Uterine Disease in Dairy Cows: A Comprehensive Review Highlighting New Research Areas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Uterine Disease of Dairy Cows
2.1. Forms of Uterine Disease of Dairy Cows
2.1.1. Metritis: First 21 Days after Calving
2.1.2. Endometritis: From 21 Days after Calving
2.1.3. Pyometra: Between 42 and 60 Days after Calving
2.2. Risk Factors of Uterine Disease in Dairy Cows
2.3. Diagnostic Methods
3. Bacterial Flora of the Reproductive Tract
4. Disease Prevention
5. Treatment Options
6. Treatment Alternatives with Regard to Probiotics
Strains Used | Species | Target | Effects | References |
---|---|---|---|---|
Lactobacillus sakei FUA 3089 Pediococcus acidilactici FUA 3140 P. acidilactici FUA 3138 | cattle | vagina, before and after calving | Lowered incidence of uterine infections and purulent vaginal discharge, and improved local and systemic immune responses. Multiparous cows had greater milk production and feed efficiency. The concentration of plasma haptoglobin was lower. Increased concentrations of serum progesterone level and earlier cyclicity of ovaries. | [104,105,106,107] |
L. rhamnosus CECT 278 P. acidilactici CECT 5915 L. reuteri DSM 20016 | cattle | vagina, before calving | Reduced metritis prevalence | [108] |
L. rhamnosus CECT 278 P. acidilactici CECT 5915 L. reuteri DSM 20016 | cattle | vagina, before calving | LAB decreases the amount of E. coli in the endometrium ex vivo. | [109] |
L. buchneri DSM 32407 | cattle | uterus, lactating cows on d 24–30 postpartum | Stimulatory effect on the local immune system. A higher proportion of cows were pregnant after the first service. The endometrial mRNA expression of several pro-inflammatory factors was lower. | [112] |
Lactiplantibacillus plantarum KUGBRC P. pentosaceus GBRCKU | buffalo | vagina, after calving, with clinical endometritis | Reduced number of oestrus induction days and lower incidence of endometritis. | [113] |
L. rhamnosus P. acidilactici L. reuteri | cattle | vagina, before calving | Decreased incidence of metritis and increased conception rate in multiparous cows. | [114] |
L. farraginis NRIC 0676 L. rhamnosus NBRC 3425 | cattle | vagina, before and after calving | Lowered incidence rates of uterine infections, improved uterine involution and increased fertility | [115] |
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gilbert, R.O.; Shin, S.T.; Guard, C.L.; Erb, H.N.; Frajblat, M. Prevalence of endometritis and its effects on reproductive performance of dairy cows. Theriogenology 2005, 64, 1879–1888. [Google Scholar] [CrossRef]
- Hadley, G.L.; Wolf, C.A.; Harsh, S.B. Dairy cattle culling patterns, explanations and implications. J. Dairy Sci. 2006, 89, 2286–2296. [Google Scholar] [CrossRef]
- Nor, N.M.; Steeneweld, W.; Hogeveen, H. The average culling rate of Dutch dairy herds over the years 2007 to 2010 and its association with herd reproduction, performance and health. J. Dairy Res. 2014, 81, 1–8. [Google Scholar] [CrossRef]
- De Vries, A.; Olson, J.D.; Pinedo, P.J. Reproductive risk factors for culling and productive life in large dairy herds in the eastern United States between 2001 and 2006. J. Dairy Sci. 2010, 93, 613–623. [Google Scholar] [CrossRef]
- Fodor, I.; Ózsvári, L.; Búza, L. Reproductive management and major fertility parameters of cows in large-scale Hungarian dairy herds. Magy. Állatorv. Lapja. 2016, 138, 653–662. [Google Scholar]
- Pérez-Báez, J.; Silva, T.V.; Risco, C.A.; Chebel, R.C.; Cunha, F.; De Vries, A.; Santos, J.E.P.; Lima, F.S.; Pinedo, P.; Schuenemann, G.M.; et al. The economic cost of metritis in dairy herds. J. Dairy Sci. 2021, 104, 3158–3168. [Google Scholar] [CrossRef] [PubMed]
- Kern, L.; Fodor, I.; Balogh, O.G.; Ózsvári, L.; Gábor, G. The impact of postpartum uterine diseases on reproductive performance and their economic losses on large Hungarian dairy farms. Magy. Állatorv. Lapja. 2018, 140, 717–726. [Google Scholar]
- Sheldon, I.M.; Dobson, H. Postpartum uterine health in cattle. Anim. Reprod. Sci. 2004, 82–83, 295–306. [Google Scholar] [CrossRef] [PubMed]
- Sheldon, I.M.; Lewis, G.S.; LeBlanc, S.; Gilbert, R.O. Defining postpartum uterine disease in cattle. Theriogenology 2006, 65, 1516–1530. [Google Scholar] [CrossRef]
