Freezing Stallion Semen—What Do We Need to Focus on for the Future?
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cryopreservation Method for Stallion Semen
3. Sperm Quality Pre- and Post-Cryopreservation
4. Semen Quality
4.1. Dietary Supplements
4.2. Effect of Season on Sperm Quality
4.3. Application of Blue Light in the Non-Breeding Season
4.4. Semen Collection Frequency
4.5. Fractionation of Semen Samples during Collection
4.6. Post-Thaw Sperm Quality
Removing Seminal Plasma
4.7. Sperm Selection
4.8. Semen Extender
Original Extender | Modification | Effect | References |
---|---|---|---|
INRA 82Frozen storage | Added 2% egg yolk and, after dilution, added 2.5% glycerol | No effect on fertility; improved motility | Vidament et al. [69] |
Skim-milk, glucose INRA 96 Frozen storage | Added 2%, 3%, or 4% glycerol | Increased post-thaw motility using 4% glycerol | Scherzer et al. [70] |
BotuCrio® Frozen storage | Used soybean lecithin instead of egg yolk | Similar sperm characteristics but reduced fertility rates | Papa et al. [63] |
Equiplus Frozen storage | Added 150μM MnTBAP, 1 mM NAC, and 5 μM FeTPPS | Added MnTBAP before freezing improved semen quality | Consuegra et al. [71] |
Cooled storage | Added glucose at 0 nM, 67 nM, 147 mM, or 270 mM | Increased total and progressive motility, and curvilinear velocity | Hernandez-Aviles et al. [72] |
Freezing without permeating cryoprotectants | Sucrose 100 mM with BSA-1% | Consuegra et al. [71] | |
Frozen storage | Adding antioxidants | MnTBAP increased post-thaw motility membrane integrity and mitochondrial membrane potential | Contreras et al. [66] |
Frozen storage | Adding autologous or heterologous seminal plasma post-thaw | Autologous seminal plasma might improve kinematics | Neuhauser et al. [73] |
Frozen storage epididymal sperm samples | Centrifuging in a non-egg yolk extender, followed by freezing in low glycerol medium was beneficial | Neuhauser et al. [74] | |
Frozen storage | Adding sucrose to BotuCrio | Improved membrane and acrosomal integrity; increase in mitochondrial membrane potential | Moura et al. [75] |
Frozen storage | New Caceres extender | Morillo Rodríguez et al. [76] |
4.9. Rate of Cooling
5. Lyophilization
6. Vitrification
7. Bacterial Contamination
8. Future Directions
Fertility Biomarkers
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Givens, M.D. Review: Risks of disease transmission through semen in cattle. Animal 2018, 12 (Suppl. S1), s165–s171. [Google Scholar] [CrossRef] [PubMed]
- Mulu, M.; Moges, N.; Adane, M. Review on process, advantages and disadvantage of artificial insemination in cattle. Int. J. Vet. Sci. Anim. Husb. 2018, 3, 8–13. [Google Scholar]
- Aurich, J.E. Artificial insemination in horses—More than a century of practice and research. J. Equine Vet. Sci. 2012, 32, 458–463. [Google Scholar] [CrossRef]
- Katila, T.A.; Reilas, T.; Nivola, K.; Peltonen, T.; Virtala, A.-M. A 15-year survey of reproductive efficiency of Standardbred and Finnhorse trotters in Finland—Descriptive results. Acta Vet. Scand. 2010, 52, 40. [Google Scholar] [CrossRef] [PubMed]
- Vidament, M.; Dupere, A.M.; Julienne, P.; Evian, A.; Noue, P.; Palmer, E. Equine frozen semen: Freezability and fertility field results. Theriogenology 2008, 48, 907–917. [Google Scholar] [CrossRef]
- Blottner, S.; Warnke, C.; Tuchscherer, A.; Heinen, V.; Torner, H. Morphological and functional changes of stallion spermatozoa after cryopreservation during breeding and non-breeding season. Anim. Reprod. Sci. 2001, 65, 75–88. [Google Scholar] [CrossRef]
- Peña, F.J.; O’Flaherty, C.; Ortiz Rodríguez, J.M.; Martín Cano, F.E.; Gaitskell-Phillips, G.L.; Gil, M.C.; Ferrusola, C.O. Redox regulation and oxidative stress: The particular case of the stallion spermatozoa. Antioxidants 2019, 8, 567. [Google Scholar] [CrossRef]
- Kuisma, P.; Andersson, M.; Koskinen, E.; Katila, T. Fertility of frozen-thawed stallion semen cannot be predicted by the currently used laboratory methods. Acta Vet. Scand. 2006, 48, 14–21. [Google Scholar] [CrossRef]
