Chinese Herbal Medicines and Active Metabolites: Potential Antioxidant Treatments for Atherosclerosis. Front. Pharmacol. 2021, 12, 675999. [Google Scholar] [CrossRef]
- Yeh, H.S.; Weng, B.C.; Lien, T.F. Effects of Chinese traditional herbal medicine complex supplementation on the growth performance, immunity and serum traits of pigs. Anim. Sci. J. 2011, 82, 747–752. [Google Scholar] [CrossRef]
- Sharifi-Rad, J.; Mnayer, D.; Tabanelli, G.; Stojanovic-Radic, Z.Z.; Sharifi-Rad, M.; Yousaf, Z.; Vallone, L.; Setzer, W.N.; Iriti, M. Plants of the genus Allium as antibacterial agents: From tradition to pharmacy. Cell. Mol. Biol. 2016, 62, 57–68. [Google Scholar]
- Khan, R.U.; Nikousefat, Z.; Tufarelli, V.; Naz, S.; Javdani, M.; Laudadio, V. Garlic (Allium sativum) supplementation in poultry diets: Effect on production and physiology. World’s Poult. Sci. 2012, 68, 417–424. [Google Scholar] [CrossRef]
- Ding, H.; Ao, C.; Zhang, X. Potential use of garlic products in ruminant feeding: A review. Anim. Nutr. 2023, 14, 343–355. [Google Scholar] [CrossRef]
- Rahman, M.S. Allicin and other functional active components in garlic: Health benefits and bioavailability. Intl. J. Food Prop. 2007, 10, 245–268. [Google Scholar] [CrossRef]
- Chandarana, H.; Baluja, S.; Chanda, S. Comparison of antibacterial activities of selected species of Zingiberaceae family and some synthetic compounds. Turk. J. Biol. 2005, 29, 83–97. [Google Scholar]
- Kiyama, R. Nutritional implications of ginger: Chemistry, biological activities and signaling pathways. J. Nutr. Biochem. 2020, 86, 108486. [Google Scholar] [CrossRef]
- Ghasemzadeh, A.; Jaafar, H.Z.; Rahmat, A. Changes in antioxidant and antibacterial activities as well as phytochemical constituents associated with ginger storage and polyphenol oxidase activity. BMC Complement. Altern. Med. 2016, 16, 382. [Google Scholar] [CrossRef]
- Ozkur, M.; Benlier, N.; Takan, I.; Vasileiou, C.; Georgakilas, A.G.; Pavlopoulou, A.; Cetin, Z.; Saygili, E.I. Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Oxid. Med. Cell Longev. 2022, 2022, 4748447. [Google Scholar] [CrossRef]
- Adeyemi, K.D.; Obaaro, B.M.; Awoyeye, E.T.; Edward, A.E.; Asogwa, T.N. Onion leaf and synthetic additives in broiler diet: Impact on splenic cytokines, serum immunoglobulins, cecal bacterial population, and muscle antioxidant status. J. Sci. Food Agric. 2021, 101, 5245–5255. [Google Scholar] [CrossRef]
- Ike, K.A.; Adelusi, O.O.; Alabi, J.O.; Olagunju, L.K.; Wuaku, M.; Antaenwere, C.C.; Okedoyin, D.O.; Orimaye, O.E.; Gray, D.; Dele, P.A.; et al. Oligosaccharides, onion peel, and essential oils as feed additives in the diet of dairy cattle: In vitro fermentation, greenhouse gases, ruminal nutrient degradability, and volatile fatty acid production. Tuk. J. Vet. Anim. Sci. 2024, 48, 243–253. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Benkeblia, N.; Xiao, J. Onion (Allium cepa L.) bioactives: Chemistry, pharmacotherapeutic functions, and industrial applications. Food Front. 2022, 3, 380–412. [Google Scholar] [CrossRef]
- CLSI. Performance Standards for Antimicrobial Disk and Dilution Susceptiblity Tests for Bacteria Isolated from Animals; VET01; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2024. [Google Scholar]
- Barreiro, J.R.; Ferreira, C.R.; Sanvido, G.B.; Kostrzewa, M.; Maier, T.; Wegemann, B.; Bottcher, V.; Eberlin, M.N.; dos Santos, M.V. Short communication: Identification of subclinical cow mastitis pathogens in milk by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J. Dairy Sci. 2010, 93, 5661–5667. [Google Scholar] [CrossRef]
- de Souza Ferreira, L.; Showemimo, T.; Juliano, L.B.; Rodriguez, Z.; Ruegg, P.L. Use of MALDI-TOF to identify cryopreserved mastitis pathogens collected from 2003 to 2011 that were originally identified using conventional microbiological methods. JDS Commun. 2025, 6, 422–426. [Google Scholar] [CrossRef] [PubMed]
- Sarker, S.D.; Nahar, L.; Kumarasamy, Y. Microtitre plate-based antibacterial assay incorporating resazurin as an indicator of cell growth, and its application in the in vitro antibacterial screening of phytochemicals. Methods 2007, 42, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, B.R.; SN, J.P.; Kumar, S.; Ahuja, D.; Singh, P. Study of antimicrobial efficacy of garlic oil loaded ethosome against clinical microbial isolates of diverse origin. J. Herb. Med. 2023, 43, 100824. [Google Scholar] [CrossRef]
- Ruegg, P.L. Making Economically Efficient Treatment Decisions for Clinical Mastitis. Vet. Clin. N. Am. Food Anim. Pract. 2025, 41, 181–198. [Google Scholar] [CrossRef]
- Francoz, D.; Wellemans, V.; Dupre, J.P.; Roy, J.P.; Labelle, F.; Lacasse, P.; Dufour, S. Invited review: A systematic review and qualitative analysis of treatments other than conventional antimicrobials for clinical mastitis in dairy cows. J. Dairy Sci. 2017, 3, 7751–7770. [Google Scholar] [CrossRef]