- Bajcsy, Á.C. Uterine infections affect involution in dairy cows. In Proceedings of the X Scientific Symposium on Domestic Animals Reproduction and Mammary Gland Diseases, Divcibare, Serbia, 10–13 October 2019; pp. 79–100, ISBN 978-86-80446-28-8. [Google Scholar]
- Sheldon, I.M.; Cronin, J.; Goetze, L.; Donofrio, G.; Schuberth, H.J. Defining Postpartum Uterine Disease and the Mechanisms of Infection and Immunity in the Female Reproductive Tract in Cattle. Biol. Reprod. 2009, 81, 1025–1032. [Google Scholar] [CrossRef] [PubMed]
- LeBlanc, S.J. Postpartum uterine disease and dairy herd reproductive performance: A review. Vet. J. 2008, 176, 102–114. [Google Scholar] [CrossRef]
- Goshen, T.; Shpigel, N.Y. Evaluation of intrauterine antibiotic treatment of clinical metritis and retained fetal membranes in dairy cows. Theriogenology 2006, 66, 2210–2218. [Google Scholar] [CrossRef] [PubMed]
- Galvao, K.N. Postpartum uterine diseases in dairy cows. Anim. Reprod. 2012, 9, 290–296. [Google Scholar]
- Vallejo-Timaran, D.A.; Reyes, J.; Gilbert, R.O.; Lefebvre, R.C.; Palacio-Baena, L.G.; Maldonado-Estrada, J.G. Incidence, clinical patterns, and risk factors of postpartum uterine diseases in dairy cows from high-altitude tropical herds. J. Dairy Sci. 2021, 104, 9016–9026. [Google Scholar] [CrossRef] [PubMed]
- Williams, E.J.; Fischer, D.P.; England, G.C.W.; Dobson, H.; Pfeiffer, D.U.; Sheldon, I.M. Clinical evaluation of postpartum vaginal mucus reflects uterine bacterial infection and the inflammatory response to endometritis in cattle. Theriogenology 2005, 63, 102–117. [Google Scholar] [CrossRef] [PubMed]
- Szenci, O.; Buják, D.; Bajcsy, Á.C.; Horváth, A.; Han, B.; Szelényi, Z. Diagnosis and treatment of post parturient uterine diseases in dairy cows Literature review. Magy. Állatorv. Lapja. 2015, 137, 271–282. [Google Scholar]
- Adnane, M.; Kaidi, R.; Hanzen, C.; England, G. Risk factors of clinical and subclinical endometritis in cattle: A review. Turk. J. Vet. Anim. Sci. 2017, 41, 1–11. [Google Scholar] [CrossRef]
- Sheldon, I.M.; Owens, S.E. Postpartum uterine infection and endometritis in dairy cattle. In Proceedings of the 33rd Annual Scientific Meeting of the European Embryo Transfer Association (AETE), Bath, UK, 8–9 September 2017. [Google Scholar] [CrossRef]
- Kim, I.H.; Na, K.J.; Yang, M.P. Immune Responses during the Peripartum Period in Dairy Cows with Postpartum Endometritis. J. Reprod. Dev. 2005, 51, 757–764. [Google Scholar] [CrossRef]
- Salasel, B.; Mokhtari, A.; Taktaz, T. Prevalence, risk factors for and impact of subclinical endometritis in repeat breeder dairy cows. Theriogenology 2010, 74, 1271–1278. [Google Scholar] [CrossRef]
- Pothmann, H.; Prunner, I.; Wagener, K.; Jaureguiberry, M.; de la Sota, R.L.; Erber, R.; Aurich, C.; Ehling-Schulz, M.; Drillich, M. The prevalence of subclinical endometritis and intrauterine infections in repeat breeder cows. Theriogenology 2015, 83, 1249–1253. [Google Scholar] [CrossRef]
- Könyves, L.; Szenci, O.; Jurkovich, V.; Tegzes, L.; Tirián, A.; Solymosi, N.; Gyulay, G.; Brydl, E. Risk assessment of postpartum uterine disease and consequences of puerperal metritis for subsequent metabolic status, reproduction and milk yield in dairy cows. Acta Vet. Hung. 2009, 57, 155–169. [Google Scholar] [CrossRef] [PubMed]
- Póth-Szebenyi, B.; Varga-Balogh, O.; Kern, L.; Stefler, J.; Ivanyos, D.; Gábor, G. Postpartum involution disorders in cattle especially due to subclinical endometritis. Literature review. Magy. Állatorv. Lapja 2021, 143, 529–540. [Google Scholar]
- Hossein-Zadeh, N.G.; Ardalan, M. Cow-specific risk factors for retained placenta, metritis and clinical mastitis in Holstein cows. Vet. Res. Commun. 2011, 35, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Gautam, G.; Nakao, T.; Koike, K.; Long, S.T.; Yusuf, M.; Ranasinghe, R.M.; Hayashi, A. Spontaneous recovery or persistence of postpartum endometritis and risk factors for its persistence in Holstein cows. Theriogenology 2010, 73, 168–179. [Google Scholar] [CrossRef] [PubMed]
- Potter, T.J.; Guitian, J.; Fishwick, J.; Gordon, P.J.; Sheldon, I.M. Risk factors for clinical endometritis in postpartum dairy cattle. Theriogenology 2010, 74, 127–134. [Google Scholar] [CrossRef] [PubMed]