- Reyes-Perea, A.D.; Diaw, M.; Guerrero-Netro, H.M. Assisted Reproductive Technologies in Horses: A Systematic Review. Biomed. J. Sci. Tech. Res. 2023, 49, 41098–41102. [Google Scholar]
- Colenbrander, B.; Gadella, B.M.; Stout, T.A.E. The Predictive Value of Semen Analysis in the Evaluation of Stallion Fertility. Reprod. Domest. Anim. 2003, 38, 305–311. [Google Scholar] [CrossRef]
- Loomis, P.R. Advanced methods for handling and preparation of stallion semen. Vet. Clin. N. Am. Equine Pract. 2006, 22, 663–676. [Google Scholar] [CrossRef] [PubMed]
- Loomis, P.R.; Graham, J.K. Commercial semen freezing: Individual male variation in cryosurvival and the response of stallion sperm to customized freezing protocols. Anim. Reprod. Sci. 2008, 108, 119–12813. [Google Scholar] [CrossRef] [PubMed]
- Vašíček, J.; Baláži, A.; Svoradová, A.; Vozaf, J.; Dujíčková, L.; Makarevich, A.V.; Bauer, M.; Chrenek, P. Comprehensive Flow-Cytometric Quality Assessment of Ram Sperm Intended for Gene Banking Using Standard and Novel Fertility Biomarkers. Int. J. Mol. Sci. 2022, 23, 5920. [Google Scholar] [CrossRef] [PubMed]
- Prien, S.; Iacovides, S. Cryoprotectants & Cryopreservation of Equine Semen: A Review of Industry Cryoprotectants and the Effects of Cryopreservation on Equine Semen Membranes. J. Dairy Vet. Anim. Res. 2016, 3, 63. [Google Scholar] [CrossRef]
- Amann, B.W.; Pickett, B.W. Principles of cryopreservation and a review of cryopreservation of stallion spermatozoa. J. Equine Vet. Sci. 1987, 7, 145–173. [Google Scholar] [CrossRef]
- Aurich, J.; Kuhl, J.; Tichy, A.; Aurich, C. Efficiency of Semen Cryopreservation in Stallions. Animals 2020, 10, 1033–1045. [Google Scholar] [CrossRef]
- Bazzano, M.; Laus, F.; Spaterna, A.; Marchegiani, A. Use of nutraceuticals in the stallion: Effects on semen quality and preservation. Reprod. Domest. Anim. 2021, 56, 951–957. [Google Scholar] [CrossRef]
- Brinsko, S.P.; Varner, D.D.; Love, C.C.; Blanchard, T.L.; Day, B.C.; Wilson, M.E. Effect of feeding a DHA-enriched nutriceutical on the quality of fresh, cooled and frozen stallion semen. Theriogenology 2005, 63, 1519–1527. [Google Scholar] [CrossRef]
- Aurich, C. Recent advances in cooled-semen technology. Anim. Reprod. Sci. 2008, 107, 268–275. [Google Scholar] [CrossRef]
- Schmid-Lausigk, Y.; Aurich, C. Influences of a diet supplemented with linseed oil and antioxidants on quality of equine semen after cooling and cryopreservation during winter. Theriogenology 2014, 81, 966–973. [Google Scholar] [CrossRef]
- Rodrigues, P.G.; de Moura, R.S.; Rocha, L.G.P.; Bottino, M.P.; Nichi, M.; Maculan, R.; Bertechini, A.G.; Souza, J.C. Dietary polyunsaturated fatty acid supplementation improves the quality of stallion cryopreserved semen. J. Equine Vet. Sci. 2017, 54, 18–23. [Google Scholar] [CrossRef]
- Van Dorland, A.; Janett, F.; Bruckmaier, R.; Wach-Gygax, L.; Jeannerat, E.; Bollwein, H.; Sieme, H.; Burger, D. Herbal yeast product, Equi-Strath®, alters the antioxidant status of stallion semen. Anim. Reprod. Sci. 2019, 208, 106119. [Google Scholar] [CrossRef] [PubMed]
- Gee, E.K.; Bruemmer, J.E.; Siciliano, P.D.; McCue, P.M.; Squires, E.L. Effects of dietary vitamin E supplementation on spermatozoal quality in stallions with suboptimal post-thaw motility. Anim. Reprod. Sci. 2008, 107, 324–325. [Google Scholar] [CrossRef]
- Freitas, M.L.; Bouéres, C.S.; Pignataro, T.A.; Gonçalves de Oliveira, F.J.; de Oliveira Viu, M.A.; de Oliveira, R.A. Quality of fresh, cooled, and frozen semen from stallions supplemented with antioxidants and fatty acids. J. Equine Vet. Sci. 2016, 46, 1–6. [Google Scholar] [CrossRef]
- Freitas, M.L.; Pignataro, T.A.; Pivato, I.; Cunha, A.M.; Oliveira, R.A.D. Quality of frozen-thawed semen from stallions supplemented with nutraceutical. In Proceedings of the 30th Annual Meeting of the Brazilian Embryo Technology Society (SBTE), Foz do Iguaçu, PR, Brazil, 25–27 August 2016; pp. 549–564. [Google Scholar]
- Gerlach, T.; Aurich, J.E. Regulation of seasonal reproductive activity in the stallion, ram and hamster. Anim. Reprod. Sci. 2000, 58, 197–213. [Google Scholar] [CrossRef] [PubMed]