- Al Noman, Z.A.; Anika, T.T.; Sachi, S.; Ferdous, J.; Sarker, Y.A.; Sabur, M.A.; Rahman, M.T.; Sikder, M.H. Evaluation of antibacterial efficacy of garlic (Allium sativum) and ginger (Zingiber officinale) crude extract against multidrug-resistant (MDR) poultry pathogen. J. Adv. Vet. Anim. Res. 2023, 10, 151–156. [Google Scholar] [CrossRef]
- Magrys, A.; Olender, A.; Tchorzewska, D. Antibacterial properties of Allium sativum L. against the most emerging multidrug-resistant bacteria and its synergy with antibiotics. Arch. Microbiol. 2021, 203, 2257–2268. [Google Scholar] [CrossRef]
- Le Minh, B.T.; Minh, N.H.Q.; Trang, H.N. The sensitivity of extended-spectrum beta-lactamase-producing Escherichia coli isolated from animal feces to antibiotics and Vietnamese garlic (Allium sativum L.) aqueous extracts in vitro. Vet. Integr. Sci. 2024, 22, 815–822. [Google Scholar] [CrossRef]
- Bhatwalkar, S.B.; Gound, S.S.; Mondal, R.; Srivastava, R.K.; Anupam, R. Anti-biofilm and Antibacterial Activity of Allium sativum Against Drug Resistant Shiga-Toxin Producing Escherichia coli (STEC) Isolates from Patient Samples and Food Sources. Indian J. Microbiol. 2019, 59, 171–179. [Google Scholar] [CrossRef]
- Akullo, J.O.; Kiage, B.; Nakimbugwe, D.; Kinyuru, J. Effect of aqueous and organic solvent extraction on in-vitro antimicrobial activity of two varieties of fresh ginger (Zingiber officinale) and garlic (Allium sativum). Heliyon 2022, 8, e10457. [Google Scholar] [CrossRef]
- Liu, J.; Mahmood, M.S.; Abbas, R.Z.; Dillawar, A.; Nawaz, Z.; Luqman, M.; Abbas, A.; Rehman, A.U.; Rafique, A. Therapeutic appraisal of ethanolic and aqueous extracts of clove (Syzygium aromaticum) and garlic (Allium sativum) as antimi-crobial agent. Pak. J. Agri. Sci. 2021, 58, 245–251. [Google Scholar] [CrossRef]
- Alam, S.; Bibi, A.; Khan, M.M.; Siddique, N.R.; Khalil, S.; Ayub, N. Antimicrobial activity of different spice herbs extracts against some pathogenic and nonpathogenic strains of E. Coli: In vitro-and in vivo-study. Fresenius Environ. Bull. 2021, 30, 8084–8094. [Google Scholar]
- Oyawoye, O.M.; Olotu, T.M.; Nzekwe, S.C.; Idowu, J.A.; Abdullahi, T.A.; Babatunde, S.O.; Ridwan, I.A.; Batiha, G.E.; Idowu, N.; Alorabi, M.; et al. Antioxidant potential and antibacterial activities of Allium cepa (onion) and Allium sativum (garlic) against the multidrug re-sistance bacteria. Bull. Natl. Res. Cent. 2022, 46, 214–217. [Google Scholar] [CrossRef]
Isolates | Dilution Concentration (µL/mL) | Amp a | Cef b | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
50 | 25 | 12.5 | 6.25 | 3.12 | 1.56 | 0.8 | 0.4 | 0.2 | 0.1 | |||
E. coli | ||||||||||||
E1 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
E2 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
E3 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
E4 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
E5 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
E6 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
E7 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
E8 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
E9 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
E10 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
S. aureus | ||||||||||||
S1 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
S2 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
S3 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
S4 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
S5 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
S6 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
S7 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
S8 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 0 | 100 | 100 |
S9 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
S10 | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
EATCC c | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
SATCC d | 100 | 100 | 100 | 100 | 100 | 100 | 0 | 0 | 0 | 0 | 100 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phuong, H.T.A.; Robison, C.; Ruegg, P.L. Evaluation of In Vitro Inhibitory Activity of Extracts of Garlic, Ginger, and Onion Against Escherichia coli and Staphylococcus aureus Isolated from Milk of Dairy Cows. Vet. Sci. 2025, 12, 947. https://doi.org/10.3390/vetsci12100947
Phuong HTA, Robison C, Ruegg PL. Evaluation of In Vitro Inhibitory Activity of Extracts of Garlic, Ginger, and Onion Against Escherichia coli and Staphylococcus aureus Isolated from Milk of Dairy Cows. Veterinary Sciences. 2025; 12(10):947. https://doi.org/10.3390/vetsci12100947
Chicago/Turabian StylePhuong, Hoang Thi Anh, Cara Robison, and Pamela Lynn Ruegg. 2025. "Evaluation of In Vitro Inhibitory Activity of Extracts of Garlic, Ginger, and Onion Against Escherichia coli and Staphylococcus aureus Isolated from Milk of Dairy Cows" Veterinary Sciences 12, no. 10: 947. https://doi.org/10.3390/vetsci12100947
APA StylePhuong, H. T. A., Robison, C., & Ruegg, P. L. (2025). Evaluation of In Vitro Inhibitory Activity of Extracts of Garlic, Ginger, and Onion Against Escherichia coli and Staphylococcus aureus Isolated from Milk of Dairy Cows. Veterinary Sciences, 12(10), 947. https://doi.org/10.3390/vetsci12100947