- Karstrup, C.C.; Pedersen, H.G.; Jensen, T.K.; Agerholm, J.S. Bacterial invasion of the uterus and oviducts in bovine pyometra. Theriogenology 2017, 93, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Cheong, S.H.; Nydam, D.V.; Galvão, K.N.; Crosier, B.M.; Gilbert, R.O. Cow-level and herd-level risk factors for subclinical endometritis in lactating Holstein cows. J. Dairy Sci. 2011, 94, 762–770. [Google Scholar] [CrossRef]
- Dubuc, J.; Duffield, T.F.; Leslie, K.E.; Walton, J.S.; LeBlanc, S.J. Definitions and diagnosis of postpartum endometritis in dairy cows. J. Dairy Sci. 2010, 93, 5225–5233. [Google Scholar] [CrossRef]
- McDougall, S.; Macaulay, R.; Compton, C. Association between endometritis diagnosis using a novel intravaginal device and reproductive performance in dairy cattle. Anim. Reprod. Sci. 2007, 99, 9–23. [Google Scholar] [CrossRef]
- Pleticha, S.; Drillich, M.; Heuwieser, W. Evaluation of the Metricheck device and the gloved hand for the diagnosis of clinical endometritis in dairy cows. J. Dairy Sci. 2009, 92, 5429–5435. [Google Scholar] [CrossRef]
- Denis-Robichaud, J.; Dubuc, J. Determination of optimal diagnostic criteria for purulent vaginal discharge and cytological endometritis in dairy cows. J. Dairy Sci. 2015, 98, 6848–6855. [Google Scholar] [CrossRef]
- Wagener, K.; Gabler, C.; Drillich, M. A review of the ongoing discussion about definition, diagnosis and pathomechanism of subclinical endometritis in dairy cows. Theriogenology 2017, 94, 21–30. [Google Scholar] [CrossRef]
- Kelly, E.; McAloon, C.G.; O’Grady, L.; Duane, M.; Somers, J.R.; Beltman, M.E. Cow-level risk factors for reproductive tract disease diagnosed by 2 methods in pasture-grazed dairy cattle in Ireland. J. Dairy Sci. 2020, 103, 737–749. [Google Scholar] [CrossRef]
- Sun, D.; Wu, R.; He, X.; Wang, S.; Lin, Y.; Han, X.; Wang, Y.; Guo, T.; Wu, G.; Yang, K. Development of a Multiplex PCR for Diagnosis of Staphylococcus aureus, Escherichia coli and Bacillus cereus from Cows with Endometritis. Agric. Sci. China 2011, 10, 1624–1629. [Google Scholar] [CrossRef]
- Cheong, S.H.; Nydam, D.V.; Galvão, K.N.; Crosier, B.M.; Ricci, A.; Caixeta, L.S.; Sper, R.B.; Fraga, M.; Gilbert, R.O. Use of reagent test strips for diagnosis of endometritis in dairy cows. Theriogenology 2012, 77, 858–864. [Google Scholar] [CrossRef]
- Lima, F.S. Recent advances and future directions for uterine disease diagnosis, pathogenesis, and management in dairy cows. Anim. Reprod. 2020, 17, e20200063. [Google Scholar] [CrossRef]
- Kasimanickam, R.; Duffield, T.F.; Foster, R.A.; Gartley, C.J.; Leslie, K.E.; Walton, J.S.; Johnson, W.H. Endometrial cytology and ultrasonography for the detection of subclinical endometritis in postpartum dairy cows. Theriogenology 2004, 62, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Kasimanickam, R.; Duffield, T.F.; Foster, R.A.; Gartley, C.J.; Leslie, K.E.; Walton, J.S.; Johnson, W.H. A comparison of the cytobrush and uterine lavage techniques to evaluate endometrial cytology in clinically normal postpartum dairy cows. Can. Vet. J. 2005, 46, 255–259. [Google Scholar] [PubMed]
- Pascottini, O.B.; Dini, P.; Hostens, M.; Ducatelle, R.; Opsomer, G. A novel cytologic sampling technique to diagnose subclinical endometritis and comparison of staining methods for endometrial cytology samples in dairy cows. Theriogenology 2015, 84, 1438–1446. [Google Scholar] [CrossRef] [PubMed]
- Szenci, O. Recent possibilities for diagnosis and treatment of postparturient uterine diseases in dairy cow. JFIV Reprod. Med. Genet. 2016, 4, 170. [Google Scholar] [CrossRef]
- Van Schyndel, S.J.; Pascottini, O.B.; LeBlanc, S.J. Comparison of cow-side diagnostic techniques for subclinical endometritis in dairy cows. Theriogenology 2018, 120, 117–122. [Google Scholar] [CrossRef]
- Baranski, W.; Podhalicz-Dziegielewska, M.; Zdunczyk, S.; Janowski, T. The diagnosis and prevalence of subclinical endometritis in cows evaluated by different cytologic thresholds. Theriogenology 2012, 78, 1939–1947. [Google Scholar] [CrossRef]
- McDougall, S.; Hussein, H.; Aberdein, D.; Buckle, K.; Roche, J.; Burke, C.; Mitchell, M.; Meier, S. Relationships between cytology, bacteriology and vaginal discharge scores and reproductive performance in dairy cattle. Theriogenology 2011, 76, 229–240. [Google Scholar] [CrossRef]