- Aurich, C.; Burgmann, F.; Hoppe, H. Opioid regulation of LH and prolactin release in the horse—Identical or independent endocrine pathways? Anim. Reprod. Sci. 1996, 44, 127–134. [Google Scholar] [CrossRef]
- Aurich, C. Seasonal Influences on Cooled-Shipped and Frozen-Thawed Stallion Semen. J. Equine Vet. Sci. 2016, 43, S1–S5. [Google Scholar] [CrossRef]
- Crespo, F.; Wilson, R.; Díaz-Jimenez, M.; Consuegra, C.; Dorado, J.; García Barrado, B.; Gosálvez, J.; Louis Smit, R.; Hidalgo, M.; Johnston, S. Effect of season on individual stallion semen characteristics. Anim. Reprod. Sci. 2020, 223, 106641. [Google Scholar] [CrossRef]
- Waheed, M.M.; Ghoneim, I.M.; Abdou, M.S.S. Morphometric Characteristics of Spermatozoa in the Arabian Horse With Regard to Season, Age, Sperm Concentration, and Fertility. J. Equine Vet. Sci. 2015, 35, 244–249. [Google Scholar] [CrossRef]
- Mislei, B.; Bucci, D.; Malama, E.; Bollwein, H.; Mari, G. Seasonal changes in ROS concentrations and sperm quality in unfrozen and frozen-thawed stallion semen. Theriogenology 2020, 144, 89–97. [Google Scholar] [CrossRef]
- Janett, F.; Thun, R.; Niederer, K.; Burger, D.; Hässig, M. Seasonal changes in semen quality and freezability in the Warmblood stallion. Theriogenology 2003, 60, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Janett, F.; Thun, R.; Bettschen, S.; Burger, D.; Hassig, M. Seasonal changes of semen quality and freezability in Franches–Montagnes stallions. Anim. Reprod. Sci. 2003, 77, 213–221. [Google Scholar] [CrossRef] [PubMed]
- Magistrini, M.; Chanteloube, P.; Palmer, E. Influence of season and frequency of ejaculation on production of stallion semen for freezing. J. Reprod. Fertil. 1987, 35, 127–133. [Google Scholar]
- Wach-Gygax, L.; Burger, D.; Malama, E.; Bollwein, E.; Fleisch, A.; Jeannerat, E.; Thomas, S.; Schuler, G.; Janett, F. Seasonal changes of DNA fragmentation and quality of raw and cold-stored stallion spermatozoa. Theriogenology 2017, 99, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Morrell, J.M.; Winblad, C.; Georgakas, A.; Stuhtmann, G.; Humblot, P.; Johannisson, A. Reactive oxygen species in stallion semen can be affected by season and colloid centrifugation. Anim. Reprod. Sci. 2013, 140, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Sieme, H.; Troedsson, M.H.; Weinrich, S.; Klug, E. Influence of exogenous GnRH on sexual behavior and frozen/thawed semen viability in stallions during the non-breeding season. Theriogenology 2004, 61, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Murphy, B.A.; Walsh, C.M.; Woodward, E.M.; Prendergast, R.L.; Ryle, J.P.; Fallon, L.H.; Troedsson, M.H. Blue light from individual light masks directed at a single eye advances the breeding season in mares. Equine Vet. J. 2014, 46, 601–605. [Google Scholar] [CrossRef] [PubMed]
- Sieme, T.; Katila, E.; Klug, E. Effect of semen collection practices on sperm characteristics before and after storage and on fertility of stallions. Theriogenology 2004, 61, 769–784. [Google Scholar] [CrossRef]
- Lindeberg, H.; Karjalainen, H.; Koskinen, E.; Katila, T. Quality of stallion semen obtained by a new semen collection phantom (Equidame®) versus a missouri® artificial vagina. Theriogenology 1999, 51, 1157–1173. [Google Scholar] [CrossRef]
- Troedsson, M.H.T.; Loset, K.; Alghamdi, A.M.; Dahms, B.; Crabo, B.G. Interaction between equine semen and the endometrium: The inflammatory response to semen. Anim. Reprod. Sci. 2001, 8, 273–278. [Google Scholar] [CrossRef]
- Hidalgo, M.; Ortiz, J.; Dorado, I.; Morrell, J.M.; Gosálvez, J.; Consuegra, C.; Diaz-Jimenez, M.; Pereira, B.; Crespo, F. Stallion sperm selection prior to freezing using a modified colloid swim-up procedure without centrifugation. Anim. Reprod. Sci. 2017, 185, 83–88. [Google Scholar] [CrossRef]
- Aziz, D.M.; Enbergs, H. Effect of Seminal Plasma Removal on Cell Membrane, Acrosomal Integrity and Mitochondrial Activity of Cooled Stallion Semen. J. Adv. Vet. Res. 2012, 2, 148–152. [Google Scholar]
- Brinsko, S.P.; Crockett, E.C.; Squires, E.L. Effect of centrifugation and partial removal of seminal plasma on equine spermatozoal motility after cooling and storage. Theriogenology 2000, 54, 129–136. [Google Scholar] [CrossRef]