- Sharma, A.; Singh, M.; Kumar, P.; Sharma, A.; Jan, A.M.; Sharma, A.; Kashyap, A.; Thakur, A.; Saini, P.; Gupta, S. Pyometra in a Jersey crossbred cow—Diagnosis and treatment. Explor. Anim. Med. Res. 2018, 8, 97–99. [Google Scholar]
- Gomez, D.E.; Galvão, K.N.; Rodriguez-Lecompte, J.C.; Costa, M.C. The cattle microbiota and the immune system—An evolving field. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 485–505. [Google Scholar] [CrossRef]
- Otero, C.; Saavedra, L.; Silva de Ruiz, C.; Wilde, O.; Holgado, A.R.; Nader-Macías, M.E. Vaginal bacterial microflora modifications during the growth of healthy cows. Lett. Appl. Microbiol. 2000, 31, 251–254. [Google Scholar] [CrossRef] [PubMed]
- Quereda, J.J.; Barba, M.; Mocé, M.L.; Gomis, J.; Jiménez-Trigos, E.; García-Muñoz, Á.; Gómez-Martín, Á.; González-Torres, P.; Carbonetto, B.; García-Roselló, E. Vaginal Microbiota Changes During Estrous Cycle in Dairy Heifers. Front. Vet. Sci. 2020, 7, 371. [Google Scholar] [CrossRef] [PubMed]
- Ault, T.B.; Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.L.; Edwards, J.L.; Myer, P.R.; Pohler, K.G. Bacterial taxonomic composition of the postpartum cow uterus and vagina prior to artificial insemination. J. Anim. Sci. 2019, 97, 4305–4313. [Google Scholar] [CrossRef] [PubMed]
- Ault, T.B.; Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.L.; Edwards, J.L.; Myer, P.R.; Pohler, K.G. Uterine and vaginal bacterial community diversity prior to artificial insemination between pregnant and nonpregnant postpartum cows. J. Anim. Sci. 2019, 97, 4298–4304. [Google Scholar] [CrossRef] [PubMed]
- Westermann, S.; Drillich, M.; Kaufmann, T.B.; Madoz, L.V.; Heuwieser, W. A clinical approach to determine false positive findings of clinical endometritis by vaginoscopy by the use of uterine bacteriology and cytology in dairy cows. Theriogenoogy 2010, 74, 1248–1255. [Google Scholar] [CrossRef] [PubMed]
- Udhayavel, S.; Malmarugan, S.; Palanisamy, K.; Rajeswar, J. Antibiogram pattern of bacteria causing endometritis in cows. Vet. World 2013, 6, 100–102. [Google Scholar] [CrossRef]
- Knudsen, L.R.V.; Karstrup, C.C.; Pedersen, H.G.; Angen, Ø.; Agerholm, J.S.; Rasmussen, E.L.; Jensen, T.K.; Klitgaard, K. An investigation of the microbiota in uterine flush samples and endometrial biopsies from dairy cows during the first 7 weeks postpartum. Theriogenology 2016, 86, 642–650. [Google Scholar] [CrossRef]
- Silva, L.P.; Ramos, S.A.; Cavalcanti Neto, C.C.; dos Santos, T.M.C.; de Oliveira, J.A.C.; dos Santos, M.T.; da Silva, J.M.; Brito Neto, J.S.; Montaldo, Y.C. Vaginal microbiota of nulliparous and multiparous cows and their resistance to antimicrobials. Med. Vet. (UFRPE) Recife 2019, 13, 474–481. [Google Scholar] [CrossRef]
- Laguardia-Nascimento, M.; Branco, K.M.; Gasparini, M.R.; Giannattasio-Ferraz, S.; Leite, L.R.; Araujo, F.M.; Salim, A.C.; Nicoli, J.R.; de Oliveira, G.C.; Barbosa-Stancioli, E.F. Vaginal Microbiome Characterization of Nellore Cattle Using Metagenomic Analysis. PLoS ONE 2015, 10, e0143294. [Google Scholar] [CrossRef]
- Chen, S.Y.; Deng, F.; Zhang, M.; Jia, X.; Lai, S.J. Characterization of Vaginal Microbiota Associated with Pregnancy Outcomes of Artificial Insemination in Dairy Cows. J. Microbiol. Biotechnol. 2020, 30, 804–810. [Google Scholar] [CrossRef]
- Swartz, J.D.; Lachman, M.; Westveer, K.; O’Neill, T.; Geary, T.; Kott, R.W.; Berardinelli, J.G.; Hatfield, P.G.; Thomson, J.M.; Roberts, A.; et al. Characterization of the vaginal microbiota of ewes and cows reveals a unique microbiota with low levels of lactobacilli and near-neutral pH. Front. Vet. Sci. 2014, 1, 19. [Google Scholar] [CrossRef]
- Miranda-CasoLuengo, R.; Lu, J.; Williams, E.J.; Miranda-CasoLuengo, A.A.; Carrington, S.D.; Evans, A.C.O.; Meijer, W.G. Delayed differentiation of vaginal and uterine microbiomes in dairy cows developing postpartum endometritis. PLoS ONE 2019, 14, e0200974. [Google Scholar] [CrossRef]
- Jeon, S.J.; Vieira-Neto, A.; Gobikrushanth, M.; Daetz, R.; Mingoti, R.D.; Parize, A.C.; de Freitas, S.L.; da Costa, A.N.; Bicalho, R.C.; Lima, S.; et al. Uterine Microbiota Progression from Calving until Establishment of Metritis in Dairy Cows. Appl. Environ. Microbiol. 2015, 81, 6324–6332. [Google Scholar] [CrossRef] [PubMed]