- Waite, J.A.; Love, C.C.; Brinsko, S.P.; Teague, S.R.; Salazar, J.L., Jr.; Mancill, S.S.; Varner, D.D. Factors impacting equine sperm recovery rate and quality following cushioned centrifugation. Theriogenology 2008, 70, 704–714. [Google Scholar] [CrossRef]
- Barrier-Battut, I.; Bonnet, C.; Giraudo, A.; Dubois, C.; Caillaud, M.; Vidament, M. Removal of seminal plasma enhances membrane stability on fresh and cooled stallion spermatozoa. Reprod. Domest. Anim. 2013, 48, 64–71. [Google Scholar] [CrossRef]
- Ramires Neto, C.; Monteiro, G.A.; Soares, R.F.; Pedrazzi, C.; Dell’aqua, J.A.; Papa, F.O.; Castro-Chaves, M.M.; Alvarenga, M.A. New seminal plasma removal method for freezing stallion semen. Theriogenology 2013, 79, 1120–1123. [Google Scholar] [CrossRef]
- Vigolo, V.; Gautier, C.; Falomo, M.E.; Aurich, C. Selection of frozen–thawed stallion semen by microfluidic technology. Reprod. Domest. Anim. 2023, 58, 443–449. [Google Scholar] [CrossRef]
- Al-Essawe, E.; Johannisson, A.; Wulf, M.; Aurich, C.; Morrell, J.M. Improved cryosurvival of stallion spermatozoa after colloid centrifugation is independent of the addition of seminal plasma. Cryobiology 2018, 81, 145–152. [Google Scholar] [CrossRef]
- Al-Essawe, E.M.; Johannisson, A.; Wulf, M.; Aurich, C.; Morrell, J.M. Addition of seminal plasma to thawed stallion spermatozoa did not repair cryoinjuries. Anim. Reprod. Sci. 2018, 196, 48–58. [Google Scholar] [CrossRef]
- Al-Essawe, E.; Wallgren, M.; Wulf, M.; Aurich, C.; Macías-García, B.; Sjunnesson, Y.; Morrell, J.M. Seminal plasma influences the fertilizing potential of cryopreserved stallion sperm. Theriogenology 2018, 115, 99–107. [Google Scholar] [CrossRef]
- Neuhauser, S.; Dörfel, S.; Handler, J. Dose-dependent effects of homologous seminal plasma on motility and kinematic characteristics of post-thaw stallion epididymal spermatozoa. Andrology 2015, 3, 536–543. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Foote, R.H.; Brockett, C.C. Survival of Bull Sperm Frozen at Different Rates in Media Varying in Osmolarity. Cryobiology 1998, 37, 219–230. [Google Scholar] [CrossRef] [PubMed]
- Khalil, W.A.; El-Harairy, M.A.; Zeidan, A.E.B.; Hassan, M.A.E.; Mohey-Elsaeed, O. Evaluation of bull spermatozoa during and after cryopreservation: Structural and ultrastructural insights. Int. J. Vet. Sci. Med. 2017, 22, S49–S56. [Google Scholar] [CrossRef] [PubMed]
- Sieme, H.; Martinsson, G.; Rauterberg, H.; Walter, K.; Aurich, C.; Petzoldt, R.; Klug, E. Application of techniques for sperm selection in fresh and frozen-thawed stallion semen. Reprod. Domest. Anim. 2003, 38, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Macías García, B.; Morrell, J.M.; Ortega-Ferrusola, C.; González-Fernández, L.; Tapia, J.A.; Rodriguez-Martínez, H.; Peña, F.J. Centrifugation on a single layer of colloid selects improved quality spermatozoa from frozen-thawed stallion semen. Ani. Reprod. Sci. 2009, 114, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Gloria, A.; Carluccio, A.; Wegher, L.; Robbe, D.; Befacchia, G.; Contri, A. Single and double layer centrifugation improve the quality of cryopreserved bovine sperm from poor quality ejaculates. J. Anim. Sci. Biotechnol. 2016, 7, 30. [Google Scholar] [CrossRef] [PubMed]
- Colleoni, S.; Lagutina, I.; Lazzari, G.; Rodriguez-Martinez, H.; Galli, C.; Morrell, J.M. New Methods for Selecting Stallion Spermatozoa for Assisted Reproduction. J. Equine Vet. Sci. 2011, 31, 536–541. [Google Scholar] [CrossRef]
- Umair, M.; Henning, H.; Stout, T.A.E.; Claes, A. A Modified Flotation Density Gradient Centrifugation Technique Improves the Semen Quality of Stallions with a High DNA Fragmentation Index. Animals 2021, 11, 1973. [Google Scholar] [CrossRef]
- Morrell, J.M.; Nunes, M. M Practical guide to Single Layer Centrifugation of stallion semen. Equine Vet. Educ. 2018, 30, 392–398. [Google Scholar] [CrossRef]
- Malaluang, P.; Wagner, L.H.; Spergser, J.; Aurich, C.; Morrell, J.M. Colloid centrifugation as an alternative to antibiotics in stallion semen preparation. J. Equine Vet. Sci. 2023, 125, 104597. [Google Scholar] [CrossRef]
- Squires, E.L.; Keith, S.L.; Graham, J.K. Evaluation of alternative cryoprotectants for preserving stallion spermatozoa. Theriogenology 2004, 62, 1056–1065. [Google Scholar] [CrossRef] [PubMed]
- Papa, F.O.; Felício, G.B.; Melo-Oña, C.M.; Alvarenga, M.A.; De Vita, B.; Trinque, C.; Puoli-Filho, J.N.P.; Dell’Aqua, J.A. Replacing egg yolk with soybean lecithin in the cryopreservation of stallion semen. Anim. Reprod. Sci. 2011, 129, 73–77. [Google Scholar] [CrossRef] [PubMed]
- Macedo, S.; Bliebernicht, M.; Carvalheira, J.; Costa, A.; Ribeiro, F.; Rocha, A. Effects of two freezing methods and two cryopreservation media on post-thaw quality of stallion spermatozoa. Reprod. Domest. Anim. 2018, 53, 519–524. [Google Scholar] [CrossRef] [PubMed]
- Nouri, H.; Shojaeian, K.; Samadian, F.; Lee, S.; Kohram, H.; Lee, J.I. Using Resveratrol and Epigallocatechin-3-Gallate to Improve Cryopreservation of Stallion Spermatozoa With Low Quality. J. Equine Vet. Sci. 2018, 70, 18–25. [Google Scholar] [CrossRef]
- Contreras, M.J.; Treulen, F.; Arias, M.E.; Silva, M.; Fuentes, F.; Cabrera, P.; Felmer, R. Cryopreservation of stallion semen: Effect of adding antioxidants to the freezing medium on sperm physiology. Reprod. Domest. Anim. 2019, 55, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Yeste, M.; Estrada, E.; Rocha, L.G.; Marin, H.; Rodriguez-Gil, J.E.; Miro, J. Cryotolerance of stallion spermatozoa is related to ROS production and mitochondrial membrane potential rather than to the integrity of sperm nucleus. Andrology 2015, 3, 395–407. [Google Scholar] [CrossRef]
- Treulen, F.; Aguila, L.; Arias, M.E.; Jofré, I.; Felmer, R. Impact of post-thaw supplementation of semen extender with antioxidants on the quality and function variables of stallion spermatozoa. Anim. Reprod. Sci. 2019, 201, 71–83. [Google Scholar] [CrossRef]
- Vidament, M.; Yvon, J.M.; Couty, I.; Arnaud, G.; Nguekam-Feugang, J.; Noue, P.; Cottron, S.; Le Tellier, A.; Noel, F.; Palmer, E.; et al. Advances in cryopreservation of stallion semen in modified INRA82. Anim. Reprod. Sci. 2001, 68, 201–218. [Google Scholar] [CrossRef]
- Scherzer, J.; Fayrer-Hosken, R.A.; Aceves, M.; Hurley, D.J.; Ray, L.E.; Jones, L.; Heusner, G.L. Freezing equine semen: The effect of combinations of semen extenders and glycerol on post–thaw motility. Aust. Vet. J. 2009, 87, 275–279. [Google Scholar] [CrossRef]
- Consuegra, C.; Crespo, F.; Bottrel, M.; Ortiz, I.; Dorado, J.; Diaz-Jimenez, M.; Pereira, B.; Hidalgo, M. Stallion sperm freezing with sucrose extenders: A strategy to avoid permeable cryoprotectants. Anim. Reprod. Sci. 2018, 191, 85–91. [Google Scholar] [CrossRef]
- Hernández-Avilés, C.; Love, C.C.; Serafini, R.; Ramírez-Agámez, L.; Friedrich, M.; Ghosh, S.; Teague, S.R.; LaCaze, K.A.; Brinsko, S.P.; Varner, D.D. Effects of glucose concentration in semen extender and storage temperature on stallion sperm quality following long-term cooled storage. Theriogenology 2020, 147, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Neuhauser, S.; Bollwein, H.; Siuda, M.; Handler, J. Comparison of the Effects of Five Semen Extenders on the Quality of Frozen-Thawed Equine Epididymal Sperm. J. Equine Vet. Sci. 2019, 79, 1–8. [Google Scholar] [CrossRef]
- Neuhauser, S.; Bollwein, H.; Siuda, M.; Handler, J. Effects of Different Freezing Protocols on Motility, Viability, Mitochondrial Membrane Potential, Intracellular Calcium Level, and DNA Integrity of Cryopreserved Equine Epididymal Sperm. J. Equine Vet. Sci. 2019, 82, 102801. [Google Scholar] [CrossRef] [PubMed]
- Moura, T.C.M.; Arruda, L.C.P.; Araujo Silva, R.A.J.; Silva, R.P.F.; Oliveira, A.S.; Tobal, L.F.M.; Batista, A.M.; Carneiro, G.F.; Guerra, M.M.P. Diluent containing dimethylformamide added with sucrose improves in vitro quality after freezing/thawing stallion sperm. J. Equine Vet. Sci. 2022, 109, 103825. [Google Scholar] [CrossRef]
- Rodríguez, A.M.; Ferrusola, C.O.; García, B.M.; Morrell, J.M.; Martínez, H.R.; Tapia, J.A.; Pena, F.J. Freezing stallion semen with the new Cáceres extender improves post thaw sperm quality and diminishes stallion-to-stallion variability. Anim. Reprod. Sci. 2011, 127, 78–83. [Google Scholar] [CrossRef]