- Tasara, T.; Meier, A.B.; Wambui, J.; Whiston, R.; Stevens, M.; Chapwanya, A.; Bleu, U. Interrogating the Diversity of Vaginal, Endometrial, and Fecal Microbiomes in Healthy and Metritis Dairy Cattle. Animals 2023, 13, 1221. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.L.; Liu, M.C.; Xu, J.; An, L.G.; Wang, J.F.; Zhu, Y.H. Uterine Microbiota of Dairy Cows with Clinical and Subclinical Endometritis. Front. Microbiol. 2018, 9, 2691. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, M.L.S.; Lima, S.; Higgins, C.H.; Machado, V.S.; Lima, F.S.; Bicalho, R.C. Genetic and functional analysis of the bovine uterine microbiota. Part II: Purulent vaginal discharge versus healthy cows. J. Dairy Sci. 2017, 100, 3863–3874. [Google Scholar] [CrossRef]
- Pascottini, O.B.; Van Schyndel, S.J.; Spricigo, J.F.W.; Rousseau, J.; Weese, J.S.; LeBlanc, S.J. Dynamics of uterine microbiota in postpartum dairy cows with clinical or subclinical endometritis. Sci. Rep. 2020, 10, 12353. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, J.; Sun, C.; Liu, C.; Yang, Y.; Lu, W. Comparison of vaginal microbial community structure in healthy and endometritis dairy cows by PCR-DGGE and real-time PCR. Anaerobe 2016, 38, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez Moreno, C.; Torres Luque, A.; Oliszewski, R.; Rosa, R.J.; Otero, M.C. Characterization of native Escherichia coli populations from bovine vagina of healthy heifers and cows with postpartum uterine disease. PLoS ONE 2020, 15, e0228294. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, N.F.; Kästle, J.; Coutinho, T.J.; Amorim, A.T.; Campos, G.B.; Santos, V.M.; Marques, L.M.; Timenetsky, J.; de Farias, S.T. Qualitative analysis of the vaginal microbiota of healthy cattle and cattle with genital-tract disease. Genet. Mol. Res. 2015, 14, 6518–6528. [Google Scholar] [CrossRef] [PubMed]
- Kudo, H.; Sugiura, T.; Higashi, S.; Oka, K.; Takahashi, M.; Kamiya, S.; Tamura, Y.; Usui, M. Characterization of Reproductive Microbiota of Primiparous Cows During Early Postpartum Periods in the Presence and Absence of Endometritis. Front. Vet. Sci. 2021, 8, 736996. [Google Scholar] [CrossRef]
- Bicalho, M.L.S.; Santin, T.; Rodrigues, M.X.; Marques, C.E.; Lima, S.F.; Bicalho, R.C. Dynamics of the microbiota found in the vaginas of dairy cows during the transition period: Associations with uterine diseases and reproductive outcome. J. Dairy Sci. 2017, 100, 3043–3058. [Google Scholar] [CrossRef]
- Quadros, D.L.; Zanella, R.; Bondan, C.; Zanella, G.C.; Facioli, F.L.; da Silva, A.N.; Zanella, E.L. Study of vaginal microbiota of Holstein cows submitted to an estrus synchronization protocol with the use of intravaginal progesterone device. Res. Vet. Sci. 2020, 131, 1–6. [Google Scholar] [CrossRef]
- Pascottini, O.B.; Spricigo, J.F.W.; Van Schyndel, S.J.; Mion, B.; Rousseau, J.; Weese, J.S.; LeBlanc, S.J. Effects of parity, blood progesterone, and non-steroidal anti-inflammatory treatment on the dynamics of the uterine microbiota of healthy postpartum dairy cows. PLoS ONE 2021, 16, e0233943. [Google Scholar] [CrossRef]
- Galvao, K.N. Uterine diseases in dairy cows: Understanding the causes and seeking solutions. Anim. Reprod. 2013, 10, 228–238. [Google Scholar]
- Sheldon, I.M.; Molinari, P.C.C.; Ormsby, T.J.R.; Bromfield, J.J. Preventing postpartum uterine disease in dairy cattle depends on avoiding, tolerating and resisting pathogenic bacteria. Theriogenology 2020, 150, 158–165. [Google Scholar] [CrossRef]
- Pulfer, K.W.; Riese, R.L. Treatment of Postpartum Metritis in Dairy Cows. Iowa State Univ. Vet. 1991, 53, 6. Available online: https://lib.dr.iastate.edu/iowastate_veterinarian/vol53/iss1/6 (accessed on 20 July 2023).
- Silva, T.V.; de Oliveira, E.B.; Pérez-Báez, J.; Risco, C.A.; Chebel, R.C.; Cunha, F.; Daetz, R.; Santos, J.E.P.; Lima, F.S.; Jeong, K.C.; et al. Economic comparison between ceftiofur-treated and nontreated dairy cows with metritis. J. Dairy Sci. 2021, 104, 8918–8930. [Google Scholar] [CrossRef]
- Negasee, K.A. Clinical metritis and endometritis in dairy cattle: A review. Vet. Med. Open J. 2020, 5, 51–56. [Google Scholar] [CrossRef]