- Heule, M.; Verstraete, M.; Blockx, Z.; De Blende, P.; Dini, P.; Daels, P. Slow Cooling is Beneficial for Storage of Frozen-Thawed Equine Spermatozoa. J. Equine Vet. Sci. 2022, 118, 104132. [Google Scholar] [CrossRef]
- Choi, Y.H.; Varner, D.D.; Love, C.C.; Hartman, D.L.; Hinrichs, K. Production of live foals via intracytomplasmic injection of lyophilized soerm and sperm extract in the horse. Reproduction 2011, 142, 529–538. [Google Scholar] [CrossRef] [PubMed]
- Olaciregui, M.; Luño, V.; Martí, J.I.; Aramayona, J.; Gil, L. Freeze-dried stallion spermatozoa: Evaluation of two chelating agents and comparative analysis of three sperm DNA damage assays. Andrologia 2016, 48, 988–994. [Google Scholar] [CrossRef]
- Restrepo, G.; Varela, E.; Duque, J.E.; Gómez, J.E.; Rojas, M. Freezing, Vitrification, and Freeze-Drying of Equine Spermatozoa: Impact on Mitochondrial Membrane Potential, Lipid Peroxidation, and DNA Integrity. J. Equine Vet. Sci. 2019, 72, 8–15. [Google Scholar] [CrossRef]
- Aurich, C.; Spergser, J. Influence of bacteria and gentamicin on cooled-stored stallion spermatozoa. Theriogenology 2007, 67, 912–918. [Google Scholar] [CrossRef]
- Juan, C.; Ahmed, T. Disease transmission in horses. Theriogenology 2006, 66, 551–559. [Google Scholar]
- Cerny, K.L.; Littl, T.V.; Scoggin, C.F.; Coleman, R.J.; Mats, H.T.; Squires, E.L. Presence of bacteria on the external genitalia of healthy stallions and its transmission to the mare at the time of breeding by live cover. J. Equine Vet. Sci. 2014, 34, 369–374. [Google Scholar] [CrossRef]
- Ortega-Ferrusola, C.; González-Fernández, L.; Muriel, A.; Macías-García, B.; Rodríguez-Martínez, H.; Tapia, J.A.; Peña, F.J. Does the microbial flora in the ejaculate affect the freezeability of stallion sperm? Reprod. Domest. Anim. 2009, 44, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Jasko, D.J.; Bedford, S.J.; Cook, N.L.; Mumford, E.L.; Squires, E.L.; Pickett, B.W. Effect of antibiotics on motion characteristics of cooled stallion spermatozoa. Theriogenology 1993, 40, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Al-Kass, Z.; Spergser, J.; Aurich, C.; Kuhl, J.; Schmidt, K.; Johannisson, A.; Morrell, J.M. Sperm Quality during Storage Is Not Affected by the Presence of Antibiotics in EquiPlus Semen Extender but Is Improved by Single Layer Centrifugation. Antibiotics 2018, 7, 1. [Google Scholar] [CrossRef] [PubMed]
- Al-Kass, Z.; Spergser, J.; Aurich, C.; Kuhl, J.; Schmidt, K.; Morrell, J.M. Effect of presence or absence of antibiotics and use of modified single layer centrifugation on bacteria in pony stallion semen. Reprod. Domest. Anim. 2018, 54, 342–349. [Google Scholar] [CrossRef] [PubMed]
- Johns, I.C.; Adams, E.L. Trends in antimicrobial resistance in equine bacterial isolates: 1999–2012. Vet. Rec. 2016, 179, 330. [Google Scholar] [CrossRef]
- Morrell, J.M.; Malaluang, P.; Cojkic, A.; Hansson, I. Alternatives to antibiotics in semen extenders used in artificial insemination. In The Global Antimicrobial Resistance Epidemic—Innovative Approaches and Cutting-Edge Solutions; IntechOpen: London, UK, 2022; ISBN 978-1-80356-042-7. [Google Scholar] [CrossRef]
- Malaluang, P.; Wilén, E.; Frosth, S.; Lindahl, J.; Hansson, I.; Morrell, J.M. Vaginal bacteria in mares and the occurrence of antimicrobial resistance. Microorganisms 2022, 10, 2204. [Google Scholar] [CrossRef]
- Malaluang, P.; Wilén, E.; Frosth, S.; Lindahl, J.F.; Hansson, I.; Morrell, J.M. Antimicrobial Resistance in Vaginal Bacteria in Inseminated Mares. Pathogens 2023, 12, 375–395. [Google Scholar] [CrossRef]
- Morrell, J.M.; Klein, C.; Lundeheim, N.; Erol, E.; Troedsson, M.H.T. Removal of bacteria from stallion semen by colloid centrifugation. Anim. Reprod. Sci. 2014, 145, 47–53. [Google Scholar] [CrossRef]
- Guimarães, T.; Lopes, G.; Pinto, M.; Silva, E.; Miranda, C.; Correia, M.J.; Damásio, L.; Thompson, G.; Rocha, A. Colloid centrifugation of fresh stallion semen before cryopreservation decreased microorganism load of frozen-thawed semen without affecting seminal kinetics. Theriogenology 2015, 83, 186–191. [Google Scholar] [CrossRef] [PubMed]
- Malo, C.; Gil, L.; Gonzalez, N.; Martínez, F.; Cano, R.; de Blas, I.; Espinosa, E. Anti-oxidant supplementation improves boar sperm characteristics and fertility after cryopreservation: Comparison between cysteine and rosemary (Rosmarinus officinalis). Cryobiology 2010, 61, 142–147. [Google Scholar] [CrossRef] [PubMed]
- Yeste, M.; Morató, R.; Rodríguez-Gil, J.E.; Bonet, S.; Prieto-Martínez, N. Aquaporins in the male reproductive tract and sperm: Functional implications and cryobiology. Reprod. Domest. Anim. 2017, 52 (Suppl. S4), 12–27. [Google Scholar] [CrossRef] [PubMed]
- Oberska, P.; Michałek, K. Aquaporins: New markers for male (in)fertility in livestock and poultry? Anim. Reprod. Sci. 2021, 231, 106807. [Google Scholar] [CrossRef] [PubMed]
- Bonilla-Correal, S.; Noto, F.; Garcia-Bonavila, E.; Rodríguez-Gil, J.E.; Yeste, M.; Miro, J. First evidence for the presence of aquaporins in stallion sperm. Reprod. Domest. Anim. 2017, 52 (Suppl. S4), 61–64. [Google Scholar] [CrossRef]
- Luconi, M.; Cantini, G.; Baldi, E.; Forti, G. Role of a-kinase anchoring proteins (AKAPs) in reproduction. Front. Biosci.-Landmark 2011, 16, 1315–1330. [Google Scholar] [CrossRef] [PubMed]
- Sergeant, N.; Briand-Amirat, L.; Bencharif, D.; Delehedde, M. The Sperm Specific Protein Proakap4 as an Innovative Marker to Evaluate Sperm Quality and Fertility. Dairy Vet. Sci. J. 2019, 11, 555803. [Google Scholar] [CrossRef]
- Blommaert, D.; Sergeant, N.; Delehedde, M.; Jouy, N.; Mitchell, V.; Franck, T.; Donnay, I.; Lejeune, J.P.; Serteyn, D. Expression, localization, and concentration of A-kinase anchor protein 4 (AKAP4) and its precursor (proAKAP4) in equine semen: Promising marker correlated to the total and progressive motility in thawed spermatozoa. Theriogenology 2019, 131, 52–60. [Google Scholar] [CrossRef]
- Carracedo, S.; Briand-Amirat, L.; Dordas-Perpinyà, M.; Ramos Escuredo, Y.; Delcombel, R.; Sergeant, N.; Delehedde, M. ProAKAP4 protein marker: Towards a functional approach to male fertility. Anim. Reprod. Sci. 2022, 247, 107074. [Google Scholar] [CrossRef]
- Blommaert, D.; Sergeant, N.; Delehedde, M.; Donnay, I.; Lejeune, J.P.; Franck, T.; Serteyn, D. First results about ProAKAP4 concentration in stallion semen after cryopreservation in two different freezing media. Cryobiology 2021, 102, 133–135. [Google Scholar] [CrossRef]
- Novak, S.; Smith, T.A.; Paradis, F.; Burwash, L.; Dyck, M.K.; Foxcroft, G.R.; Dixon, W.T. Biomarkers of in vivo fertility in sperm and seminal plasma of fertile stallions. Theriogenology 2010, 74, 956–967. [Google Scholar] [CrossRef] [PubMed]
- Gaitskell-Phillips, G.; Martín-Cano, F.E.; Ortiz-Rodríguez, J.M.; Silva-Rodríguez, A.; Rodríguez-Martínez, H.; Gil, M.C.; Ortega-Ferrusola, C.; Peña, F.J. Seminal plasma AnnexinA2 protein is a relevant biomarker for stallions which require removal of seminal plasma for sperm survival upon refrigeration. Biol. Reprod. 2020, 103, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Gaitskell-Phillips, G.; Martín-Cano, F.E.; Ortiz-Rodríguez, J.M.; da Silva-Álvarez, E.; Masot, J.; Redondo, E.; Gil, M.C.; Ortega-Ferrusola, C.; Peña, F.J. Seminal plasma proteins as potential biomarkers for sperm motility and velocities. Theriogenology 2022, 177, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Ďuračka, M.; Benko, F.; Tvrdá, E. Molecular Markers: A New Paradigm in the Prediction of Sperm Freezability. Int. J. Mol. Sci. 2023, 24, 3379. [Google Scholar] [CrossRef] [PubMed]
Supplements (Reference) | Study Period | Semen Type | Effect |
---|---|---|---|
Docosahexaenoic acid (Brinsko et al., 2005) [18] | 98 days | Fresh Cooled 24 h Cooled 48 h and frozen–thawed | No effect. Increased average path velocity and straightness. Increased total, progressive, and rapid motility. |
Linseed oil and antioxidants [20] | 84 days | Frozen–thawed | Increased total and progressive motility, curved line velocity, average path velocity, and straight-line velocity in November; decreased total and progressive motility, curved line velocity, average path velocity, and straight-line velocity in February. Membrane integrity was decreased in both November and February. |