- Galvao, K.N.; Frajblat, M.; Brittin, S.B.; Butler, W.R.; Guard, C.L.; Gilbert, R.O. Effect of prostaglandin F2α on subclinical endometritis and fertility in dairy cows. J. Dairy Sci. 2009, 92, 4906–4913. [Google Scholar] [CrossRef]
- McDougall, S. Effect of intrauterine antibiotic treatment on reproductive performance of dairy cows following periparturient disease. N. Z. Vet. J. 2001, 49, 150–158. [Google Scholar] [CrossRef]
- Brick, T.A.; Schuenemann, G.M.; Bas, S.; Daniels, J.B.; Pinto, C.R.; Rings, D.M.; Rajala-Schultz, P.J. Effect of intrauterine dextrose or antibiotic therapy on reproductive performance of lactating dairy cows diagnosed with clinical endometritis. J. Dairy Sci. 2012, 95, 1894–1905. [Google Scholar] [CrossRef]
- Honparkhe, M.; Kumar, A.; Singh, A.K.; Dadarwal, D.; Dhaliwal, G.S. Efficacy of various intrauterine therapies against uterine infections in repeat breeding cattle. Indian Vet. J. 2017, 94, 46–47. [Google Scholar]
- Shams-Esfandabadi, N.; Shirazi, A.; Ghasemzadeh-nava, H. Pregnancy rate following post-insemination intrauterine treatment of endometritis in dairy cattle. J. Vet. Med. Ser. A 2004, 51, 155–156. [Google Scholar] [CrossRef]
- Haimerl, P.; Arlt, S.; Borchardt, S.; Heuwieser, W. Antibiotic treatment of metritis in dairy cows—A meta-analysis. J. Dairy Sci. 2017, 100, 3783–3795. [Google Scholar] [CrossRef]
- Haimerl, P.; Heuwieser, W. Invited review: Antibiotic treatment of metritis in dairy cows: A systematic approach. J. Dairy Sci. 2014, 97, 6649–6661. [Google Scholar] [CrossRef]
- Jeon, S.J.; Lima, F.S.; Vieira-Neto, A.; Machado, V.S.; Lima, S.F.; Bicalho, R.C.; Santos, J.E.P.; Galvão, K.N. Shift of uterine microbiota associated with antibiotic treatment and cure of metritis in dairy cows. Vet. Microbiol. 2018, 214, 132–139. [Google Scholar] [CrossRef]
- Ma, Z.; Ginn, A.; Kang, M.; Galvão, K.N.; Jeong, K.C. Genomic and Virulence Characterization of Intrauterine Pathogenic Escherichia coli With Multi-Drug Resistance Isolated From Cow Uteri With Metritis. Front. Microbiol. 2018, 9, 3137. [Google Scholar] [CrossRef]
- Merenda, V.R.; Lezier, D.; Odetti, A.; Figueiredo, C.C.; Risco, C.A.; Bisinotto, R.S.; Chebel, R.C. Effects of metritis treatment strategies on health, behavior, reproductive, and productive responses of Holstein cows. J. Dairy Sci. 2020, 104, 2056–2073. [Google Scholar] [CrossRef]
- Lima, F.S.; Vieira-Neto, A.; Snodgrass, J.A.; De Vries, A.; Santos, J.E.P. Economic comparison of systemic antimicrobial therapies for metritis in dairy cows. J. Dairy Sci. 2019, 102, 7345–7358. [Google Scholar] [CrossRef]
- Drillich, M.; Raab, D.; Wittke, M.; Heuwieser, W. Treatment of chronic endometritis in dairy cows with an intrauterine application of enzymes. A field trial. Theriogenology 2005, 63, 1811–1823. [Google Scholar] [CrossRef]
- Machado, V.S.; Bicalho, M.L.; Meira Junior, E.B.; Rossi, R.; Ribeiro, B.L.; Lima, S.; Santos, T.; Kussler, A.; Foditsch, C.; Ganda, E.K.; et al. Subcutaneous Immunization with Inactivated Bacterial Components and Purified Protein of Escherichia coli, Fusobacterium necrophorum and Trueperella pyogenes Prevents Puerperal Metritis in Holstein Dairy Cows. PLoS ONE 2014, 9, e91734. [Google Scholar] [CrossRef]
- Pinedo, P.J.; Caixeta, L.S.; Barrell, E.A.; Velez, J.; Manriquez, D.; Herman, J.; Holt, T. A randomized controlled clinical trial on the effect of acupuncture therapy in dairy cows affected by pyometra. Res. Vet. Sci. 2020, 133, 12–16. [Google Scholar] [CrossRef]
- Barragan, A.A.; Bas, S.; Hovingh, E.; Byler, L. Effects of postpartum acetylsalicylic acid on uterine diseases and reproductive performance in dairy cattle. JDS Commun. 2021, 2, 67–72. [Google Scholar] [CrossRef]
- Barreto, M.O.; Soust, M.; Moore, R.J.; Olchowy, T.W.J.; Alawneh, J.I. Systematic review and meta-analysis of probiotic use on inflammatory biomarkers and disease prevention in cattle. Prev. Vet. Med. 2021, 194, 105433. [Google Scholar] [CrossRef]
- FAO and WHO: Health and Nutrition Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria Report of a Joint FAO/WHO Expert Consultation on Evaluation of Health and Nutritional Properties of Probiotics in Food including Powder Milk with Live Lactic Acid Bacteria Cordoba, Argentina, 1–4 October 2001. Available online: https://www.fao.org/3/a0512e/a0512e.pdf (accessed on 25 July 2023).
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Rosales, E.B.; Ametaj, B.N. Reproductive Tract Infections in Dairy Cows: Can Probiotics Curb Down the Incidence Rate? Dairy 2021, 2, 40–64. [Google Scholar] [CrossRef]
- Otero, M.C.; Morelli, L.; Nader-Macías, M.E. Probiotic properties of vaginal lactic acid bacteria to prevent metritis in cattle. Lett. Appl. Microbiol. 2006, 43, 91–97. [Google Scholar] [CrossRef]
- Nader-Macías, M.E.; Otero, M.C.; Espeche, M.C.; Maldonado, N.C. Advances in the design of probiotic products for the prevention of major diseases in dairy cattle. J. Ind. Microbiol. Biotechnol. 2008, 35, 1387–1395. [Google Scholar] [CrossRef]
- Genís, S.; Sánchez-Chardi, A.; Bach, A.; Fàbregas, F.; Arís, A. A combination of lactic acid bacteria regulates Escherichia coli infection and inflammation of the bovine endometrium. J. Dairy Sci. 2017, 100, 479–492. [Google Scholar] [CrossRef]
- Genís, S.; Bach, A.; Fàbregas, F.; Arís, A. Potential of lactic acid bacteria at regulating Escherichia coli infection and inflammation of bovine endometrium. Theriogenology 2016, 85, 625–637. [Google Scholar] [CrossRef]
- Liu, M.; Wu, Q.; Wang, M.; Fu, Y.; Wang, J. Lactobacillus rhamnosus GR-1 Limits Escherichia coli-Induced Inflammatory Responses via Attenuating MyD88-Dependent and MyD88-Independent Pathway Activation in Bovine Endometrial Epithelial Cells. Inflammation 2016, 39, 1483–1494. [Google Scholar] [CrossRef]
- Wang, Y.; Ametaj, B.N.; Ambrose, D.J.; Gänzle, M.G. Characterisation of the bacterial microbiota of the vagina of dairy cows and isolation of pediocinproducing Pediococcus acidilactici. BMC Microbiol. 2013, 13, 19. [Google Scholar] [CrossRef]
- Rodríguez, C.; Cofré, J.V.; Sánchez, M.; Fernández, P.; Boggiano, G.; Castro, E. Lactobacilli isolated from vaginal vault of dairy and meat cows during progesteronic stage of estrous cycle. Anaerobe 2011, 17, 15–18. [Google Scholar] [CrossRef]
- Niu, C.; Cheng, C.; Liu, Y.; Huang, S.; Fu, Y.; Li, P. Transcriptome profiling analysis of bovine vaginal epithelial cell response to an isolated Lactobacillus strain. mSystems 2019, 4, e00268-19. [Google Scholar] [CrossRef]
- Ametaj, B.N.; Iqbal, S.; Selami, F.; Odhiambo, J.F.; Wang, Y.; Gänzle, M.G.; Dunn, S.M.; Zebeli, Q. Intravaginal administration of lactic acid bacteria modulated the incidence of purulent vaginal discharges, plasma haptoglobin concentrations, and milk production in dairy cows. Res. Vet. Sci. 2014, 96, 365–370. [Google Scholar] [CrossRef]
- Deng, Q.; Odhiambo, J.F.; Farooq, U.; Lam, T.; Dunn, S.M.; Ametaj, B.N. Intravaginal Lactic Acid Bacteria Modulated Local and Systemic Immune Responses and Lowered the Incidence of Uterine Infections in Periparturient Dairy Cows. PLoS ONE 2015, 10, e0124167. [Google Scholar] [CrossRef]
- Deng, Q.; Odhiambo, J.F.; Farooq, U.; Lam, T.; Dunn, S.M.; Gänzle, M.G.; Ametaj, B.N. Intravaginally administered lactic acid bacteria expedited uterine involution and modulated hormonal profiles of transition dairy cows. J. Dairy Sci. 2015, 98, 1–11. [Google Scholar] [CrossRef]
- Deng, Q.; Odhiambo, J.F.; Farooq, U.; Lam, T.; Dunn, S.M.; Ametaj, B.N. Intravaginal probiotics modulated metabolic status and improved milk production and composition of transition dairy cows. J. Anim. Sci. 2016, 94, 760–770. [Google Scholar] [CrossRef]
- Genís, S.; Cerri, R.L.A.; Bach, À.; Silper, B.F.; Baylão, M.; Denis-Robichaud, J.; Arís, A. Pre-calving Intravaginal Administration of Lactic Acid Bacteria Reduces Metritis Prevalence and Regulates Blood Neutrophil Gene Expression After Calving in Dairy Cattle. Front. Vet. Sci. 2018, 5, 135. [Google Scholar] [CrossRef]
- Genís, S.; Bach, A.; Arís, A. Effects of intravaginal lactic acid bacteria on bovine endometrium: Implications in uterine health. Vet. Microbiol. 2017, 204, 174–179. [Google Scholar] [CrossRef]
- Yang, L.; Huang, W.; Yang, C.; Ma, T.; Hou, Q.; Sun, Z.; Zhang, H. Using PacBio sequencing to investigate the effects of treatment with lactic acid bacteria or antibiotics on cow endometritis. Electr. J. Biotechnol. 2021, 51, 67–78. [Google Scholar] [CrossRef]
- García-Galán, A.; De la Fe, C.; Gomis, J.; Bataller, E.; Sánchez, A.; Quereda, J.J.; García-Roselló, E.; Gómez-Martín, A. The addition of Lactobacillus spp. negatively affects Mycoplasma bovis viability in bovine cervical mucus. BMC Vet. Res. 2020, 16, 251. [Google Scholar] [CrossRef]
- Peter, S.; Gärtner, M.A.; Michel, G.; Ibrahim, M.; Klopfleisch, R.; Lübke-Becker, A.; Jung, M. Infuence of intrauterine administration of Lactobacillus buchneri on reproductive performance and pro-infammatory endometrial mRNA expression of cows with subclinical endometritis. Sci. Rep. 2018, 8, 5473. [Google Scholar] [CrossRef]
- Gohil, P.; Nanavati, B.; Patel, K.; Suthar, V.; Joshi, M.; Patil, D.B.; Joshi, C.G. Assessing the efficacy of probiotics in augmenting bovine reproductive health: An integrated in vitro, in silico, and in vivo study. Front. Microbiol. 2023, 14, 1137611. [Google Scholar] [CrossRef]