Polyunsaturated fatty acid [21] | 60 days | Frozen–thawed | Increased total and progressive motility. |
Plasmolyzed herbal yeast [22] | 70 days | Cooled | No significant differences between groups in motility, membrane integrity, or lipid peroxidation. Antioxidant status may be increased. |
Vitamin E [23] | Frozen | No effect on post-thaw motility, although motility was improved in cold-stored semen. | |
Vitamin E, selenium, L-carnitine, and fatty acids [24,25] | 60-day crossover trial | Frozen | Higher progressive motility, membrane integrity, acrosomal integrity. |
Type of Semen; Improvement in Sperm Quality Parameters | Winter | Spring | Summer | Autumn | References |
---|---|---|---|---|---|
Cooled; progressive motility (%) | 51 | 59 | 45 | 44 | Crespo et al. [29] |
Cooled; Progressive motility (%); sperm abnormalities | 67.39; 41.52 | 73.24; 35.29 | 80.79; 39.18 | 71.5; 42.63 | Waheed et al. [30] |
Cooled; intact plasma membrane (%) | 79 | 86 | 80 | 75 | Crespo et al. [29] |
Cooled; %DFI Frozen %DFI | 11.3; 12.9 | ------ | 25.6; 27.1 | ------ | Mislei et al. [31] |
Cooled; viability (%) | 58.3 | 58.1 | 55.0 | 58.9 | Janett et al. [32] |
Frozen; viability (%); motility (%) | 65.8, 32.1 | ------ | ------ | 64.2; 39.0 | Janett et al. [33] |
Frozen; AI doses from one ejaculate | 8 | 9 | 10 | 8 | Aurich [28] |
Semen Type | Method Used | Effect |
---|---|---|
Cooled storage for 24 h and 48 h [44] | Centrifugation for 12 min at 400× g at room temperature | Increase progressive and total motility in poor coolers in both 24 h and 48 h. |
Cushion centrifugation [45] | Compared conical tubes and nipple tubes, centrifuging at 400× or 600× g; clear and opaque extenders | Both types of tubes could be used with good results; the opaque extender gave better results in terms of motility than the clear extender. |
Cooled storage for 0, 24, 48, 72, and 96 h of storage [43] | Centrifugation | Adverse effect on the acrosomal integrity, mitochondrial activity, and viability. |
48 h storage at 4 °C [46] | Centrifugation for 10 min at 600× g at room temperature | Reduced velocity. |
Fresh and frozen [47] | 1—Filtered using a synthetic hydrophilic membrane 2—Centrifugation 600× g for 10 min, at room temperature | No difference in sperm quality; more spermatozoa were recovered with the filter. |
Frozen [42] | 1—Swim-up through a colloid 2—Single-layer centrifugation 3—Sperm washing | Single-layer centrifugation more suitable than other methods. |
Frozen [48] | Extender semen centrifuged at 700× g for 12 min | Increased membrane integrity, membrane functionality, mitochondrial membrane potential, acrosome integrity, and total and progressive motility. |
Methods | References |
---|---|
Swim-up, Percoll gradient, glass wool filtration, Sephadex filtration, Leukosorb filtration, centrifugation | Sieme et al. [55] |
Single layer colloid centrifugation | Macias Garcia et al. [56]; Morrell et al. [57] |
Discontinuous density gradient centrifugation | Colleoni et al. [58] |
Swim-up through a colloid (without centrifugation) | Hidalgo et al. [39] |
Modified flotation density gradient centrifugation technique | Umair et al. [59] |
Microfluidics | Vigolo et al. [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Kass, Z.; Morrell, J.M. Freezing Stallion Semen—What Do We Need to Focus on for the Future? Vet. Sci. 2024, 11, 65. https://doi.org/10.3390/vetsci11020065
Al-Kass Z, Morrell JM. Freezing Stallion Semen—What Do We Need to Focus on for the Future? Veterinary Sciences. 2024; 11(2):65. https://doi.org/10.3390/vetsci11020065
Chicago/Turabian StyleAl-Kass, Ziyad, and Jane M. Morrell. 2024. "Freezing Stallion Semen—What Do We Need to Focus on for the Future?" Veterinary Sciences 11, no. 2: 65. https://doi.org/10.3390/vetsci11020065
APA StyleAl-Kass, Z., & Morrell, J. M. (2024). Freezing Stallion Semen—What Do We Need to Focus on for the Future? Veterinary Sciences, 11(2), 65. https://doi.org/10.3390/vetsci11020065