- Madureira, A.M.L.; Burnett, T.A.; Boyd, C.T.; Baylão, M.; Cerri, R.L.A. Use of intravaginal lactic acid bacteria prepartum as an approach for preventing uterine disease and its association with fertility of lactating dairy cows. J. Dairy Sci. 2023, 106, 4860–4873. [Google Scholar] [CrossRef]
- El-Garhi, M.S.; El-Bordeny, N.E. Impact of intravaginal probiotics inoculation on reproductive performance of Holstein dairy cattle during transition period. Assiut Vet. Med. J. 2019, 65, 63–70. [Google Scholar] [CrossRef]
- Styková, E.; Nemcova, R.; Gancarikova, S.; Valocka, I.; Lauková, A. Bovine vaginal lactobacilli and their adherence to mucus in different phases of the estrous cycle. African J. Microbiol. Res. 2014, 8, 3017–3024. [Google Scholar] [CrossRef]
- Clemmons, B.A.; Reese, S.T.; Dantas, F.G.; Franco, G.A.; Smith, T.P.L.; Adeyosoye, O.I.; Pohler, K.G.; Myer, P.R. Vaginal and Uterine Bacterial Communities in Postpartum Lactating Cows. Front. Microbiol. 2017, 8, 1047. [Google Scholar] [CrossRef]
- Beckwith-Cohen, B.; Koren, O.; Blum, S.; Elad, D. Variations in Vaginal pH in Dairy Cattle Associated with Parity and the Periparturient Period. Israel J. Vet. Med. 2012, 67, 55–59. [Google Scholar]
- Miranda, M.H.; Ficoseco, C.A.; Nader-Macías, M.E.F. Safety, environmental and technological characterization of beneficial autochthonous lactic bacteria, and their vaginal administration to pregnant cows for the design of homologous multi-strain probiotic formulas. Brazil. J. Microbiol. 2021, 52, 2455–2473. [Google Scholar] [CrossRef]
- Shridhar, P.B.; Amachawadi, R.G.; Tokach, M.; Patel, I.; Gangiredla, J.; Mammel, M.; Nagaraja, T.G. Whole genome sequence analyses-based assessment of virulence potential and antimicrobial susceptibilities and resistance of Enterococcus faecium strains isolated from commercial swine and cattle probiotic products. J. Anim. Sci. 2022, 100, skac030. [Google Scholar] [CrossRef]
Strains Used | Species | Source | Effects | References |
---|---|---|---|---|
76 Lactobacillus spp. strains 7 Streptococcus spp. strains | cattle | Vagina | Although most strains were able to inhibit E. coli due to their acid production, only a few strains were able to inhibit T. pyogenes. | [96] |
82 Lactobacillus strains; Lactobacillus fermentum L. gasseri CRL1412, L. gasseri CRL1421, L. delbrueckii subsp. delbrueckii CRL1461 | cattle | vaginal swab | 95% produced H2O2; more than 80% produced lactic acid; no strains were bacteriocin producers. Listed isolates were able to inhibit E. coli or T. pyogenes. | [97] |
Pediococcus acidilactici CECT 5915, L. sakei DSM 20100, L. reuteri DSM 20016, L. rhamnosus CECT 278 | cattle | obtained from bacterium strain collections | Inhibition of infection with E. coli when inflammation is present. The combination of L. rhamnosus ratio 25, P. acidilactici ratio 25 and L. reuteri ratio 2 was most effective in reducing E. coli infection with or without basal tissue inflammation compared to single LAB strains. | [98,99] |
Lactobacillus rhamnosus GR-1, ATCC 55826 | cattle | obtained from bacterium strain collections | Limits the inflammatory response to E. coli infection and subsequent endometrial epithelial cell damage. | [100] |
Pediococcus acidilactici (FUA3138 and FUA3140) | cattle | vaginal swab | Production of bacteriocin against E. coli. | [101] |
Lactobacillus spp. (mainly L. plantarum, and L. rhamnosus, L. curvatus, L. delbrueckii delbrueckii, L. acidophilus) | cattle | vaginal flush | 13 of 29 strains were characterized by H2O2 production | [102] |
Lactobacillus strain SQ0048 | cattle | vagina | Adhesion to host cells (endoplasmic reticulum protein processing pathways); Interleukin-17 signalling pathway involved in pathogen inhibition, antigen processing and presentation pathways. | [103] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Várhidi, Z.; Csikó, G.; Bajcsy, Á.C.; Jurkovich, V. Uterine Disease in Dairy Cows: A Comprehensive Review Highlighting New Research Areas. Vet. Sci. 2024, 11, 66. https://doi.org/10.3390/vetsci11020066
Várhidi Z, Csikó G, Bajcsy ÁC, Jurkovich V. Uterine Disease in Dairy Cows: A Comprehensive Review Highlighting New Research Areas. Veterinary Sciences. 2024; 11(2):66. https://doi.org/10.3390/vetsci11020066
Chicago/Turabian StyleVárhidi, Zsóka, György Csikó, Árpád Csaba Bajcsy, and Viktor Jurkovich. 2024. "Uterine Disease in Dairy Cows: A Comprehensive Review Highlighting New Research Areas" Veterinary Sciences 11, no. 2: 66. https://doi.org/10.3390/vetsci11020066
APA StyleVárhidi, Z., Csikó, G., Bajcsy, Á. C., & Jurkovich, V. (2024). Uterine Disease in Dairy Cows: A Comprehensive Review Highlighting New Research Areas. Veterinary Sciences, 11(2), 66. https://doi.org/10.3390/vetsci11020066